메뉴 건너뛰기




Volumn 25, Issue 1, 2003, Pages 91-111

A decision criterion for the optimal number of clusters in hierarchical clustering

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84867984200     PISSN: 09255001     EISSN: 15732916     Source Type: Journal    
DOI: 10.1023/A:1021394316112     Document Type: Article
Times cited : (150)

References (48)
  • 3
    • 0018345492 scopus 로고
    • Single-link characteristics of a mode-seeking algorithm
    • E. Shaffer R. Dubes A.K. Jain 1979 Single-link characteristics of a mode-seeking algorithm Pattern Recognition 11 65 73
    • (1979) Pattern Recognition , vol.11 , pp. 65-73
    • Shaffer, E.1    Dubes, R.2    Jain, A.K.3
  • 4
    • 0016871723 scopus 로고
    • A locally sensitive method for cluster analysis
    • J. Kittler 1976 A locally sensitive method for cluster analysis Pattern Recognition 8 22 33
    • (1976) Pattern Recognition , vol.8 , pp. 22-33
    • Kittler, J.1
  • 5
    • 0014976008 scopus 로고
    • Graph-theoretical methods for detecting and describing gestalt clusters
    • C.T. Zahn 1971 Graph-theoretical methods for detecting and describing gestalt clusters IEEE Transactions on Computers 20 68 86
    • (1971) IEEE Transactions on Computers , vol.20 , pp. 68-86
    • Zahn, C.T.1
  • 6
    • 0019999522 scopus 로고
    • Graph theoretical clustering based on limited neighborhood sets
    • DOI 10.1016/0031-3203(82)90069-3
    • R. Urquhart 1982 Graph theoretical clustering based on limited neighborhood sets Pattern Recognition 15 173 187 (Pubitemid 12517467)
    • (1982) Pattern Recognition , vol.15 , Issue.3 , pp. 173-187
    • Urquhart Roderick1
  • 7
    • 0018183618 scopus 로고
    • Agglomerative clustering using the concept of mutual nearest neighbourhood
    • DOI 10.1016/0031-3203(78)90018-3
    • K.C. Gowdar G. Krishna 1978 Agglomerative clustering using the concept for multispectral data Pattern Recognition 10 105 112 (Pubitemid 9029736)
    • (1978) Pattern Recognition , vol.10 , Issue.2 , pp. 105-112
    • Gowda, K.C.1    Krishna, G.2
  • 10
    • 5544238247 scopus 로고
    • Clustering Procedures
    • P.R. Krishnaiah (eds). Academic Press New York
    • Fortier, J.J. and Solomon, H. (1966), Clustering Procedures, In Krishnaiah, P.R. (ed). Multivariate Analysis, Academic Press, New York. pp. 493-506.
    • (1966) Multivariate Analysis , pp. 493-506
    • Fortier, J.J.1    Solomon, H.2
  • 11
    • 0000784896 scopus 로고
    • A dynamic programming algorithm for cluster analysis
    • R.E. Jensen 1967 A dynamic programming algorithm for cluster analysis Operations Research 17 1034 1057
    • (1967) Operations Research , vol.17 , pp. 1034-1057
    • Jensen, R.E.1
  • 13
    • 3543147086 scopus 로고
    • Recent trends in hierarchic document clustering: A critical review
    • P. Willet 1988 Recent trends in hierarchic document clustering: a critical review Information Processing and Management 24 577 597
    • (1988) Information Processing and Management , vol.24 , pp. 577-597
    • Willet, P.1
  • 14
    • 84970541720 scopus 로고
    • Multidimensional group analysis
    • R.C. Jancey 1966 Multidimensional group analysis Austral. J. Botany 14 127 130
    • (1966) Austral. J. Botany , vol.14 , pp. 127-130
    • Jancey, R.C.1
  • 15
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • University of California Press Berkeley, CA
    • MacQueen, J.B. (1967), Some methods for classification and analysis of multivariate observations. In: the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol.1, AD 669871, University of California Press, Berkeley, CA, pp. 281-297.
    • (1967) The Fifth Berkeley Symposium on Mathematical Statistics and Probability , pp. 281-297
    • MacQueen, J.B.1
  • 16
    • 0002663098 scopus 로고
    • SLINK: An optimally efficient algorithm for the single-link cluster method
    • R. Sibson 1973 SLINK: an optimally efficient algorithm for the single-link cluster method Computer Journal 16 30 34
    • (1973) Computer Journal , vol.16 , pp. 30-34
    • Sibson, R.1
  • 17
    • 0001765146 scopus 로고
    • An efficient algorithm for a complete link method
    • D. Defays 1977 An efficient algorithm for a complete link method Computer Journal 20 364 366
    • (1977) Computer Journal , vol.20 , pp. 364-366
    • Defays, D.1
  • 18
    • 0002546287 scopus 로고
    • Efficient algorithms for agglomerative hierarchical clustering methods
    • W.H.E. Day H. Edelsbrunner 1984 Efficient algorithms for agglomerative hierarchical clustering methods Journal of Classification 1 7 24
    • (1984) Journal of Classification , vol.1 , pp. 7-24
    • Day, W.H.E.1    Edelsbrunner, H.2
  • 19
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • Santiago, Chile
    • Ng, R.T. and Han G., J. (1994), Efficient and effective clustering methods for spatial data mining. In: Proceedings of the 20th VLDB Conference, Santiago, Chile.
    • (1994) Proceedings of the 20th VLDB Conference
    • Ng, R.T.1    Han, G.J.2
  • 20
    • 0022906994 scopus 로고
    • Implementing agglomerative hierarchical clustering algorithms for use in document retrieval
    • Pergamon Oxford
    • Voorhees, E.M. (1986), Implementing agglomerative hierarchical clustering algorithms for use in document retrieval. In: Information Processing and Management Vol. 22, Pergamon, Oxford, pp. 465-476.
    • (1986) Information Processing and Management , pp. 465-476
    • Voorhees, E.M.1
  • 23
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • Guha, S., Rastogi, R. and Shim, K. (1998), CURE: an efficient clustering algorithm for large databases. In: ACM-SIGMOD Int. Conf. on Management of Data, Seattle, WA. 73-84. (Pubitemid 128655958)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 25
    • 84868004266 scopus 로고    scopus 로고
    • Clustering large datasets in arbitrary metric spaces
    • Ganti, V., Ramakrishnan, R. and Gehrke, J. (2000), Clustering large datasets in arbitrary metric spaces. ACM.
    • (2000) ACM
    • Ganti, V.1    Ramakrishnan, R.2    Gehrke, J.3
  • 26
    • 84867980462 scopus 로고    scopus 로고
    • Incremental clustering and dynamic information retrieval
    • El Paso, TX
    • Charikar, M., Chekuri, C., Feder, T. and Motwani, R. (1997), Incremental clustering and dynamic information retrieval. In: STOC '97, El Paso, TX, pp. 153-180.
    • (1997) STOC '97 , pp. 153-180
    • Charikar, M.1    Chekuri, C.2    Feder, T.3    Motwani, R.4
  • 27
    • 0023523514 scopus 로고
    • How many Clusters are best? - An experiment
    • R.C. Dubes 1987 How many Clusters are best? - an experiment Pattern Recognition 20 645 663
    • (1987) Pattern Recognition , vol.20 , pp. 645-663
    • Dubes, R.C.1
  • 28
    • 34250115918 scopus 로고
    • An examination of procedures for detecting the number of clusters in a data set
    • G.W. Milligan M.C. Cooper 1985 An examination of procedures for detecting the number of clusters in a data set Psychometrika 50 159 179
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 31
  • 32
    • 33845506318 scopus 로고    scopus 로고
    • Combinatorial Optimization in Clustering
    • D.Z. Du P.M. Pardalos (eds). Kluwer Academic Publishers Dordrecht
    • Mirkin, B. and Muchnik, I. (1998), Combinatorial Optimization in Clustering. In: Du, D.Z. and Pardalos, P.M. (eds), Handbook of Combinatorial Optimization, Kluwer Academic Publishers, Dordrecht pp. 261-329.
    • (1998) Handbook of Combinatorial Optimization , pp. 261-329
    • Mirkin, B.1    Muchnik, I.2
  • 35
    • 0019111672 scopus 로고
    • Clustering Analysis
    • K.S. Fu (eds). Springer Secaucus, NJ
    • Diday, E. and Simon, J.C. (1976), Clustering Analysis. In: Fu, K.S. (ed), Digital Pattern Recognition, Springer, Secaucus, NJ, pp. 47-94.
    • (1976) Digital Pattern Recognition , pp. 47-94
    • Diday, E.1    Simon, J.C.2
  • 39
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency versus interpretability of classification
    • E.W. Forgy 1965 Cluster analysis of multivariate data: efficiency versus interpretability of classification Biometric Society Meetings, Reverside, CA 21 768
    • (1965) Biometric Society Meetings, Reverside, CA , vol.21 , pp. 768
    • Forgy, E.W.1
  • 40
    • 0004320561 scopus 로고
    • Pattern recognition by an adaptive process of sample set construction
    • Sebestyen, G.S. (1962), Pattern recognition by an adaptive process of sample set construction. IRE Trans. on Info. Theory IT-8.
    • (1962) IRE Trans. on Info. Theory IT-8
    • Sebestyen, G.S.1
  • 44
    • 0000019005 scopus 로고
    • Clustering Algorithms
    • W.B. Frakes R. Baeza-Yates (eds). Prentice-Hall Upper Saddle River, NJ
    • Rasmussen, E. (1992), Clustering Algorithms. In: Frakes, W.B. and Baeza-Yates, R. (eds), Information Retrieval: Data Structures and Algorithms, Prentice-Hall, Upper Saddle River, NJ, pp. 419-442.
    • (1992) Information Retrieval: Data Structures and Algorithms , pp. 419-442
    • Rasmussen, E.1
  • 46
  • 48
    • 84948481845 scopus 로고
    • An Algorithm for Suffix Stripping
    • M.F. Porter 1980 An Algorithm for Suffix Stripping Program 14 130 137
    • (1980) Program , vol.14 , pp. 130-137
    • Porter, M.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.