-
1
-
-
0036207347
-
Modeling and simulation of genetic regulatory systems: A literature review
-
10.1089/10665270252833208 11911796
-
de Jong H. Modeling and simulation of genetic regulatory systems: A literature review Journal of Computational Biology 2002, 9(1):67-103. 10.1089/10665270252833208 11911796
-
(2002)
Journal of Computational Biology
, vol.9
, Issue.1
, pp. 67-103
-
-
de Jong, H.1
-
3
-
-
0033707946
-
Using Bayesian Networks to Analyze Expression Data
-
10.1089/106652700750050961 11108481
-
Friedman N Linial M Nachman I Peer D Using Bayesian Networks to Analyze Expression Data J Comp Bio 2000, 7(3-4):601-620. 10.1089/ 106652700750050961 11108481
-
(2000)
J Comp Bio
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Peer, D.4
-
4
-
-
0037941585
-
Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
-
12740579
-
Segal E Shapira M Regev A Pe'er D Botstein D Koller D Friedman N Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data Nat Genet 2003, 34(2):166-76. 12740579
-
(2003)
Nat Genet
, vol.34
, Issue.2
, pp. 166-176
-
-
Segal, E.1
Shapira, M.2
Regev, A.3
Pe'er, D.4
Botstein, D.5
Koller, D.6
Friedman, N.7
-
6
-
-
0003687180
-
-
Secaucus, NJ, USA: Springer-Verlag New York, Inc
-
Cowell RG Lauritzen SL David AP Spiegelhalter DJ Spiegelhater DJ Probabilistic Networks and Expert Systems Secaucus, NJ, USA: Springer-Verlag New York, Inc 1999
-
(1999)
Probabilistic Networks and Expert Systems
-
-
Cowell, R.G.1
Lauritzen, S.L.2
David, A.P.3
Spiegelhalter, D.J.4
Spiegelhater, D.J.5
-
9
-
-
0036372453
-
Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression
-
11928473
-
Goto M Imoto Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression Pacific Symposium on Biocomputin 2002, 7:175-186. http://bonsai.ims.u-tokyo.ac.jp/~imoto/imoto_psb2002.pdf 11928473
-
(2002)
Pacific Symposium on Biocomputin
, vol.7
, pp. 175-186
-
-
Imoto, G.M.1
-
10
-
-
18144442687
-
Inferring subnetworks from perturbed expression profiles
-
11473012
-
Pe'er D Regev A Elidan G Friedman N Inferring subnetworks from perturbed expression profiles Bioinformatics 2001, 17(Suppl 1):S215-S224. 11473012
-
(2001)
Bioinformatics
, vol.17
, Issue.SUPPL. 1
-
-
Pe'er, D.1
Regev, A.2
Elidan, G.3
Friedman, N.4
-
11
-
-
0035221560
-
Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
-
11262961
-
Hartemink AJ Gifford DK Jaakkola TS Young RA Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks Pac Symp Biocomput 2001, 422-433. http://www.psrg.csail.mit.edu/pubs/psbcamera.pdf 11262961
-
(2001)
Pac Symp Biocomput
, pp. 422-433
-
-
Hartemink, A.J.1
Gifford, D.K.2
Jaakkola, T.S.3
Young, R.A.4
-
12
-
-
0348136789
-
Reverse engineering of genetic networks with Bayesian networks
-
14641102
-
Husmeier D Reverse engineering of genetic networks with Bayesian networks Biochemical Society Transactions 2003, 31:1516-1518. 14641102
-
(2003)
Biochemical Society Transactions
, vol.31
, pp. 1516-1518
-
-
Husmeier, D.1
-
13
-
-
27544503451
-
Growing Bayesian network models of gene networks from seed genes
-
10.1093/bioinformatics/bti1137 16204109
-
Pena JM Bjorkegren J Tegner J Growing Bayesian network models of gene networks from seed genes Bioinformatics 2005, 21(Suppl 2):iI224-ii229. 10.1093/bioinformatics/bti1137 16204109
-
(2005)
Bioinformatics
, vol.21
, Issue.SUPPL. 2
-
-
Pena, J.M.1
Bjorkegren, J.2
Tegner, J.3
-
14
-
-
0030124955
-
A Guide to the Literature on Learning Probabilistic Networks from Data
-
10.1109/69.494161
-
Buntine W A Guide to the Literature on Learning Probabilistic Networks from Data IEEE Transactions on Knowledge and Data Engineering 1996, 8(2):195-210. 10.1109/69.494161
-
(1996)
IEEE Transactions on Knowledge and Data Engineering
, vol.8
, Issue.2
, pp. 195-210
-
-
Buntine, W.1
-
15
-
-
0002444961
-
Counting unlabeled acyclic digraphs
-
Springer-Verlag
-
Robinson R Counting unlabeled acyclic digraphs Lecture Notes in Mathematics Springer-Verlag 1977, 622
-
(1977)
Lecture Notes in Mathematics
, vol.622
-
-
Robinson, R.1
-
16
-
-
0042967741
-
Chickering Optimal Structure identification with greedy search
-
10.1162/153244303321897717
-
Chickering Optimal Structure identification with greedy search Journal of machine learning research 2002, 3:507-554. http://www.ai.mit.edu/ projects/jmlr/papers/volume3/chickering02b/source/chickering02b.pdf 10.1162/153244303321897717
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 507-554
-
-
-
17
-
-
34249832377
-
A Bayesian Method for the Induction of Probabilistic Networks from Data
-
Cooper GF Herskovits E A Bayesian Method for the Induction of Probabilistic Networks from Data Mach Learn 1992, 9(4):309-347
-
(1992)
Mach Learn
, vol.9
, Issue.4
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
18
-
-
0001019707
-
Learning bayesian networks is NP-complete
-
New York NY: Springer-Verlag Fisher D, Lenz HJ
-
DM Chickering DG Heckermann D Learning bayesian networks is NP-complete Learning from data: AI and Statistics New York NY: Springer-Verlag Fisher D, Lenz HJ 1996, 5:121-130
-
(1996)
Learning from Data: AI and Statistics
, vol.5
, pp. 121-130
-
-
Chickering, D.M.1
Heckermann, D.G.D.2
-
19
-
-
0037262841
-
Being Bayesian About Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks
-
10.1023/A:1020249912095
-
Friedman Koller Being Bayesian About Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks Machine Learning 2003, 50:95-126 10.1023/A:1020249912095
-
(2003)
Machine Learning
, vol.50
, pp. 95-126
-
-
Koller, F.1
-
21
-
-
0033076357
-
Using Evolutionary Programming and Minimum Description Length Principle for Data Mining of Bayesian Networks
-
10.1109/34.748825
-
Wong ML Lam W Leung KS Using Evolutionary Programming and Minimum Description Length Principle for Data Mining of Bayesian Networks IEEE Transactions on Pattern Analysis and Machine Intelligence 1999, 21(2):174-178. 10.1109/34.748825
-
(1999)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.21
, Issue.2
, pp. 174-178
-
-
Wong, M.L.1
Lam, W.2
Leung, K.S.3
-
22
-
-
10044240790
-
Using prior knowledge to improve genetic network reconstruction from microarray data
-
15724284
-
Le PP Bahl A Ungar LH Using prior knowledge to improve genetic network reconstruction from microarray data Silico Biology 2004, 4(3):335-53. 15724284
-
(2004)
Silico Biology
, vol.4
, Issue.3
, pp. 335-353
-
-
Le, P.P.1
Bahl, A.2
Ungar, L.H.3
-
23
-
-
0842288337
-
Inferring Cellular Networks Using Probabilistic Graphical Models
-
10.1126/science.1094068 14764868
-
Friedman N Inferring Cellular Networks Using Probabilistic Graphical Models Science 2004, 303(5659):799-805. 10.1126/science.1094068 14764868
-
(2004)
Science
, vol.303
, Issue.5659
, pp. 799-805
-
-
Friedman, N.1
-
24
-
-
0345707911
-
-
Bayes Net Toolbox http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html
-
Bayes Net Toolbox
-
-
-
27
-
-
33846543494
-
A Permutation Genetic Algorithm For Variable Ordering In Learning Bayesian Networks From Data
-
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc
-
Hsu WH Guo H Perry BB Stilson JA A Permutation Genetic Algorithm For Variable Ordering In Learning Bayesian Networks From Data GECCO '02: Proceedings of the Genetic and Evolutionary Computation Conference San Francisco, CA, USA: Morgan Kaufmann Publishers Inc 2002, 383-390
-
(2002)
GECCO '02: Proceedings of the Genetic and Evolutionary Computation Conference
, pp. 383-390
-
-
Hsu, W.H.1
Guo, H.2
Perry, B.B.3
Stilson, J.A.4
-
28
-
-
37249074811
-
Learning Bayesian network structures by searching for the best ordering with genetic algorithms
-
Larranaga P Kuijpers C Murga R Yurramendi Y Learning Bayesian network structures by searching for the best ordering with genetic algorithms 1996
-
(1996)
-
-
Larranaga, P.1
Kuijpers, C.2
Murga, R.3
Yurramendi, Y.4
-
29
-
-
0030245966
-
Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters
-
10.1109/34.537345
-
Larranaga P Poza M Yurramendi Y Murga RH Kuijpers CMH Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters IEEE Trans Pattern Anal Mach Intell 1996, 18(9):912-926. 10.1109/34.537345
-
(1996)
IEEE Trans Pattern Anal Mach Intell
, vol.18
, Issue.9
, pp. 912-926
-
-
Larranaga, P.1
Poza, M.2
Yurramendi, Y.3
Murga, R.H.4
Kuijpers, C.M.H.5
-
30
-
-
0031274383
-
Analysis of the behaviour of genetic algorithms when learning Bayesian network structure from data
-
10.1016/S0167-8655(97)00106-2
-
Etxeberria R Larranaga P Picaza JM Analysis of the behaviour of genetic algorithms when learning Bayesian network structure from data Pattern Recogn Lett 1997, 18(11-13):1269-1273. 10.1016/S0167-8655(97)00106-2
-
(1997)
Pattern Recogn Lett
, vol.18
, Issue.11-13
, pp. 1269-1273
-
-
Etxeberria, R.1
Larranaga, P.2
Picaza, J.M.3
-
33
-
-
84883787518
-
Analyzing Directed Acyclic Graph Recombination
-
London, UK: Springer-Verlag
-
Cotta C Troya JM Analyzing Directed Acyclic Graph Recombination Proceedings of the International Conference, 7th Fuzzy Days on Computational Intelligence, Theory and Applications London, UK: Springer-Verlag 2001, 739-748
-
(2001)
Proceedings of the International Conference, 7th Fuzzy Days on Computational Intelligence, Theory and Applications
, pp. 739-748
-
-
Cotta, C.1
Troya, J.M.2
-
34
-
-
0003679582
-
Niching methods for genetic algorithms
-
PhD thesis Champaign, IL, USA
-
Mahfoud SW Niching methods for genetic algorithms PhD thesis Champaign, IL, USA 1995
-
(1995)
-
-
Mahfoud, S.W.1
-
35
-
-
0003871635
-
An analysis of the behavior of a class of genetic adaptive systems
-
PhD thesis
-
Jong KAD An analysis of the behavior of a class of genetic adaptive systems PhD thesis 1975
-
(1975)
-
-
Jong, K.A.D.1
-
38
-
-
84956689194
-
Kernel principal component analysis
-
Lausanne, Switzerland Berlin: Springer Lecture Notes in Computer Science W Gerstner MH A Germond, Nicoud JD
-
Schölkopf B Smola A Müller K Kernel principal component analysis 7th International Conference on Artificial Neural Networks, ICANN 97, Lausanne, Switzerland Berlin: Springer Lecture Notes in Computer Science W Gerstner MH A Germond, Nicoud JD 1997, 1327:583-588
-
(1997)
7th International Conference on Artificial Neural Networks, ICANN 97
, vol.1327
, pp. 583-588
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.3
-
41
-
-
0036567524
-
Learning Bayesian networks from data: An information-theory based approach
-
10.1016/S0004-3702(02)00191-1
-
Cheng J Greiner R Kelly J Bell D Liu W Learning Bayesian networks from data: An information-theory based approach Artif Intell 2002, 137(1-2):43-90. 10.1016/S0004-3702(02)00191-1
-
(2002)
Artif Intell
, vol.137
, Issue.1-2
, pp. 43-90
-
-
Cheng, J.1
Greiner, R.2
Kelly, J.3
Bell, D.4
Liu, W.5
-
42
-
-
33746035971
-
The max-min hill-climbing Bayesian network structure learning algorithm
-
10.1007/s10994-006-6889-7
-
Tsamardinos I Brown LE Aliferis CF The max-min hill-climbing Bayesian network structure learning algorithm Machine Learning 2006, 65:31-78. 10.1007/s10994-006-6889-7
-
(2006)
Machine Learning
, vol.65
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
-
44
-
-
0004063546
-
Likelihoods and parameter priors for Bayesian networks
-
Heckerman D Geiger D Likelihoods and parameter priors for Bayesian networks 1995
-
(1995)
-
-
Heckerman, D.1
Geiger, D.2
-
47
-
-
36549012683
-
Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference
-
18042557 10.1093/bioinformatics/btm510
-
Quach M Brunel N d'Alché Buc F Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference. Bioinformatics 2007, 23:3209-3216. 18042557 10.1093/ bioinformatics/btm510
-
(2007)
Bioinformatics
, vol.23
, pp. 3209-3216
-
-
Quach, M.1
Brunel, N.2
d'Alché Buc, F.3
-
48
-
-
0037266163
-
Improving Markov Chain Monte Carlo model search for Data Mining
-
10.1023/A:1020202028934
-
Giudici P Castelo R Improving Markov Chain Monte Carlo model search for Data Mining Machine Learning 2003, 50(1/2):127-158. 10.1023/ A:1020202028934
-
(2003)
Machine Learning
, vol.50
, Issue.1-2
, pp. 127-158
-
-
Giudici, P.1
Castelo, R.2
|