-
2
-
-
34250006557
-
The spectrum of podocytopathies: A unifying view of glomerular diseases
-
DOI 10.1038/sj.ki.5002222, PII 5002222
-
Wiggins RC. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 2007; 71:1205-1214. (Pubitemid 46884251)
-
(2007)
Kidney International
, vol.71
, Issue.12
, pp. 1205-1214
-
-
Wiggins, R.C.1
-
3
-
-
79957894759
-
The targeted podocyte
-
Fogo AB. The targeted podocyte. J Clin Invest 2011; 121:2142-2145.
-
(2011)
J Clin Invest
, vol.121
, pp. 2142-2145
-
-
Fogo, A.B.1
-
4
-
-
0025776523
-
Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
-
Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immuno-suppressant rapamycin in yeast. Science 1991; 253:905-909. (Pubitemid 21917235)
-
(1991)
Science
, vol.253
, Issue.5022
, pp. 905-909
-
-
Hietman, J.1
Movva, N.R.2
Hall, M.N.3
-
5
-
-
0029842109
-
Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP
-
Choi J, Chen J, Schreiber SL, Clardy J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996; 273:239-242. (Pubitemid 26285890)
-
(1996)
Science
, vol.273
, Issue.5272
, pp. 239-242
-
-
Choi, J.1
Chen, J.2
Schreiber, S.L.3
Clardy, J.4
-
6
-
-
0028825698
-
TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin
-
Lorenz MC, Heitman J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem 1995; 270: 27531-27537.
-
(1995)
J Biol Chem
, vol.270
, pp. 27531-27537
-
-
Lorenz, M.C.1
Heitman, J.2
-
7
-
-
0028360374
-
A mammalian protein targeted by G1-arresting rapamycin-receptor complex
-
Brown EJ, Albers MW, Shin TB, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994; 369:756-758.
-
(1994)
Nature
, vol.369
, pp. 756-758
-
-
Brown, E.J.1
Albers, M.W.2
Shin, T.B.3
-
8
-
-
0028239893
-
RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs
-
DOI 10.1016/0092-8674(94)90570-3
-
Sabatini DM, Erdjument-Bromage H, Lui M, et al. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994; 78:35-43. (Pubitemid 24228298)
-
(1994)
Cell
, vol.78
, Issue.1
, pp. 35-43
-
-
Sabatini, D.M.1
Erdjument-Bromage, H.2
Lui, M.3
Tempst, P.4
Snyder, S.H.5
-
9
-
-
0028598672
-
RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex
-
Chiu MI, Katz H, Berlin V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci U S A 1994; 91:12574-12578.
-
(1994)
Proc Natl Acad Sci U S A
, vol.91
, pp. 12574-12578
-
-
Chiu, M.I.1
Katz, H.2
Berlin, V.3
-
10
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
DOI 10.1016/S1097-2765(02)00636-6
-
Loewith R, Jacinto E, Wullschleger S, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002; 10:457-468. (Pubitemid 35284167)
-
(2002)
Molecular Cell
, vol.10
, Issue.3
, pp. 457-468
-
-
Loewith, R.1
Jacinto, E.2
Wullschleger, S.3
Lorberg, A.4
Crespo, J.L.5
Bonenfant, D.6
Oppliger, W.7
Jenoe, P.8
Hall, M.N.9
-
11
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
DOI 10.1038/ncb1183
-
Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biol 2004; 6:1122-1128. (Pubitemid 39468014)
-
(2004)
Nature Cell Biology
, vol.6
, Issue.11
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
Lin, S.4
Ruegg, M.A.5
Hall, A.6
Hall, M.N.7
-
12
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
DOI 10.1016/j.cub.2004.06.054, PII S0960982204004713
-
Sarbassov DD, Ali SM, Kim DH, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14:1296-1302. (Pubitemid 38991819)
-
(2004)
Current Biology
, vol.14
, Issue.14
, pp. 1296-1302
-
-
Dos, D.S.1
Ali, S.M.2
Kim, D.-H.3
Guertin, D.A.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
13
-
-
0037178786
-
mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
DOI 10.1016/S0092-8674(02)00808-5
-
Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110:163-175. (Pubitemid 34876545)
-
(2002)
Cell
, vol.110
, Issue.2
, pp. 163-175
-
-
Kim, D.-H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
14
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
DOI 10.1016/S0092-8674(02)00833-4
-
Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002; 110:177-189. (Pubitemid 34876546)
-
(2002)
Cell
, vol.110
, Issue.2
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
Yoshino, K.-I.4
Oshiro, N.5
Hidayat, S.6
Tokunaga, C.7
Avruch, J.8
Yonezawa, K.9
-
15
-
-
32044465506
-
TOR signaling in growth and metabolism
-
DOI 10.1016/j.cell.2006.01.016, PII S0092867406001085
-
Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124:471-484. (Pubitemid 43199434)
-
(2006)
Cell
, vol.124
, Issue.3
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
16
-
-
79961165137
-
mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson TR, Sengupta SS, Harris TE, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011; 146:408-420.
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
Sengupta, S.S.2
Harris, T.E.3
-
17
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
DOI 10.1126/science.1106148
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307:1098-1101. (Pubitemid 40262113)
-
(2005)
Science
, vol.307
, Issue.5712
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
18
-
-
58649092475
-
mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoidinduced protein kinase 1 (SGK1)
-
Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoidinduced protein kinase 1 (SGK1). Biochem J 2008; 416:375-385.
-
(2008)
Biochem J
, vol.416
, pp. 375-385
-
-
Garcia-Martinez, J.M.1
Alessi, D.R.2
-
19
-
-
47949125486
-
The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C
-
Facchinetti V, Ouyang W, Wei H, et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 2008; 27:1932-1943.
-
(2008)
EMBO J
, vol.27
, pp. 1932-1943
-
-
Facchinetti, V.1
Ouyang, W.2
Wei, H.3
-
20
-
-
47949104258
-
Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling
-
Ikenoue T, Inoki K, Yang Q, et al. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 2008; 27:1919-1931.
-
(2008)
EMBO J
, vol.27
, pp. 1919-1931
-
-
Ikenoue, T.1
Inoki, K.2
Yang, Q.3
-
21
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
-
Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010; 40:310-322.
-
(2010)
Mol Cell
, vol.40
, pp. 310-322
-
-
Sengupta, S.1
Peterson, T.R.2
Sabatini, D.M.3
-
22
-
-
45849105156
-
The rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
DOI 10.1126/science.1157535
-
Sancak Y, Peterson TR, Shaul YD, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320:1496-1501. (Pubitemid 351929429)
-
(2008)
Science
, vol.320
, Issue.5882
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
23
-
-
0043127125
-
Rheb GTpase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
DOI 10.1101/gad.1110003
-
Inoki K, Li Y,XuT,Guan KL.RhebGTPase is a direct target ofTSC2GAPactivity and regulates mTOR signaling. Genes Develop 2003; 17:1829-1834. (Pubitemid 36944560)
-
(2003)
Genes and Development
, vol.17
, Issue.15
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.-L.4
-
24
-
-
18044381192
-
Rheb binds and regulates the mTOR kinase
-
DOI 10.1016/j.cub.2005.02.053
-
Long X, Lin Y, Ortiz-Vega S, et al. Rheb binds and regulates the mTOR kinase. Curr Biol 2005; 15:702-713. (Pubitemid 40599924)
-
(2005)
Current Biology
, vol.15
, Issue.8
, pp. 702-713
-
-
Long, X.1
Lin, Y.2
Ortiz-Vega, S.3
Yonezawa, K.4
Avruch, J.5
-
25
-
-
33947264077
-
PRAS40 Is an Insulin-Regulated Inhibitor of the mTORC1 Protein Kinase
-
DOI 10.1016/j.molcel.2007.03.003, PII S1097276507001487
-
Sancak Y, Thoreen CC, Peterson TR, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007; 25:903-915. (Pubitemid 46436534)
-
(2007)
Molecular Cell
, vol.25
, Issue.6
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
Lindquist, R.A.4
Kang, S.A.5
Spooner, E.6
Carr, S.A.7
Sabatini, D.M.8
-
26
-
-
0041758428
-
Tuberous sclerosis: From tubers to mTOR
-
DOI 10.1046/j.1469-1809.2003.00012.x
-
Kwiatkowski DJ. Tuberous sclerosis: from tubers to mTOR. Ann Hum Genet 2003; 67:87-96. (Pubitemid 38312854)
-
(2003)
Annals of Human Genetics
, vol.67
, Issue.1
, pp. 87-96
-
-
Kwiatkowski, D.J.1
-
28
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
DOI 10.1038/ncb839
-
Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol 2002; 4:648-657. (Pubitemid 34993700)
-
(2002)
Nature Cell Biology
, vol.4
, Issue.9
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.-L.5
-
29
-
-
17444431201
-
Phosphorylation and functional inactivation of TSC2 by Erk: Implications for tuberous sclerosis and cancer pathogenesis
-
DOI 10.1016/j.cell.2005.02.031
-
Ma L, Chen Z, Erdjument-Bromage H, et al. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005; 121:179-193. (Pubitemid 40546387)
-
(2005)
Cell
, vol.121
, Issue.2
, pp. 179-193
-
-
Ma, L.1
Chen, Z.2
Erdjument-Bromage, H.3
Tempst, P.4
Pandolfi, P.P.5
-
30
-
-
72049105867
-
The role of the mammalian target of rapamycin (mTOR) in renal disease
-
Lieberthal W, Levine JS. The role of the mammalian target of rapamycin (mTOR) in renal disease. J Am Soc Nephrol 2009; 20:2493-2502.
-
(2009)
J Am Soc Nephrol
, vol.20
, pp. 2493-2502
-
-
Lieberthal, W.1
Levine, J.S.2
-
31
-
-
79951674629
-
mTOR and rapamycin in the kidney: Signaling and therapeutic implications beyond immunosuppression
-
Huber TB, Walz G, Kuehn EW. mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney Int 2011; 79:502-511.
-
(2011)
Kidney Int
, vol.79
, pp. 502-511
-
-
Huber, T.B.1
Walz, G.2
Kuehn, E.W.3
-
32
-
-
34547851720
-
Renoprotective effects of sirolimus in non-immune initiated focal segmental glomerulosclerosis
-
DOI 10.1093/ndt/gfm191
-
Rangan GK, Coombes JD. Renoprotective effects of sirolimus in nonimmune initiated focal segmental glomerulosclerosis. Nephrol Dial Transplant 2007; 22:2175-2182. (Pubitemid 47244694)
-
(2007)
Nephrology Dialysis Transplantation
, vol.22
, Issue.8
, pp. 2175-2182
-
-
Rangan, G.K.1
Coombes, J.D.2
-
33
-
-
27744489524
-
Rapamycin ameliorates proteinuria-associated tubulointerstitial inflammation and fibrosis in experimental membranous nephropathy
-
DOI 10.1681/ASN.2004030180
-
Bonegio RG, Fuhro R, Wang Z, et al. Rapamycin ameliorates proteinuriaassociated tubulointerstitial inflammation and fibrosis in experimental membranous nephropathy. J Am Soc Nephrol 2005; 16:2063-2072. (Pubitemid 41716437)
-
(2005)
Journal of the American Society of Nephrology
, vol.16
, Issue.7
, pp. 2063-2072
-
-
Bonegio, R.G.B.1
Fuhro, R.2
Wang, Z.3
Valeri, C.R.4
Andry, C.5
Salant, D.J.6
Lieberthal, W.7
-
34
-
-
34447564166
-
Effects of rapamycin on active Heymann nephritis
-
DOI 10.1159/000103918
-
Naumovic R, Jovovic D, Basta-Jovanovic G, et al. Effects of rapamycin on active Heymann nephritis. Am J Nephrol 2007; 27:379-389. (Pubitemid 47077202)
-
(2007)
American Journal of Nephrology
, vol.27
, Issue.4
, pp. 379-389
-
-
Naumovic, R.1
Jovovic, D.2
Basta-Jovanovic, G.3
Miloradovic, Z.4
Mihailovic-Stanojevic, N.5
Aleksic, T.6
Jovanovic, D.7
-
35
-
-
80155151897
-
mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome
-
Ito N, Nishibori Y, Ito Y, et al. mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome. Lab Invest 2011; 91:1584-1595.
-
(2011)
Lab Invest
, vol.91
, pp. 1584-1595
-
-
Ito, N.1
Nishibori, Y.2
Ito, Y.3
-
36
-
-
79959755211
-
Role of amino acid transporter LAT2 in the activation of mTORC1 pathway and the pathogenesis of crescentic glomerulonephritis
-
Identification of LAT2 as potential upstream regulator of mTOR activation in podocytes
-
Kurayama R, Ito N, Nishibori Y, et al. Role of amino acid transporter LAT2 in the activation of mTORC1 pathway and the pathogenesis of crescentic glomerulonephritis. Lab Invest 2011; 91:992-1006. Identification of LAT2 as potential upstream regulator of mTOR activation in podocytes.
-
(2011)
Lab Invest
, vol.91
, pp. 992-1006
-
-
Kurayama, R.1
Ito, N.2
Nishibori, Y.3
-
37
-
-
34748880045
-
Rapamycin prevents early steps of the development of diabetic nephropathy in rats
-
DOI 10.1159/000106782
-
Yang Y, Wang J, Qin L, et al. Rapamycin prevents early steps of the development of diabetic nephropathy in rats. Am J Nephrol 2007; 27:495-502. (Pubitemid 47482007)
-
(2007)
American Journal of Nephrology
, vol.27
, Issue.5
, pp. 495-502
-
-
Yang, Y.1
Wang, J.2
Qin, L.3
Shou, Z.4
Zhao, J.5
Wang, H.6
Chen, Y.7
Chen, J.8
-
38
-
-
72049120164
-
Significance and management of proteinuria in kidney transplant recipients
-
Amer H, Cosio FG. Significance and management of proteinuria in kidney transplant recipients. J Am Soc Nephrol 2009; 20:2490-2492.
-
(2009)
J Am Soc Nephrol
, vol.20
, pp. 2490-2492
-
-
Amer, H.1
Cosio, F.G.2
-
39
-
-
71049162614
-
Rapamycin has dual opposing effects on proteinuric experimental nephropathies: Is it a matter of podocyte damage?
-
Torras J, Herrero-Fresneda I, Gulias O, et al. Rapamycin has dual opposing effects on proteinuric experimental nephropathies: is it a matter of podocyte damage? Nephrol Dial Transplant 2009; 24:3632-3640.
-
(2009)
Nephrol Dial Transplant
, vol.24
, pp. 3632-3640
-
-
Torras, J.1
Herrero-Fresneda, I.2
Gulias, O.3
-
40
-
-
34548851984
-
High sirolimus levels may induce focal segmental glomerulosclerosis de novo
-
Letavernier E, Bruneval P, Mandet C, et al. High sirolimus levels may induce focal segmental glomerulosclerosis de novo. Clin J Am Soc Nephrol 2007; 2:326-333.
-
(2007)
Clin J Am Soc Nephrol
, vol.2
, pp. 326-333
-
-
Letavernier, E.1
Bruneval, P.2
Mandet, C.3
-
41
-
-
75149177783
-
Tubular epithelial cell and podocyte apoptosis with de novo sirolimus based immunosuppression in renal allograft recipients with DGF
-
Munivenkatappa R, Haririan A, Papadimitriou JC, et al. Tubular epithelial cell and podocyte apoptosis with de novo sirolimus based immunosuppression in renal allograft recipients with DGF. Histol Histopathol 2010; 25:189-196.
-
(2010)
Histol Histopathol
, vol.25
, pp. 189-196
-
-
Munivenkatappa, R.1
Haririan, A.2
Papadimitriou, J.C.3
-
42
-
-
79955538137
-
Sirolimus and proteinuria in renal transplant patients: Evidence for a dose-dependent effect on slit diaphragmassociated proteins
-
Stallone G, Infante B, Pontrelli P, et al. Sirolimus and proteinuria in renal transplant patients: evidence for a dose-dependent effect on slit diaphragmassociated proteins. Transplantation 2011; 91:997-1004.
-
(2011)
Transplantation
, vol.91
, pp. 997-1004
-
-
Stallone, G.1
Infante, B.2
Pontrelli, P.3
-
43
-
-
77957195889
-
Loss of nephrin expression in glomeruli of kidney-transplanted patients under m-TOR inhibitor therapy
-
Biancone L, Bussolati B, Mazzucco G, et al. Loss of nephrin expression in glomeruli of kidney-transplanted patients under m-TOR inhibitor therapy. Am J Transplant 2010; 10:2270-2278.
-
(2010)
Am J Transplant
, vol.10
, pp. 2270-2278
-
-
Biancone, L.1
Bussolati, B.2
Mazzucco, G.3
-
44
-
-
60549117111
-
mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes
-
Vollenbroker B, George B, Wolfgart M, et al. mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes. Am J Physiol Renal Physiol 2009; 296:F418-F426.
-
(2009)
Am J Physiol Renal Physiol
, vol.296
-
-
Vollenbroker, B.1
George, B.2
Wolfgart, M.3
-
45
-
-
37349107870
-
The mTOR inhibitor everolimus induces proteinuria and renal deterioration in the remnant kidney model in the rat
-
DOI 10.1097/01.tp.0000282866.92367.99, PII 0000789020071215000016
-
Vogelbacher R, Wittmann S, Braun A, et al. The mTOR inhibitor everolimus induces proteinuria and renal deterioration in the remnant kidney model in the rat. Transplantation 2007; 84:1492-1499. (Pubitemid 350294725)
-
(2007)
Transplantation
, vol.84
, Issue.11
, pp. 1492-1499
-
-
Vogelbacher, R.1
Wittmann, S.2
Braun, A.3
Daniel, C.4
Hugo, C.5
-
46
-
-
79957927211
-
mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice
-
Genetic dissection of the role of mTORC1 in diabetic nephropathy
-
Inoki K, Mori H, Wang J, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 2011; 121:2181-2196. Genetic dissection of the role of mTORC1 in diabetic nephropathy.
-
(2011)
J Clin Invest
, vol.121
, pp. 2181-2196
-
-
Inoki, K.1
Mori, H.2
Wang, J.3
-
47
-
-
79957881425
-
Role of mTOR in podocyte function and diabetic nephropathy in humans and mice
-
Genetic dissection of the role of mTOR complexes for podocyte maintenance and disease
-
Godel M, Hartleben B, Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest 2011; 121:2197-2209. Genetic dissection of the role of mTOR complexes for podocyte maintenance and disease.
-
(2011)
J Clin Invest
, vol.121
, pp. 2197-2209
-
-
Godel, M.1
Hartleben, B.2
Herbach, N.3
-
48
-
-
80055108638
-
mTOR in podocyte function: Is rapamycin good for diabetic nephropathy?
-
Lu MK, Gong XG, Guan KL. mTOR in podocyte function: is rapamycin good for diabetic nephropathy? Cell Cycle 10:3415-3416.
-
Cell Cycle
, vol.10
, pp. 3415-3416
-
-
Lu, M.K.1
Gong, X.G.2
Guan, K.L.3
-
50
-
-
0345505674
-
Nephrin expression is reduced in human diabetic nephropathy: Evidence for a distinct role for glycated albumin and angiotensin II
-
DOI 10.2337/diabetes.52.4.1023
-
Doublier S, Salvidio G, Lupia E, et al. Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II. Diabetes 2003; 52:1023-1030. (Pubitemid 36384273)
-
(2003)
Diabetes
, vol.52
, Issue.4
, pp. 1023-1030
-
-
Doublier, S.1
Salvidio, G.2
Lupia, E.3
Ruotsalainen, V.4
Verzola, D.5
Deferrari, G.6
Camussi, G.7
-
51
-
-
77953719527
-
Effects of 4-phenylbutyric acid on the process and development of diabetic nephropathy induced in rats by streptozotocin: Regulation of endoplasmic reticulum stress-oxidative activation
-
Luo ZF, Feng B, Mu J, et al. Effects of 4-phenylbutyric acid on the process and development of diabetic nephropathy induced in rats by streptozotocin: regulation of endoplasmic reticulum stress-oxidative activation. Toxicol Appl Pharmacol 2010; 246:49-57.
-
(2010)
Toxicol Appl Pharmacol
, vol.246
, pp. 49-57
-
-
Luo, Z.F.1
Feng, B.2
Mu, J.3
-
52
-
-
77951221542
-
The role of the Atg1/ULK1 complex in autophagy regulation
-
Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 2010; 22:132-139.
-
(2010)
Curr Opin Cell Biol
, vol.22
, pp. 132-139
-
-
Mizushima, N.1
-
53
-
-
77951169411
-
Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice
-
Genetic dissection of the role of autophagy in podocyte maintenance and disease
-
Hartleben B, Godel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 2010; 120:1084-1096. Genetic dissection of the role of autophagy in podocyte maintenance and disease.
-
(2010)
J Clin Invest
, vol.120
, pp. 1084-1096
-
-
Hartleben, B.1
Godel, M.2
Meyer-Schwesinger, C.3
-
54
-
-
79953834002
-
Implications of autophagy for glomerular aging and disease
-
Weide T, Huber TB. Implications of autophagy for glomerular aging and disease. Cell Tissue Res 2011; 343:467-473.
-
(2011)
Cell Tissue Res
, vol.343
, pp. 467-473
-
-
Weide, T.1
Huber, T.B.2
-
55
-
-
79956325949
-
Spatial coupling of mTOR and autophagy augments secretory phenotypes
-
Identification of the spatial coupling of autophagy and mTOR signaling, which might have important implications for podocyte homeostasis
-
Narita M, Young AR, Arakawa S, et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 2011; 332:966-970. Identification of the spatial coupling of autophagy and mTOR signaling, which might have important implications for podocyte homeostasis.
-
(2011)
Science
, vol.332
, pp. 966-970
-
-
Narita, M.1
Young, A.R.2
Arakawa, S.3
-
56
-
-
77957861954
-
Glomerular structure and function require paracrine, not autocrine, VEGF-VEGFR-2 signaling
-
Sison K, Eremina V, Baelde H, et al. Glomerular structure and function require paracrine, not autocrine, VEGF-VEGFR-2 signaling. J Am Soc Nephrol 2010; 21:1691-1701.
-
(2010)
J Am Soc Nephrol
, vol.21
, pp. 1691-1701
-
-
Sison, K.1
Eremina, V.2
Baelde, H.3
-
57
-
-
0037370325
-
Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases
-
DOI 10.1172/JCI200317423
-
Eremina V, Sood M, Haigh J, et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 2003; 111:707-716. (Pubitemid 36278589)
-
(2003)
Journal of Clinical Investigation
, vol.111
, Issue.5
, pp. 707-716
-
-
Eremina, V.1
Sood, M.2
Haigh, J.3
Nagy, A.4
Lajoie, G.5
Ferrara, N.6
Gerber, H.-P.7
Kikkawa, Y.8
Miner, J.H.9
Quaggin, S.E.10
-
58
-
-
84863230126
-
Inhibition of MTOR disrupts autophagic flux in podocytes
-
[Epub ahead of print] Role of mTOR for autophagic flux in podocytes
-
Cina DP, Onay T, Paltoo A, et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol 2011. [Epub ahead of print] Role of mTOR for autophagic flux in podocytes.
-
(2011)
J Am Soc Nephrol
-
-
Cina, D.P.1
Onay, T.2
Paltoo, A.3
-
59
-
-
40449112321
-
The Notch pathway in podocytes plays a role in the development of glomerular disease
-
DOI 10.1038/nm1731, PII NM1731
-
Niranjan T, Bielesz B, Gruenwald A, et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat Med 2008; 14:290-298. (Pubitemid 351347919)
-
(2008)
Nature Medicine
, vol.14
, Issue.3
, pp. 290-298
-
-
Niranjan, T.1
Bielesz, B.2
Gruenwald, A.3
Ponda, M.P.4
Kopp, J.B.5
Thomas, D.B.6
Susztak, K.7
-
60
-
-
69849089270
-
Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria
-
Dai C, Stolz DB, Kiss LP, et al. Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. J Am Soc Nephrol 2009; 20:1997-2008.
-
(2009)
J Am Soc Nephrol
, vol.20
, pp. 1997-2008
-
-
Dai, C.1
Stolz, D.B.2
Kiss, L.P.3
-
61
-
-
79960425136
-
Wnt/beta-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival
-
Kato H, Gruenwald A, Suh JH, et al. Wnt/beta-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J Biol Chem 2011; 286:26003-26015.
-
(2011)
J Biol Chem
, vol.286
, pp. 26003-26015
-
-
Kato, H.1
Gruenwald, A.2
Suh, J.H.3
-
62
-
-
84855537673
-
Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling
-
Identification of Wnt signaling as regulator of podocyte cell cycle control
-
Shkreli M, Sarin KY, Pech MF, et al. Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nat Med 2011; 18:111-119. Identification of Wnt signaling as regulator of podocyte cell cycle control.
-
(2011)
Nat Med
, vol.18
, pp. 111-119
-
-
Shkreli, M.1
Sarin, K.Y.2
Pech, M.F.3
-
63
-
-
81155132148
-
Old friends form alliance against podocytes
-
Simons M, Huber TB. Old friends form alliance against podocytes. Kidney Int 2011; 80:1117-1119.
-
(2011)
Kidney Int
, vol.80
, pp. 1117-1119
-
-
Simons, M.1
Huber, T.B.2
-
64
-
-
81155150123
-
Canonical Wnt/beta-catenin signaling mediates transforming growth factor-beta1-driven podocyte injury and proteinuria
-
Wang D, Dai C, Li Y, Liu Y. Canonical Wnt/beta-catenin signaling mediates transforming growth factor-beta1-driven podocyte injury and proteinuria. Kidney Int 2011; 80:1159-1169.
-
(2011)
Kidney Int
, vol.80
, pp. 1159-1169
-
-
Wang, D.1
Dai, C.2
Li, Y.3
Liu, Y.4
-
65
-
-
33748153690
-
TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth
-
DOI 10.1016/j.cell.2006.06.055, PII S0092867406010166
-
Inoki K, Ouyang H, Zhu T, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126:955-968. (Pubitemid 44310775)
-
(2006)
Cell
, vol.126
, Issue.5
, pp. 955-968
-
-
Inoki, K.1
Ouyang, H.2
Zhu, T.3
Lindvall, C.4
Wang, Y.5
Zhang, X.6
Yang, Q.7
Bennett, C.8
Harada, Y.9
Stankunas, K.10
Wang, C.-y.11
He, X.12
MacDougald, O.A.13
You, M.14
Williams, B.O.15
Guan, K.-L.16
-
66
-
-
74949090816
-
The evolutionarily conserved TSC/Rheb pathway activates Notch in tuberous sclerosis complex and Drosophila external sensory organ development
-
Karbowniczek M, Zitserman D, Khabibullin D, et al. The evolutionarily conserved TSC/Rheb pathway activates Notch in tuberous sclerosis complex and Drosophila external sensory organ development. J Clin Invest 2010; 120:93-102.
-
(2010)
J Clin Invest
, vol.120
, pp. 93-102
-
-
Karbowniczek, M.1
Zitserman, D.2
Khabibullin, D.3
-
67
-
-
74949092824
-
Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade
-
Ma J,Meng Y, Kwiatkowski DJ, et al. Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J Clin Invest 2010; 120:103-114.
-
(2010)
J Clin Invest
, vol.120
, pp. 103-114
-
-
Ma, J.1
Meng, Y.2
Kwiatkowski, D.J.3
|