메뉴 건너뛰기




Volumn 2007, Issue , 2007, Pages

Uncovering gene regulatory networks from time-series microarray data with variational bayesian structural expectation maximization

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34547190103     PISSN: 16874145     EISSN: 16874153     Source Type: Journal    
DOI: 10.1155/2007/71312     Document Type: Article
Times cited : (12)

References (31)
  • 1
    • 0036941857 scopus 로고    scopus 로고
    • Looking beyond that details: A rise in system-oriented approaches in genetics and molecular biology
    • kitano@csl.sony.co.jp
    • H. Kitano kitano@csl.sony.co.jp Looking beyond that details: a rise in system-oriented approaches in genetics and molecular biology. Current Genetics 41 1 2002 1 10
    • (2002) Current Genetics , vol.41 , Issue.1 , pp. 1-10
    • Kitano, H.1
  • 2
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • P. D'haeseleer S. Liang R. Somogyi Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16 8 2000 707 726
    • (2000) Bioinformatics , vol.16 , Issue.8 , pp. 707-726
    • D'Haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 3
    • 0036843965 scopus 로고    scopus 로고
    • Gene networks: How to put the function in genomics
    • mendes@vt.edu
    • P. Brazhnik A. de la Fuente P. Mendes mendes@vt.edu Gene networks: how to put the function in genomics. Trends in Biotechnology 20 11 2002 467 472
    • (2002) Trends in Biotechnology , vol.20 , Issue.11 , pp. 467-472
    • Brazhnik, P.1    De La Fuente, A.2    Mendes, P.3
  • 4
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • nir@cs.huji.ac.il
    • N. Friedman nir@cs.huji.ac.il Inferring cellular networks using probabilistic graphical models. Science 303 5659 2004 799 805
    • (2004) Science , vol.303 , Issue.5659 , pp. 799-805
    • Friedman, N.1
  • 5
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • I. Shmulevich E. R. Dougherty S. Kim W. Zhang Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18 2 2002 261 274
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 6
    • 12244294063 scopus 로고    scopus 로고
    • Construction of genomic networks using mutual-information clustering and reversible-jump Markov-chain-Monte-Carlo predictor design
    • edward@ee.tamu.edu
    • X. Zhou X. Wang E. R. Dougherty edward@ee.tamu.edu Construction of genomic networks using mutual-information clustering and reversible-jump Markov-chain-Monte-Carlo predictor design. Signal Processing 83 4 2003 745 761
    • (2003) Signal Processing , vol.83 , Issue.4 , pp. 745-761
    • Zhou, X.1    Wang, X.2    Dougherty, E.R.3
  • 7
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • The Big Island of Hawaii, Hawaii, USA
    • A. J. Hartemink D. K. Gifford T. S. Jaakkola R. A. Young Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Proceedings of the 6th Pacific Symposium on Biocomputing (PSB '01) The Big Island of Hawaii, Hawaii, USA 2001 422 433
    • (2001) Proceedings of the 6th Pacific Symposium on Biocomputing (PSB '01) , pp. 422-433
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 8
    • 0034684814 scopus 로고    scopus 로고
    • Integrating naive Bayes models and external knowledge to examine copper and iron homeostasis in S. cerevisiae
    • E. J. Moler D. C. Radisky I. S. Mian Integrating naive Bayes models and external knowledge to examine copper and iron homeostasis in S. cerevisiae. Physiol Genomics 4 2 2000 127 135
    • (2000) Physiol Genomics , vol.4 , Issue.2 , pp. 127-135
    • Moler, E.J.1    Radisky, D.C.2    Mian, I.S.3
  • 10
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • H. de Jong Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology 9 1 2002 67 103
    • (2002) Journal of Computational Biology , vol.9 , Issue.1 , pp. 67-103
    • De Jong, H.1
  • 11
    • 8844277626 scopus 로고    scopus 로고
    • Analyzing time series gene expression data
    • zivbj@cs.cmu.edu
    • Z. Bar-Joseph zivbj@cs.cmu.edu Analyzing time series gene expression data. Bioinformatics 20 16 2004 2493 2503
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2493-2503
    • Bar-Joseph, Z.1
  • 12
    • 7244224988 scopus 로고    scopus 로고
    • Combining pattern discovery and discriminant analysis to predict gene co-regulation
    • nicolas@scmbb.ulb.ac.be
    • N. Simonis nicolas@scmbb.ulb.ac.be S. J. Wodak G. N. Cohen J. van Helden Combining pattern discovery and discriminant analysis to predict gene co-regulation. Bioinformatics 20 15 2004 2370 2379
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2370-2379
    • Simonis, N.1    Wodak, S.J.2    Cohen, G.N.3    Van Helden, J.4
  • 15
    • 1342286937 scopus 로고    scopus 로고
    • Studying the conditions for learning dynamic Bayesian networks to discover genetic regulatory networks
    • R.J.P.vanBerlo@ewi.tudelft.nl
    • R. J. P. van Berlo R.J.P.vanBerlo@ewi.tudelft.nl E. P. van Someren M. J. T. Reinders Studying the conditions for learning dynamic Bayesian networks to discover genetic regulatory networks. Simulation 79 12 2003 689 702
    • (2003) Simulation , vol.79 , Issue.12 , pp. 689-702
    • Van Berlo, R.J.P.1    Van Someren, E.P.2    Reinders, M.J.T.3
  • 16
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • David_Wild@kgi.edu
    • M. J. Beal F. Falciani Z. Ghahramani C. Rangel D. L. Wild David_Wild@kgi.edu A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21 3 2005 349 356
    • (2005) Bioinformatics , vol.21 , Issue.3 , pp. 349-356
    • Beal, M.J.1    Falciani, F.2    Ghahramani, Z.3    Rangel, C.4    Wild, D.L.5
  • 18
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • S. Y. Kim S. Imoto S. Miyano Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics 4 3 2003 228 235
    • (2003) Briefings in Bioinformatics , vol.4 , Issue.3 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 22
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • dirk@bioss.ac.uk
    • D. Husmeier dirk@bioss.ac.uk Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19 17 2003 2271 2282
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 27
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • P. T. Spellman G. Sherlock M. Q. Zhang Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9 12 1998 3273 3297
    • (1998) Molecular Biology of the Cell , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3
  • 28
    • 0032112293 scopus 로고    scopus 로고
    • A genome-wide transcriptional analysis of the mitotic cell cycle
    • campbell@mag.com
    • R. J. Cho M. J. Campbell campbell@mag.com E. A. Winzeler A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2 1 1998 65 73
    • (1998) Molecular Cell , vol.2 , Issue.1 , pp. 65-73
    • Cho, R.J.1    Campbell, M.J.2    Winzeler, E.A.3
  • 29
    • 0003991665 scopus 로고
    • Monographs on Statistics and Applied Probability, no. 57Chapman & Hall New York, NY, USA
    • B. Efron R. Tibshirani An Introduction to Bootstrap. Monographs on Statistics and Applied Probability, no. 57 Chapman & Hall New York, NY, USA 1993
    • (1993) An Introduction to Bootstrap
    • Efron, B.1    Tibshirani, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.