메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages

Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset

Author keywords

[No Author keywords available]

Indexed keywords

CONDITIONAL PROBABILITY DISTRIBUTIONS; EVOLUTIONARY APPROACH; EVOLUTIONARY STRATEGIES; GENE REGULATORY NETWORKS; RECOMBINATION OPERATORS; STATISTICAL PERFORMANCE; STRUCTURE EXTRACTION; TRANSCRIPTIONAL REGULATORY NETWORKS;

EID: 41549159731     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-9-91     Document Type: Article
Times cited : (27)

References (48)
  • 1
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • 10.1089/10665270252833208 11911796
    • de Jong H. Modeling and simulation of genetic regulatory systems: A literature review Journal of Computational Biology 2002, 9(1):67-103. 10.1089/10665270252833208 11911796
    • (2002) Journal of Computational Biology , vol.9 , Issue.1 , pp. 67-103
    • de Jong, H.1
  • 3
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian Networks to Analyze Expression Data
    • 10.1089/106652700750050961 11108481
    • Friedman N Linial M Nachman I Peer D Using Bayesian Networks to Analyze Expression Data J Comp Bio 2000, 7(3-4):601-620. 10.1089/ 106652700750050961 11108481
    • (2000) J Comp Bio , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Peer, D.4
  • 4
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • 12740579
    • Segal E Shapira M Regev A Pe'er D Botstein D Koller D Friedman N Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data Nat Genet 2003, 34(2):166-76. 12740579
    • (2003) Nat Genet , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 9
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression
    • 11928473
    • Goto M Imoto Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression Pacific Symposium on Biocomputin 2002, 7:175-186. http://bonsai.ims.u-tokyo.ac.jp/~imoto/imoto_psb2002.pdf 11928473
    • (2002) Pacific Symposium on Biocomputin , vol.7 , pp. 175-186
    • Imoto, G.M.1
  • 10
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • 11473012
    • Pe'er D Regev A Elidan G Friedman N Inferring subnetworks from perturbed expression profiles Bioinformatics 2001, 17(Suppl 1):S215-S224. 11473012
    • (2001) Bioinformatics , vol.17 , Issue.SUPPL. 1
    • Pe'er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 11
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • 11262961
    • Hartemink AJ Gifford DK Jaakkola TS Young RA Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks Pac Symp Biocomput 2001, 422-433. http://www.psrg.csail.mit.edu/pubs/psbcamera.pdf 11262961
    • (2001) Pac Symp Biocomput , pp. 422-433
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 12
    • 0348136789 scopus 로고    scopus 로고
    • Reverse engineering of genetic networks with Bayesian networks
    • 14641102
    • Husmeier D Reverse engineering of genetic networks with Bayesian networks Biochemical Society Transactions 2003, 31:1516-1518. 14641102
    • (2003) Biochemical Society Transactions , vol.31 , pp. 1516-1518
    • Husmeier, D.1
  • 13
    • 27544503451 scopus 로고    scopus 로고
    • Growing Bayesian network models of gene networks from seed genes
    • 10.1093/bioinformatics/bti1137 16204109
    • Pena JM Bjorkegren J Tegner J Growing Bayesian network models of gene networks from seed genes Bioinformatics 2005, 21(Suppl 2):iI224-ii229. 10.1093/bioinformatics/bti1137 16204109
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 2
    • Pena, J.M.1    Bjorkegren, J.2    Tegner, J.3
  • 14
    • 0030124955 scopus 로고    scopus 로고
    • A Guide to the Literature on Learning Probabilistic Networks from Data
    • 10.1109/69.494161
    • Buntine W A Guide to the Literature on Learning Probabilistic Networks from Data IEEE Transactions on Knowledge and Data Engineering 1996, 8(2):195-210. 10.1109/69.494161
    • (1996) IEEE Transactions on Knowledge and Data Engineering , vol.8 , Issue.2 , pp. 195-210
    • Buntine, W.1
  • 15
    • 0002444961 scopus 로고
    • Counting unlabeled acyclic digraphs
    • Springer-Verlag
    • Robinson R Counting unlabeled acyclic digraphs Lecture Notes in Mathematics Springer-Verlag 1977, 622
    • (1977) Lecture Notes in Mathematics , vol.622
    • Robinson, R.1
  • 16
    • 0042967741 scopus 로고    scopus 로고
    • Chickering Optimal Structure identification with greedy search
    • 10.1162/153244303321897717
    • Chickering Optimal Structure identification with greedy search Journal of machine learning research 2002, 3:507-554. http://www.ai.mit.edu/ projects/jmlr/papers/volume3/chickering02b/source/chickering02b.pdf 10.1162/153244303321897717
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 507-554
  • 17
    • 34249832377 scopus 로고
    • A Bayesian Method for the Induction of Probabilistic Networks from Data
    • Cooper GF Herskovits E A Bayesian Method for the Induction of Probabilistic Networks from Data Mach Learn 1992, 9(4):309-347
    • (1992) Mach Learn , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 18
    • 0001019707 scopus 로고    scopus 로고
    • Learning bayesian networks is NP-complete
    • New York NY: Springer-Verlag Fisher D, Lenz HJ
    • DM Chickering DG Heckermann D Learning bayesian networks is NP-complete Learning from data: AI and Statistics New York NY: Springer-Verlag Fisher D, Lenz HJ 1996, 5:121-130
    • (1996) Learning from Data: AI and Statistics , vol.5 , pp. 121-130
    • Chickering, D.M.1    Heckermann, D.G.D.2
  • 19
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian About Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks
    • 10.1023/A:1020249912095
    • Friedman Koller Being Bayesian About Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks Machine Learning 2003, 50:95-126 10.1023/A:1020249912095
    • (2003) Machine Learning , vol.50 , pp. 95-126
    • Koller, F.1
  • 21
    • 0033076357 scopus 로고    scopus 로고
    • Using Evolutionary Programming and Minimum Description Length Principle for Data Mining of Bayesian Networks
    • 10.1109/34.748825
    • Wong ML Lam W Leung KS Using Evolutionary Programming and Minimum Description Length Principle for Data Mining of Bayesian Networks IEEE Transactions on Pattern Analysis and Machine Intelligence 1999, 21(2):174-178. 10.1109/34.748825
    • (1999) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.21 , Issue.2 , pp. 174-178
    • Wong, M.L.1    Lam, W.2    Leung, K.S.3
  • 22
    • 10044240790 scopus 로고    scopus 로고
    • Using prior knowledge to improve genetic network reconstruction from microarray data
    • 15724284
    • Le PP Bahl A Ungar LH Using prior knowledge to improve genetic network reconstruction from microarray data Silico Biology 2004, 4(3):335-53. 15724284
    • (2004) Silico Biology , vol.4 , Issue.3 , pp. 335-353
    • Le, P.P.1    Bahl, A.2    Ungar, L.H.3
  • 23
    • 0842288337 scopus 로고    scopus 로고
    • Inferring Cellular Networks Using Probabilistic Graphical Models
    • 10.1126/science.1094068 14764868
    • Friedman N Inferring Cellular Networks Using Probabilistic Graphical Models Science 2004, 303(5659):799-805. 10.1126/science.1094068 14764868
    • (2004) Science , vol.303 , Issue.5659 , pp. 799-805
    • Friedman, N.1
  • 24
    • 0345707911 scopus 로고    scopus 로고
    • Bayes Net Toolbox http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html
    • Bayes Net Toolbox
  • 28
    • 37249074811 scopus 로고    scopus 로고
    • Learning Bayesian network structures by searching for the best ordering with genetic algorithms
    • Larranaga P Kuijpers C Murga R Yurramendi Y Learning Bayesian network structures by searching for the best ordering with genetic algorithms 1996
    • (1996)
    • Larranaga, P.1    Kuijpers, C.2    Murga, R.3    Yurramendi, Y.4
  • 29
    • 0030245966 scopus 로고    scopus 로고
    • Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters
    • 10.1109/34.537345
    • Larranaga P Poza M Yurramendi Y Murga RH Kuijpers CMH Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters IEEE Trans Pattern Anal Mach Intell 1996, 18(9):912-926. 10.1109/34.537345
    • (1996) IEEE Trans Pattern Anal Mach Intell , vol.18 , Issue.9 , pp. 912-926
    • Larranaga, P.1    Poza, M.2    Yurramendi, Y.3    Murga, R.H.4    Kuijpers, C.M.H.5
  • 30
    • 0031274383 scopus 로고    scopus 로고
    • Analysis of the behaviour of genetic algorithms when learning Bayesian network structure from data
    • 10.1016/S0167-8655(97)00106-2
    • Etxeberria R Larranaga P Picaza JM Analysis of the behaviour of genetic algorithms when learning Bayesian network structure from data Pattern Recogn Lett 1997, 18(11-13):1269-1273. 10.1016/S0167-8655(97)00106-2
    • (1997) Pattern Recogn Lett , vol.18 , Issue.11-13 , pp. 1269-1273
    • Etxeberria, R.1    Larranaga, P.2    Picaza, J.M.3
  • 34
    • 0003679582 scopus 로고
    • Niching methods for genetic algorithms
    • PhD thesis Champaign, IL, USA
    • Mahfoud SW Niching methods for genetic algorithms PhD thesis Champaign, IL, USA 1995
    • (1995)
    • Mahfoud, S.W.1
  • 35
    • 0003871635 scopus 로고
    • An analysis of the behavior of a class of genetic adaptive systems
    • PhD thesis
    • Jong KAD An analysis of the behavior of a class of genetic adaptive systems PhD thesis 1975
    • (1975)
    • Jong, K.A.D.1
  • 38
    • 84956689194 scopus 로고    scopus 로고
    • Kernel principal component analysis
    • Lausanne, Switzerland Berlin: Springer Lecture Notes in Computer Science W Gerstner MH A Germond, Nicoud JD
    • Schölkopf B Smola A Müller K Kernel principal component analysis 7th International Conference on Artificial Neural Networks, ICANN 97, Lausanne, Switzerland Berlin: Springer Lecture Notes in Computer Science W Gerstner MH A Germond, Nicoud JD 1997, 1327:583-588
    • (1997) 7th International Conference on Artificial Neural Networks, ICANN 97 , vol.1327 , pp. 583-588
    • Schölkopf, B.1    Smola, A.2    Müller, K.3
  • 41
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An information-theory based approach
    • 10.1016/S0004-3702(02)00191-1
    • Cheng J Greiner R Kelly J Bell D Liu W Learning Bayesian networks from data: An information-theory based approach Artif Intell 2002, 137(1-2):43-90. 10.1016/S0004-3702(02)00191-1
    • (2002) Artif Intell , vol.137 , Issue.1-2 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.4    Liu, W.5
  • 42
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • 10.1007/s10994-006-6889-7
    • Tsamardinos I Brown LE Aliferis CF The max-min hill-climbing Bayesian network structure learning algorithm Machine Learning 2006, 65:31-78. 10.1007/s10994-006-6889-7
    • (2006) Machine Learning , vol.65 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 44
    • 0004063546 scopus 로고
    • Likelihoods and parameter priors for Bayesian networks
    • Heckerman D Geiger D Likelihoods and parameter priors for Bayesian networks 1995
    • (1995)
    • Heckerman, D.1    Geiger, D.2
  • 47
    • 36549012683 scopus 로고    scopus 로고
    • Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference
    • 18042557 10.1093/bioinformatics/btm510
    • Quach M Brunel N d'Alché Buc F Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference. Bioinformatics 2007, 23:3209-3216. 18042557 10.1093/ bioinformatics/btm510
    • (2007) Bioinformatics , vol.23 , pp. 3209-3216
    • Quach, M.1    Brunel, N.2    d'Alché Buc, F.3
  • 48
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov Chain Monte Carlo model search for Data Mining
    • 10.1023/A:1020202028934
    • Giudici P Castelo R Improving Markov Chain Monte Carlo model search for Data Mining Machine Learning 2003, 50(1/2):127-158. 10.1023/ A:1020202028934
    • (2003) Machine Learning , vol.50 , Issue.1-2 , pp. 127-158
    • Giudici, P.1    Castelo, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.