-
1
-
-
41549159731
-
Evolutionary approaches for the reverse-engineering of gene regulatory networks: a study on a biologically realistic dataset
-
Auliac, C., Frouin, V., Gidrol, X., and d'Alché-buc, F. (2008) Evolutionary approaches for the reverse-engineering of gene regulatory networks: a study on a biologically realistic dataset. BMC Bioinformatics, 9, 91.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 91
-
-
Auliac, C.1
Frouin, V.2
Gidrol, X.3
d'Alché-buc, F.4
-
2
-
-
33747882889
-
Analysis of variance of microarray data
-
Ayroles, J.F. and Gibson, G. (2006) Analysis of variance of microarray data. Methods in Enzymology, 411, 214-233.
-
(2006)
Methods in Enzymology
, vol.411
, pp. 214-233
-
-
Ayroles, J.F.1
Gibson, G.2
-
3
-
-
11144332281
-
Learning graphical models with Mercer kernels
-
in Advances in Neural Information Processing Systems 15 (eds. S. Becker, S. Thrun, and K. Obermayer), MIT Press, Cambridge, MA
-
Bach, F.R. and Jordan, M.I. (2002) Learning graphical models with Mercer kernels, in Advances in Neural Information Processing Systems 15 (eds. S. Becker, S. Thrun, and K. Obermayer), MIT Press, Cambridge, MA, pp. 1033-1040.
-
(2002)
, pp. 1033-1040
-
-
Bach, F.R.1
Jordan, M.I.2
-
4
-
-
15944361900
-
Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data
-
in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, and L.Hunter),World Scientific, Singapore
-
Bernard, A. and Hartemink, A.J. (2005) Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data, in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, and L.Hunter),World Scientific, Singapore, pp. 459-470.
-
(2005)
, pp. 459-470
-
-
Bernard, A.1
Hartemink, A.J.2
-
5
-
-
0001926525
-
Theory refinement of Bayesian networks
-
in Proceedings of the 7th Annual Conference on Uncertainty in Artificial Intelligence (eds. B. D'Ambrosio and P. Smets), Morgan Kaufmann, San Francisco, CA
-
Buntine, W.L. (1991) Theory refinement of Bayesian networks, in Proceedings of the 7th Annual Conference on Uncertainty in Artificial Intelligence (eds. B. D'Ambrosio and P. Smets), Morgan Kaufmann, San Francisco, CA, pp. 52-60.
-
(1991)
, pp. 52-60
-
-
Buntine, W.L.1
-
6
-
-
42149187635
-
Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees
-
Chen, X. and Blanchette, M. (2008) Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees. BMC Bioinformatics, 8, S2.
-
(2008)
BMC Bioinformatics
, vol.8
-
-
Chen, X.1
Blanchette, M.2
-
7
-
-
0031345619
-
Learning belief networks from data: an information theory based approach
-
in Proceedings of the Sixth International Conference on Information and Knowledge Management, ACM Press, New York
-
Cheng, J., Bell, D.A., and Liu, W. (1997) Learning belief networks from data: an information theory based approach, in Proceedings of the Sixth International Conference on Information and Knowledge Management, ACM Press, New York, pp. 325-331.
-
(1997)
, pp. 325-331
-
-
Cheng, J.1
Bell, D.A.2
Liu, W.3
-
8
-
-
0001019707
-
Learning Bayesian networks is NP-complete
-
in Learning from Data: AI and Statistics V (eds. D. Fisher and H-.J. Lenz), Springer, NewYork
-
Chickering, D.M. (1996) Learning Bayesian networks is NP-complete, in Learning from Data: AI and Statistics V (eds. D. Fisher and H-.J. Lenz), Springer, NewYork, pp. 121-130.
-
(1996)
, pp. 121-130
-
-
Chickering, D.M.1
-
9
-
-
33646107783
-
Large-sample learning of Bayesian networks is NP-Hard
-
Chickering, D.M., Heckerman, D., and Meek, C. (2004) Large-sample learning of Bayesian networks is NP-Hard. Journal of Machine Learning Research, 5, 1287-7.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1287-1287
-
-
Chickering, D.M.1
Heckerman, D.2
Meek, C.3
-
10
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G.F. and Herskovits, E. (1992) A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-7.
-
(1992)
Machine Learning
, vol.9
, pp. 309-307
-
-
Cooper, G.F.1
Herskovits, E.2
-
11
-
-
0007047929
-
Causal discovery from a mixture of experimental and observational data
-
in Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (eds. K. Laskey and H. Prade), Morgan Kaufman, San Francisco, CA
-
Cooper, G.F. and Yoo, C. (1999) Causal discovery from a mixture of experimental and observational data, in Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (eds. K. Laskey and H. Prade), Morgan Kaufman, San Francisco, CA, pp. 116-125.
-
(1999)
, pp. 116-125
-
-
Cooper, G.F.1
Yoo, C.2
-
12
-
-
34948848213
-
Conditions under which conditional independence and scoring methods lead to identical selection of Bayesian network models
-
in Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA
-
Cowell, R.G. (2001) Conditions under which conditional independence and scoring methods lead to identical selection of Bayesian network models, in Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, pp. 91-97.
-
(2001)
, pp. 91-97
-
-
Cowell, R.G.1
-
13
-
-
0032612220
-
Linear modeling of mRNA expression levels during CNS development and injury
-
in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman and K. Lauderdale), World Scientific, Singapore
-
D'haeseleer, P., Wen, X., Fuhrman, S., and Somogyi, S.R. (1999) Linear modeling of mRNA expression levels during CNS development and injury, in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman and K. Lauderdale), World Scientific, Singapore, pp. 41-52.
-
(1999)
, pp. 41-52
-
-
D'haeseleer, P.1
Wen, X.2
Fuhrman, S.3
Somogyi, S.R.4
-
14
-
-
33645510456
-
Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale
-
Date, S.V. and Stoeckert, C.J. Jr. (2006) Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale. Genome Research, 16, 542-549.
-
(2006)
Genome Research
, vol.16
, pp. 542-549
-
-
Date, S.V.1
Stoeckert Jr, C.J.2
-
15
-
-
4544310280
-
Hunting drug targets by systems-level modeling of gene expression profiles
-
Dejori, M., Schuermann, B., and Stetter, M. (2004)Hunting drug targets by systems-level modeling of gene expression profiles. IEEE Transactions on Nanobioscience, 3, 180-191.
-
(2004)
IEEE Transactions on Nanobioscience
, vol.3
, pp. 180-191
-
-
Dejori, M.1
Schuermann, B.2
Stetter, M.3
-
16
-
-
48249140218
-
Seeded Bayesian networks: Constructing genetic networks from microarray data
-
Djebbari, A. and Quackenbush, J. (2008) Seeded Bayesian networks: Constructing genetic networks from microarray data. BMC Systems Biology, 2, 57.
-
(2008)
BMC Systems Biology
, vol.2
, pp. 57
-
-
Djebbari, A.1
Quackenbush, J.2
-
17
-
-
33746353952
-
Applying dynamic Bayesian networks to perturbed gene expression data
-
Dojer, N., Gambin, A., Mizera, A., Wilczynski, B., and Tiuryn, J. (2006) Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinformatics, 7, 249.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 249
-
-
Dojer, N.1
Gambin, A.2
Mizera, A.3
Wilczynski, B.4
Tiuryn, J.5
-
18
-
-
0032441150
-
Cluster analysis and display of genome-wide expression patterns
-
Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 95, 14863-7.
-
(1998)
Proceedings of the National Academy of Sciences of the United States of America
, vol.95
, pp. 14863-14867
-
-
Eisen, M.B.1
Spellman, P.T.2
Brown, P.O.3
Botstein, D.4
-
19
-
-
0842288337
-
Inferring cellular networks using probabilistic graphical models
-
Friedman, N. (2004) Inferring cellular networks using probabilistic graphical models. Science, 303, 799-805.
-
(2004)
Science
, vol.303
, pp. 799-805
-
-
Friedman, N.1
-
20
-
-
0037262841
-
Being Bayesian about network structure: a Bayesian approach to structure discovery in Bayesian networks
-
Friedman, N. and Koller, D. (2003) Being Bayesian about network structure: a Bayesian approach to structure discovery in Bayesian networks. Machine Learning, 50, 95-7.
-
(2003)
Machine Learning
, vol.50
, pp. 95-97
-
-
Friedman, N.1
Koller, D.2
-
21
-
-
0000854197
-
Learning the structure of dynamic probabilistic networks
-
in Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelligence (eds. G.F. Cooper, and S. Moral), Morgan Kaufmann, San Francisco, CA
-
Friedman, N., Murphy, K., and Russell, S. (1998) Learning the structure of dynamic probabilistic networks, in Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelligence (eds. G.F. Cooper, and S. Moral), Morgan Kaufmann, San Francisco, CA, pp. 139-147.
-
(1998)
, pp. 139-147
-
-
Friedman, N.1
Murphy, K.2
Russell, S.3
-
22
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
Friedman, N., Linial, M., Nachman, I., and Pe'er, D. (2000) Using Bayesian networks to analyze expression data. Journal of Computational Biology, 7, 601-620.
-
(2000)
Journal of Computational Biology
, vol.7
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
23
-
-
70449464202
-
Data Clustering: Theory, Algorithms, and Applications, ASA/SIAM Series on Statistics and Applied Probability
-
Gan, G., Ma, C., and Wu, J. (2007) Data Clustering: Theory, Algorithms, and Applications, ASA/SIAM Series on Statistics and Applied Probability, SIAM, Philadelphia, PA.
-
(2007)
SIAM, Philadelphia, PA
-
-
Gan, G.1
Ma, C.2
Wu, J.3
-
24
-
-
54749132018
-
Transcriptional changes in insulinand lipid metabolism-related genes in the hippocampus of olfactory bulbectomized mice
-
Gass, P., Leonardi-Essmann, F., Zueger, M., Spanagel, R., and Gebicke-Haerter, P.J. (2008) Transcriptional changes in insulinand lipid metabolism-related genes in the hippocampus of olfactory bulbectomized mice. Journal of Neuroscience Research, 86: 3184-3193.
-
(2008)
Journal of Neuroscience Research
, vol.86
, pp. 3184-3193
-
-
Gass, P.1
Leonardi-essmann, F.2
Zueger, M.3
Spanagel, R.4
Gebicke-haerter, P.J.5
-
25
-
-
33747891871
-
Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
-
Gevaert, O., De Smet, F., Timmerman, D., Moreau, Y., and De Moor, B. (2006) Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics, 22, e184-7.
-
(2006)
Bioinformatics
, vol.22
-
-
Gevaert, O.1
De Smet, F.2
Timmerman, D.3
Moreau, Y.4
De Moor, B.5
-
26
-
-
65449134730
-
GeNGe: systematic generation of gene regulatory networks
-
Hache, H., Wierling, C., Lehrach, H., and Herwig, R. (2009) GeNGe: systematic generation of gene regulatory networks. Bioinformatics, 25, 1205-7.
-
(2009)
Bioinformatics
, vol.25
, pp. 1205-1207
-
-
Hache, H.1
Wierling, C.2
Lehrach, H.3
Herwig, R.4
-
28
-
-
33644695322
-
Increasing feasibility of optimal gene network estimation
-
Hansen, A., Ott, S., and Koentges, G. (2004) Increasing feasibility of optimal gene network estimation. Genome Informatics, 15, 141-7.
-
(2004)
Genome Informatics
, vol.15
, pp. 141-147
-
-
Hansen, A.1
Ott, S.2
Koentges, G.3
-
29
-
-
0035221560
-
Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
-
in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L. Hunker, K. Lauderdale, and T.E.D. Klein), World Scientific, Singapore
-
Hartemink, A.J., Gifford, D.K., Jaakkola, T.S., and Young, R.A. (2001) Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks, in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L. Hunker, K. Lauderdale, and T.E.D. Klein), World Scientific, Singapore, pp. 422-433.
-
(2001)
, pp. 422-433
-
-
Hartemink, A.J.1
Gifford, D.K.2
Jaakkola, T.S.3
Young, R.A.4
-
30
-
-
0036366689
-
Combining location and expression data for principled discovery of genetic regulatory network models
-
in Proceedings of Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L. Hunter, and K. Lauderdale), World Scientific, Singapore
-
Hartemink, A.J., Gifford, D.K., Jaakkola, T.S., and Young, R.A. (2002) Combining location and expression data for principled discovery of genetic regulatory network models, in Proceedings of Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L. Hunter, and K. Lauderdale), World Scientific, Singapore, pp. 437-449.
-
(2002)
, pp. 437-449
-
-
Hartemink, A.J.1
Gifford, D.K.2
Jaakkola, T.S.3
Young, R.A.4
-
31
-
-
84886345914
-
Clustering Algorithms, John Wiley & Sons, Inc., New York
-
Hartigan, J.A. (1975) Clustering Algorithms, John Wiley & Sons, Inc., New York. Heckerman, D., Geiger, D., and Chickering, D.M. (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20, 197-7.
-
(1975)
Heckerman, D., Geiger, D., and Chickering, D.M. (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning
, vol.20
, pp. 197-197
-
-
Hartigan, J.A.1
-
32
-
-
36249014245
-
An intelligent two-stage evolutionary algorithm for dynamic pathway identification from gene expression profiles
-
Ho, S.Y., Hsieh, C.H., Yu, F.C., and Huang, H.L. (2007) An intelligent two-stage evolutionary algorithm for dynamic pathway identification from gene expression profiles. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4, 648-7.
-
(2007)
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, vol.4
, pp. 648-647
-
-
Ho, S.Y.1
Hsieh, C.H.2
Yu, F.C.3
Huang, H.L.4
-
33
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
Husmeier, D. (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 19, 2271-7.
-
(2003)
Bioinformatics
, vol.19
, pp. 2271-2277
-
-
Husmeier, D.1
-
34
-
-
0036372453
-
Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
-
in Proceedings of Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L. Hunter, and K. Lauderdale), World Scientific, Singapore
-
Imoto, S., Goto, T., and Miyano, S. (2002) Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression, in Proceedings of Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L. Hunter, and K. Lauderdale), World Scientific, Singapore, pp. 175-186.
-
(2002)
, pp. 175-186
-
-
Imoto, S.1
Goto, T.2
Miyano, S.3
-
35
-
-
3242875300
-
Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
-
Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., and Miyano, S. (2004) Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. Journal of Bioinformatics and Computational Biology, 2, 77-98.
-
(2004)
Journal of Bioinformatics and Computational Biology
, vol.2
, pp. 77-98
-
-
Imoto, S.1
Higuchi, T.2
Goto, T.3
Tashiro, K.4
Kuhara, S.5
Miyano, S.6
-
36
-
-
3042698613
-
Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network
-
Imoto, S., Kim, S., Goto, T., Miyano, S., Aburatani, S., Tashiro, K., and Kuhara, S. (2003) Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. Journal of Bioinformatics and Computational Biology, 1, 231-7.
-
(2003)
Journal of Bioinformatics and Computational Biology
, vol.1
, pp. 231-237
-
-
Imoto, S.1
Kim, S.2
Goto, T.3
Miyano, S.4
Aburatani, S.5
Tashiro, K.6
Kuhara, S.7
-
37
-
-
33746616957
-
Computational strategy for discovering druggable gene networks from genomewide RNA expression profiles
-
in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L.Hunter, T. Murray, and T.E. Klein), World Scientific, Singapore
-
Imoto, S., Tamada, Y., Araki, H., Yasuda, K., Print, C.G., Charnock-Jones, S.D., Sanders, D., Savoie, C.J., Tashiro, K., Kuhara, S., and Miyano, S. (2006) Computational strategy for discovering druggable gene networks from genomewide RNA expression profiles, in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L.Hunter, T. Murray, and T.E. Klein), World Scientific, Singapore, pp. 559-571.
-
(2006)
, pp. 559-571
-
-
Imoto, S.1
Tamada, Y.2
Araki, H.3
Yasuda, K.4
Print, C.G.5
Charnock-jones, S.D.6
Sanders, D.7
Savoie, C.J.8
Tashiro, K.9
Kuhara, S.10
Miyano, S.11
-
38
-
-
0003946510
-
Principal Component Analysis
-
2nd edn, Springer Series in Statistics, Springer, New York
-
Jolliffe, I.T. (2002) Principal Component Analysis, 2nd edn, Springer Series in Statistics, Springer, New York. Jung, Y., Park, H., Du, D.-Z., and Drake, B.L. (2003) A decision criterion for the optimal number of clusters in hierarchical clustering. Journal of Global Optimization, 25, 91-111.
-
(2002)
, vol.25
, pp. 91-111
-
-
Jolliffe, I.T.1
-
39
-
-
84867984200
-
A decision criterion for the optimal number of clusters in hierarchical clustering
-
Jung, Y., Park, H., Du, D.-Z., and Drake, B.L. (2003) A decision criterion for the optimal number of clusters in hierarchical clustering. Journal of Global Optimization
-
(2003)
Journal of Global Optimization
-
-
Jung, Y.1
Park, H.2
Du, D.-Z.3
Drake, B.L.4
-
40
-
-
0035032570
-
Statistical design and the analysis of gene expression microarrays
-
Kerr, M.K. and Churchill, G.A. (2001) Statistical design and the analysis of gene expression microarrays. Genetical Research, 77, 123-7.
-
(2001)
Genetical Research
, vol.77
, pp. 123-127
-
-
Kerr, M.K.1
Churchill, G.A.2
-
41
-
-
0034927555
-
Analysis of variance for gene expression microarray data
-
Kerr, M.K., Martin, M., and Churchill, G.A. (2000) Analysis of variance for gene expression microarray data. Journal of Computational Biology, 7, 819-7.
-
(2000)
Journal of Computational Biology
, vol.7
, pp. 819-817
-
-
Kerr, M.K.1
Martin, M.2
Churchill, G.A.3
-
42
-
-
3042738945
-
Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
-
Kim, S., Imoto, S., and Miyano, S. (2004) Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. BioSystems, 75, 57-65.
-
(2004)
BioSystems
, vol.75
, pp. 57-65
-
-
Kim, S.1
Imoto, S.2
Miyano, S.3
-
43
-
-
0842309206
-
Inferring gene networks from time series microarray data using dynamic Bayesian networks
-
Kim, S.Y., Imoto, S., and Miyano, S. (2003) Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics, 4, 228-7.
-
(2003)
Briefings in Bioinformatics
, vol.4
, pp. 228-227
-
-
Kim, S.Y.1
Imoto, S.2
Miyano, S.3
-
44
-
-
84886346868
-
Systems Biology in Practice, Wiley-VCH Verlag GmbH, Weinheim
-
Klipp, E.,Herwig, R., Kowald, A., Wierling, C., and Lehrach, H. (2005) Systems Biology in Practice, Wiley-VCH Verlag GmbH, Weinheim. Lam, W. and Bacchus, F. (1994) Learning Bayesian belief networks: an approach based on the MDL principle. Computational Intelligence, 10, 269-7.
-
(2005)
Lam, W. and Bacchus, F. (1994) Learning Bayesian belief networks: an approach based on the MDL principle. Computational Intelligence
, vol.10
, pp. 269-267
-
-
Klipp, E.1
Herwig, R.2
Kowald, A.3
Wierling, C.4
Lehrach, H.5
-
45
-
-
20744441547
-
Modularized learning of genetic interaction networks from biological annotations and mRNA expression data
-
Lee, P.H. and Lee, D. (2005) Modularized learning of genetic interaction networks from biological annotations and mRNA expression data. Bioinformatics, 21, 2739-7.
-
(2005)
Bioinformatics
, vol.21
, pp. 2739-2737
-
-
Lee, P.H.1
Lee, D.2
-
46
-
-
48749127708
-
Expression profiling analysis for genes related to meat quality and carcass traits during postnatal development of backfat in two pig breeds
-
Li, M., Zhu, L., Li, X., Shuai, S., Teng, X., Xiao, H., Li, Q., Chen, L., Guo, Y., and Wang, J. (2008) Expression profiling analysis for genes related to meat quality and carcass traits during postnatal development of backfat in two pig breeds. Science in China C: Life Sciences, 51, 718-7.
-
(2008)
Science in China C: Life Sciences
, vol.51
, pp. 718-717
-
-
Li, M.1
Zhu, L.2
Li, X.3
Shuai, S.4
Teng, X.5
Xiao, H.6
Li, Q.7
Chen, L.8
Guo, Y.9
Wang, J.10
-
47
-
-
33748787676
-
Exploring candidate genes for human brain diseases from a brain-specific gene network
-
Liu, B., Jiang, T., Ma, S., Zhao, H., Li, J., Jiang, X., and Zhang, J. (2006) Exploring candidate genes for human brain diseases from a brain-specific gene network. Biochemical and Biophysical Research Communications, 349, 1308-7.
-
(2006)
Biochemical and Biophysical Research Communications
, vol.349
, pp. 1308-1307
-
-
Liu, B.1
Jiang, T.2
Ma, S.3
Zhao, H.4
Li, J.5
Jiang, X.6
Zhang, J.7
-
48
-
-
34547190103
-
Uncovering gene regulatory networks from time-series microarray data with variational Bayesian structural expectation maximization
-
Luna, T., Huang, Y., Yin, Y., Padillo, D.P.R., and Perez, M.C.C. (2007) Uncovering gene regulatory networks from time-series microarray data with variational Bayesian structural expectation maximization. EURASIP Journal on Bioinformatics and Systems Biology, 71312.
-
(2007)
EURASIP Journal on Bioinformatics and Systems Biology
, pp. 71312
-
-
Luna, T.1
Huang, Y.2
Yin, Y.3
Padillo, D.P.R.4
Perez, M.C.C.5
-
49
-
-
58149349958
-
Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information
-
Luo, W., Hankenson, K.D., and Woolf, P.J. (2008) Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information. BMC Bioinformatics, 9, 467.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 467
-
-
Luo, W.1
Hankenson, K.D.2
Woolf, P.J.3
-
50
-
-
29344470807
-
Distribution-free learning of Bayesian network structure in continuous domains
-
in Proceedings of the 20th National Conference on Artificial Intelligence, AAAI, Menlo Park, CA
-
Margaritis, D. (2005) Distribution-free learning of Bayesian network structure in continuous domains, in Proceedings of the 20th National Conference on Artificial Intelligence, AAAI, Menlo Park, CA, pp. 825-830.
-
(2005)
, pp. 825-830
-
-
Margaritis, D.1
-
51
-
-
38449088751
-
Inferring cellular networks - a review
-
Markowetz, F. and Spang, R. (2007) Inferring cellular networks - a review. BMC Bioinformatics, 8, S5.
-
(2007)
BMC Bioinformatics
, vol.8
-
-
Markowetz, F.1
Spang, R.2
-
52
-
-
77956166165
-
Interactive molecular networks obtained by computer-aided conversion of microarray data from brains of alcohol-drinking rats
-
Matth€aus, F., Smith, V.A., Fogtman, A., Sommer, W.H., Leonardi-Essmann, F., Lourdusamy, A., Reimers, M.A., Spanagel, R., and Gebicke-Haerter, P.J. (2009) Interactive molecular networks obtained by computer-aided conversion of microarray data from brains of alcohol-drinking rats. Pharmacopsychiatry, 42 (Suppl. 1), S118-S128.
-
(2009)
Pharmacopsychiatry
, vol.42
, Issue.SUPPL. 1
-
-
Matth€aus, F.1
Smith, V.A.2
Fogtman, A.3
Sommer, W.H.4
Leonardi-essmann, F.5
Lourdusamy, A.6
Reimers, M.A.7
Spanagel, R.8
Gebicke-haerter, P.J.9
-
53
-
-
34250115918
-
An examination of procedures for determining the number of clusters in a data set
-
Milligan, G.W. and Cooper, M.C. (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159-179.
-
(1985)
Psychometrika
, vol.50
, pp. 159-179
-
-
Milligan, G.W.1
Cooper, M.C.2
-
54
-
-
0004158155
-
Modeling gene expression data using dynamic Bayesian networks
-
University of California, Berkeley, CA
-
Murphy, K. and Mian, S. (1999) Modeling gene expression data using dynamic Bayesian networks. Technical Report, Computer Science Division, University of California, Berkeley, CA.
-
(1999)
Technical Report, Computer Science Division
-
-
Murphy, K.1
Mian, S.2
-
55
-
-
2442718023
-
Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks
-
in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L. Hunter, and T.A. Jung), World Scientific, Singapore
-
Nariai, N., Kim, S., Imoto, S., and Miyano, S. (2004) Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks, in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L. Hunter, and T.A. Jung), World Scientific, Singapore, pp. 336-347.
-
(2004)
, pp. 336-347
-
-
Nariai, N.1
Kim, S.2
Imoto, S.3
Miyano, S.4
-
56
-
-
54849425774
-
Integrative bioinformatics analysis of transcriptional regulatory programs in breast cancer cells
-
Niida, A., Smith, A.D., Imoto, S., Tsutsumi, S., Aburatani, H., Zhang, M.Q., and Akiyama, T. (2008) Integrative bioinformatics analysis of transcriptional regulatory programs in breast cancer cells. BMC Bioinformatics, 9, 404.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 404
-
-
Niida, A.1
Smith, A.D.2
Imoto, S.3
Tsutsumi, S.4
Aburatani, H.5
Zhang, M.Q.6
Akiyama, T.7
-
57
-
-
0344844807
-
Modelling regulatory pathways inE
-
Ong, I.M., Glasner, J.D., and Page, D. (2002) Modelling regulatory pathways inE. coli from time series expression profiles. Bioinformatics, 18, S241-7.
-
(2002)
coli from time series expression profiles. Bioinformatics
, vol.18
-
-
Ong, I.M.1
Glasner, J.D.2
Page, D.3
-
58
-
-
2442703194
-
Finding optimal models for small gene networks
-
in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L. Hunter, T.A. Jung, and T.E.D. Klein), World Scientific, Singapore
-
Ott, S., Imoto, S., and Miyano, S. (2004) Finding optimal models for small gene networks, in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L. Hunter, T.A. Jung, and T.E.D. Klein), World Scientific, Singapore, pp. 557-567.
-
(2004)
, pp. 557-567
-
-
Ott, S.1
Imoto, S.2
Miyano, S.3
-
59
-
-
43549125744
-
A network analysis of the human T-cell activation gene network identifies Jagged1 as a therapeutic target for autoimmune diseases
-
Palacios, R., Goni, J., Martinez-Forero, I., Iranzo, J., Sepulcre, J., Melero, I., and Villoslada, P. (2007) A network analysis of the human T-cell activation gene network identifies Jagged1 as a therapeutic target for autoimmune diseases. PLoS ONE, 2, e1222.
-
(2007)
PLoS ONE
, vol.2
-
-
Palacios, R.1
Goni, J.2
Martinez-forero, I.3
Iranzo, J.4
Sepulcre, J.5
Melero, I.6
Villoslada, P.7
-
60
-
-
18144442687
-
Inferring subnetworks from perturbed expression profiles
-
Pe'er, D., Regev, A., Elidan, G., and Friedman, N. (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics, 17, S215-7.
-
(2001)
Bioinformatics
, vol.17
-
-
Pe'er, D.1
Regev, A.2
Elidan, G.3
Friedman, N.4
-
61
-
-
11244318119
-
Minreg: inferring an active regulator set
-
Pe'er, D., Regev, A., and Tanay, A. (2002) Minreg: inferring an active regulator set. Bioinformatics, 18, S258-7.
-
(2002)
Bioinformatics
, vol.18
-
-
Pe'er, D.1
Regev, A.2
Tanay, A.3
-
62
-
-
0005324651
-
Probabilistic Reasoning in Intelligent Systems
-
San Francisco, CA
-
Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, San Francisco, CA.
-
(1988)
Morgan Kaufmann
-
-
Pearl, J.1
-
63
-
-
4143058645
-
Gene networks inference using dynamic Bayesian networks
-
Perrin, B.-E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., and d'Alche-Buc, F. (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics, 19, ii138-7.
-
(2003)
Bioinformatics
, vol.19
-
-
Perrin, B.-E.1
Ralaivola, L.2
Mazurie, A.3
Bottani, S.4
Mallet, J.5
D'Alche-buc, F.6
-
64
-
-
39449106623
-
Advancing the understanding of the embryo transcriptome co-regulation using meta-, functional, and gene network analysis tools
-
Rodriguez-Zas, S.L., Ko, Y., Adams, H.A., and Southey, B.R. (2008) Advancing the understanding of the embryo transcriptome co-regulation using meta-, functional, and gene network analysis tools. Reproduction, 135, 213-7.
-
(2008)
Reproduction
, vol.135
, pp. 213-217
-
-
Rodriguez-zas, S.L.1
Ko, Y.2
Adams, H.A.3
Southey, B.R.4
-
65
-
-
0037258201
-
Use of gene networks from full genome microarray libraries to identify functionally relevant drug-affected genes and gene regulation cascades
-
Savoie, C.J., Aburatani, S., Watanabe, S., Eguchi, Y., Muta, S., Imoto, S., Miyano, S., Kuhara, S., and Tashiro, K. (2003) Use of gene networks from full genome microarray libraries to identify functionally relevant drug-affected genes and gene regulation cascades. DNA Research, 10, 19-25.
-
(2003)
DNA Research
, vol.10
, pp. 19-25
-
-
Savoie, C.J.1
Aburatani, S.2
Watanabe, S.3
Eguchi, Y.4
Muta, S.5
Imoto, S.6
Miyano, S.7
Kuhara, S.8
Tashiro, K.9
-
66
-
-
34548427938
-
Moving toward a system genetics view of disease
-
Sieberts, S.K., and Schadt, E.E. (2007) Moving toward a system genetics view of disease. Mammalian Genome, 18, 389-401.
-
(2007)
Mammalian Genome
, vol.18
, pp. 389-401
-
-
Sieberts, S.K.1
Schadt, E.E.2
-
67
-
-
28644440465
-
Combined static and dynamic analysis for determining the quality of time-series expression profiles
-
Simon, I., Siegfried, Z., Ernst, J., and Bar-Joseph, Z. (2005) Combined static and dynamic analysis for determining the quality of time-series expression profiles. Nature Biotechnology, 23, 1503-7.
-
(2005)
Nature Biotechnology
, vol.23
, pp. 1503-1507
-
-
Simon, I.1
Siegfried, Z.2
Ernst, J.3
Bar-joseph, Z.4
-
68
-
-
0000042837
-
Evaluating functional network inference using simulations of complex biological systems
-
Smith, V.A., Jarvis, E.D., and Hartemink, A.J. (2002) Evaluating functional network inference using simulations of complex biological systems. Bioinformatics, 18, S216-7.
-
(2002)
Bioinformatics
, vol.18
-
-
Smith, V.A.1
Jarvis, E.D.2
Hartemink, A.J.3
-
69
-
-
0041627865
-
Influence of network topology and data collection on network inference
-
in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L. Hunter, and T.A. Jung), World Publishing, Singapore
-
Smith, V.A., Jarvis, E.D., and Hartemink, A.J. (2003) Influence of network topology and data collection on network inference, in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L. Hunter, and T.A. Jung), World Publishing, Singapore, pp. 164-175.
-
(2003)
, pp. 164-175
-
-
Smith, V.A.1
Jarvis, E.D.2
Hartemink, A.J.3
-
70
-
-
84972488038
-
Bayesian analysis in expert systems
-
Spiegelhalter, D., Dawid, A.P., Lauritzen, S.L., and Cowell, R.G. (1993) Bayesian analysis in expert systems. Statistical Science, 8, 219-283.
-
(1993)
Statistical Science
, vol.8
, pp. 219-283
-
-
Spiegelhalter, D.1
Dawid, A.P.2
Lauritzen, S.L.3
Cowell, R.G.4
-
71
-
-
0002979137
-
An algorithm for fast recovery of sparse causal graphs
-
Spirtes, P., and Glymour, C. (1991) An algorithm for fast recovery of sparse causal graphs. Social Science Computing Reviews, 9, 62-7.
-
(1991)
Social Science Computing Reviews
, vol.9
, pp. 62-67
-
-
Spirtes, P.1
Glymour, C.2
-
72
-
-
34547852231
-
Computational modeling of Caenorhabditis elegans vulval induction
-
Sun, X., and Hong, P. (2007) Computational modeling of Caenorhabditis elegans vulval induction. Bioinformatics, 23, i499-7.
-
(2007)
Bioinformatics
, vol.23
-
-
Sun, X.1
Hong, P.2
-
73
-
-
0003021797
-
A construction of Bayesian networks from databases based on an MDL principle
-
in Proceedings of the 9th Annual Conference on Uncertainty in Artificial Intelligence (eds. D. Heckerman and E.H. Mamdani), Morgan Kaufmann, San Francisco, CA
-
Suzuki, J. (1993) A construction of Bayesian networks from databases based on an MDL principle, in Proceedings of the 9th Annual Conference on Uncertainty in Artificial Intelligence (eds. D. Heckerman and E.H. Mamdani), Morgan Kaufmann, San Francisco, CA, pp. 266-273.
-
(1993)
, pp. 266-273
-
-
Suzuki, J.1
-
74
-
-
24644445235
-
Estimating immunoregulatory gene networks in human herpesvirus type 6-infected T cells
-
Takaku, T., Ohyashiki, J.H., Zhang, Y., and Ohyashiki, K. (2005) Estimating immunoregulatory gene networks in human herpesvirus type 6-infected T cells. Biochemical and Biophysical Research Communications, 336, 469-7.
-
(2005)
Biochemical and Biophysical Research Communications
, vol.336
, pp. 469-467
-
-
Takaku, T.1
Ohyashiki, J.H.2
Zhang, Y.3
Ohyashiki, K.4
-
75
-
-
31044450846
-
Utilizing evolutionary information and gene expression data for estimating gene networks with Bayesian network models
-
Tamada, Y., Bannai, H., Imoto, S., Katayama, T., Kanehisa, M., and Miyano, S. (2005) Utilizing evolutionary information and gene expression data for estimating gene networks with Bayesian network models. Journal of Bioinformatics and Computational Biology, 3, 1295-1313.
-
(2005)
Journal of Bioinformatics and Computational Biology
, vol.3
, pp. 1295-1313
-
-
Tamada, Y.1
Bannai, H.2
Imoto, S.3
Katayama, T.4
Kanehisa, M.5
Miyano, S.6
-
76
-
-
3242891560
-
Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection
-
Tamada, Y., Kim, S., Bannai, H., Imoto, S., Tashiro, K., Kuhara, S., and Miyano, S. (2003) Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics, 19, ii227-7.
-
(2003)
Bioinformatics
, vol.19
-
-
Tamada, Y.1
Kim, S.2
Bannai, H.3
Imoto, S.4
Tashiro, K.5
Kuhara, S.6
Miyano, S.7
-
77
-
-
33748052654
-
Gene interaction network analysis suggests differences between high and low doses of acetaminophen
-
Toyoshiba, H., Sone, H., Yamanaka, T., Parham, F.M., Irwin, R.D., Boorman, G.A., and Portier, C.J. (2006) Gene interaction network analysis suggests differences between high and low doses of acetaminophen. Toxicology and Applied Pharmacology, 215, 306-7.
-
(2006)
Toxicology and Applied Pharmacology
, vol.215
, pp. 306-307
-
-
Toyoshiba, H.1
Sone, H.2
Yamanaka, T.3
Parham, F.M.4
Irwin, R.D.5
Boorman, G.A.6
Portier, C.J.7
-
78
-
-
4444244398
-
Gene interaction network suggests dioxin induces a significant linkage between aryl hydrocarbon receptor and retinoic acid receptor beta
-
Toyoshiba, H., Yamanaka, T., Sone, H., Parham, F.M., Walker, N.J.,Martinez, J., and Portier, C.J. (2004) Gene interaction network suggests dioxin induces a significant linkage between aryl hydrocarbon receptor and retinoic acid receptor beta. Environmental Health Perspectives, 112, 1217-7.
-
(2004)
Environmental Health Perspectives
, vol.112
, pp. 1217-1217
-
-
Toyoshiba, H.1
Yamanaka, T.2
Sone, H.3
Parham, F.M.4
Walker, N.J.5
Martinez, J.6
Portier, C.J.7
-
79
-
-
2542430932
-
Singular value decomposition and principal component analysis
-
in A Practical Approach to Microarray Data Analysis (eds. D.P. Berrar, W. Dubitzky, and M. Granzow), Kluwer, Norwell, MA
-
Wall, M.E., Rechtsteiner, A., and Rocha, L.M. (2003) Singular value decomposition and principal component analysis, in A Practical Approach to Microarray Data Analysis (eds. D.P. Berrar, W. Dubitzky, and M. Granzow), Kluwer, Norwell, MA, pp. 91-109.
-
(2003)
, pp. 91-109
-
-
Wall, M.E.1
Rechtsteiner, A.2
Rocha, L.M.3
-
80
-
-
0000538525
-
Causal discovery via MML, Proceedings of the 13th International Conference on Machine Learning
-
ed. L. Saitta), Morgan Kauffman, San Francisco, CA
-
Wallace, C., Korb, K.B., and Dai, H. (1996) Causal discovery via MML, Proceedings of the 13th International Conference on Machine Learning (ed. L. Saitta), Morgan Kauffman, San Francisco, CA, pp. 516-524.
-
(1996)
, pp. 516-524
-
-
Wallace, C.1
Korb, K.B.2
Dai, H.3
-
81
-
-
34948816667
-
A hybrid Bayesian network learning method for constructing gene networks
-
Wang, M., Chen, Z., and Cloutier, S. (2007) A hybrid Bayesian network learning method for constructing gene networks. Computational Biology and Chemistry, 31, 361-7.
-
(2007)
Computational Biology and Chemistry
, vol.31
, pp. 361-367
-
-
Wang, M.1
Chen, Z.2
Cloutier, S.3
-
82
-
-
14044254184
-
Applying two-level simulated annealing on Bayesian structure learning to infer genetic networks
-
in Proceedings of the IEEE Computational Systems Bioinformatics Conference, IEEE, New York
-
Wang, T., Touchman, J.W., and Xue, G. (2004) Applying two-level simulated annealing on Bayesian structure learning to infer genetic networks, in Proceedings of the IEEE Computational Systems Bioinformatics Conference, IEEE, New York, pp. 647-648.
-
(2004)
, pp. 647-648
-
-
Wang, T.1
Touchman, J.W.2
Xue, G.3
-
83
-
-
0032617396
-
Modeling regulatory networks with weight matrices
-
in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman and K. Lauderdale), World Scientific, Singapore
-
Weaver, D.C., Workman, C.T., and Stromo, G.D. (1999) Modeling regulatory networks with weight matrices, in Proceedings of the Pacific Symposium on Biocomputing (eds. R.B. Altman and K. Lauderdale), World Scientific, Singapore, pp. 112-123.
-
(1999)
, pp. 112-123
-
-
Weaver, D.C.1
Workman, C.T.2
Stromo, G.D.3
-
84
-
-
34249774309
-
Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
-
Werhli, A.V. and Husmeier, D. (2007) Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Statistical Applications in Genetics and Molecular Biology, 6, 15.
-
(2007)
Statistical Applications in Genetics and Molecular Biology
, vol.6
, pp. 15
-
-
Werhli, A.V.1
Husmeier, D.2
-
86
-
-
0036358442
-
Discovery of causal relationships in a generegulation pathway from a mixture of experimental and observational DNA microarray data
-
in Proceedings of Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L. Hunter, and K. Lauderdale), World Scientific, Singapore
-
Yoo, C., Thorsson, V., and Cooper, G.F. (2002) Discovery of causal relationships in a generegulation pathway from a mixture of experimental and observational DNA microarray data, in Proceedings of Pacific Symposium on Biocomputing (eds. R.B. Altman, A.K. Dunker, L. Hunter, and K. Lauderdale), World Scientific, Singapore, pp 498-509.
-
(2002)
, pp. 498-509
-
-
Yoo, C.1
Thorsson, V.2
Cooper, G.F.3
-
87
-
-
84886339779
-
Developing Bayesian network inference algorithms to predict causal functional pathways in biological systems
-
Yu, J. (2005) Developing Bayesian network inference algorithms to predict causal functional pathways in biological systems. PhD Thesis. Duke University, Durham, NC. Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., and Jarvis, E.D. (2004) Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 20, 3594-7.
-
(2005)
PhD Thesis. Duke University, Durham, NC. Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., and Jarvis, E.D. (2004) Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics
, vol.20
, pp. 3594-3597
-
-
Yu, J.1
-
88
-
-
54949116534
-
A Bayesian network driven approach to model the transcriptional response to nitric oxide in Saccharomyces cerevisiae
-
Zhu, J., Jambhekar, A., Sarver, A., and DeRis, J. (2006) A Bayesian network driven approach to model the transcriptional response to nitric oxide in Saccharomyces cerevisiae. PLoS ONE, 1, e94.
-
(2006)
PLoS ONE
, vol.1
-
-
Zhu, J.1
Jambhekar, A.2
Sarver, A.3
DeRis, J.4
-
89
-
-
12744261506
-
A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
-
Zou, M. and Conzen, S.D. (2005) A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 21, 71-7.
-
(2005)
Bioinformatics
, vol.21
, pp. 71-77
-
-
Zou, M.1
Conzen, S.D.2
|