-
1
-
-
0002460150
-
The ALARM monitoring system: a case study with two probabilistic inference techniques for belief networks
-
Hunter J., Cookson J., and Wyatt J. (Eds), Springer Berlin, London, UK
-
Beinlich I.A., Suermondt H.J., Chavez R.M., and Cooper G.F. The ALARM monitoring system: a case study with two probabilistic inference techniques for belief networks. In: Hunter J., Cookson J., and Wyatt J. (Eds). Proceedings of 2nd European Conference on Artificial Intelligence and Medicine (1989), Springer Berlin, London, UK 247-256
-
(1989)
Proceedings of 2nd European Conference on Artificial Intelligence and Medicine
, pp. 247-256
-
-
Beinlich, I.A.1
Suermondt, H.J.2
Chavez, R.M.3
Cooper, G.F.4
-
2
-
-
0031273462
-
Adaptive probabilistic networks with hidden variables
-
Binder J., Koller D., Russell S., and Kanazawa K. Adaptive probabilistic networks with hidden variables. Mach. Learn. 29 2-3 (1997) 213-244
-
(1997)
Mach. Learn.
, vol.29
, Issue.2-3
, pp. 213-244
-
-
Binder, J.1
Koller, D.2
Russell, S.3
Kanazawa, K.4
-
3
-
-
85044704322
-
A novel algorithm for scalable and accurate Bayesian network learning
-
Brown L.E., Tsamardinos I., and Aliferis C.F. A novel algorithm for scalable and accurate Bayesian network learning. Medinfo 11 (2004) 711-715
-
(2004)
Medinfo
, vol.11
, pp. 711-715
-
-
Brown, L.E.1
Tsamardinos, I.2
Aliferis, C.F.3
-
4
-
-
33745622668
-
An effective structure learning method for constructing gene networks
-
Chen X.W., Anantha G., and Wang X. An effective structure learning method for constructing gene networks. Bioinformatics 22 11 (2006) 1367-1374
-
(2006)
Bioinformatics
, vol.22
, Issue.11
, pp. 1367-1374
-
-
Chen, X.W.1
Anantha, G.2
Wang, X.3
-
5
-
-
0036567524
-
Learning Bayesian networks from data: an information-theory based approach
-
Cheng J., Greiner R., Kelly J., Bell D., and Liu W. Learning Bayesian networks from data: an information-theory based approach. Artif. Intell. 137 1-2 (2002) 43-90
-
(2002)
Artif. Intell.
, vol.137
, Issue.1-2
, pp. 43-90
-
-
Cheng, J.1
Greiner, R.2
Kelly, J.3
Bell, D.4
Liu, W.5
-
6
-
-
0002332440
-
Learning equivalence classes of Bayesian network structures
-
Horvitz E., and Jensen F.V. (Eds), Morgan Kaufmann, Porland, OR, USA
-
Chickering D.M. Learning equivalence classes of Bayesian network structures. In: Horvitz E., and Jensen F.V. (Eds). Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence (UAI) (1996), Morgan Kaufmann, Porland, OR, USA 150-157
-
(1996)
Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence (UAI)
, pp. 150-157
-
-
Chickering, D.M.1
-
7
-
-
33646082044
-
On the incompatibility of faithfulness and monotone DAG faithfulness
-
Chickering D.M., and Meek C. On the incompatibility of faithfulness and monotone DAG faithfulness. Artif. Intell. 170 8-9 (2006) 653-666
-
(2006)
Artif. Intell.
, vol.170
, Issue.8-9
, pp. 653-666
-
-
Chickering, D.M.1
Meek, C.2
-
8
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper G.F., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9 4 (1992) 309-347
-
(1992)
Mach. Learn.
, vol.9
, Issue.4
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
9
-
-
21944436304
-
A simple constraint-based algorithm for efficiently mining observational databases for causal relationships
-
Cooper G.F. A simple constraint-based algorithm for efficiently mining observational databases for causal relationships. Data Min. Knowl. Discov. 1 2 (1997) 203-224
-
(1997)
Data Min. Knowl. Discov.
, vol.1
, Issue.2
, pp. 203-224
-
-
Cooper, G.F.1
-
10
-
-
34948848213
-
Conditions under which conditional independence and scoring methods lead to identical selection of Bayesian network models
-
Breese J.S., and Koller D. (Eds), Morgan Kaufmann, Seattle, WA, USA
-
Cowell G.R. Conditions under which conditional independence and scoring methods lead to identical selection of Bayesian network models. In: Breese J.S., and Koller D. (Eds). Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence (UAI) (2001), Morgan Kaufmann, Seattle, WA, USA 91-97
-
(2001)
Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence (UAI)
, pp. 91-97
-
-
Cowell, G.R.1
-
11
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
Friedman N., Linial M., Nachman L., and Pe'er D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7 3-4 (2000) 601-620
-
(2000)
J. Comput. Biol.
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, L.3
Pe'er, D.4
-
12
-
-
0002219642
-
Learning Bayesian network structure from massive datasets: the "sparse candidate" algorithm
-
Laskey K.B., and Prade H. (Eds), Morgan Kaufmann, Stockholm, Sweden
-
Friedman N., Nachman I., and Pe'er D. Learning Bayesian network structure from massive datasets: the "sparse candidate" algorithm. In: Laskey K.B., and Prade H. (Eds). Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI) (1999), Morgan Kaufmann, Stockholm, Sweden 206-215
-
(1999)
Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI)
, pp. 206-215
-
-
Friedman, N.1
Nachman, I.2
Pe'er, D.3
-
13
-
-
0003860037
-
-
Chapman and Hall/CRC, Boca Raton, Florida
-
Gilks W.R., Richardson S., and Spiegelhalter D.J. Markov Chain Monte Carlo in Practice (1996), Chapman and Hall/CRC, Boca Raton, Florida
-
(1996)
Markov Chain Monte Carlo in Practice
-
-
Gilks, W.R.1
Richardson, S.2
Spiegelhalter, D.J.3
-
14
-
-
0037266163
-
Improving Markov Chain Monte Carlo model search for data mining
-
Giudici P., and Castelo R. Improving Markov Chain Monte Carlo model search for data mining. Mach. Learn. 50 1-2 (2003) 127-158
-
(2003)
Mach. Learn.
, vol.50
, Issue.1-2
, pp. 127-158
-
-
Giudici, P.1
Castelo, R.2
-
15
-
-
0033605238
-
Expanded lysine acetylation specificity of Gcn5 in native complexes
-
Grant P.A., Eberharter A., John S., Cook R.G., Turner B.M., and Workman J.L. Expanded lysine acetylation specificity of Gcn5 in native complexes. J. Biol. Chem. 274 9 (1999) 5895-5900
-
(1999)
J. Biol. Chem.
, vol.274
, Issue.9
, pp. 5895-5900
-
-
Grant, P.A.1
Eberharter, A.2
John, S.3
Cook, R.G.4
Turner, B.M.5
Workman, J.L.6
-
16
-
-
0036366689
-
Combining location and expression data for principled discovery of genetic regulatory network models
-
Hartemink A.J., Gifford D.K., Jaakkola T.S., and Young R.A. Combining location and expression data for principled discovery of genetic regulatory network models. Pac. Symp. Biocomput. 7 (2002) 437-449
-
(2002)
Pac. Symp. Biocomput.
, vol.7
, pp. 437-449
-
-
Hartemink, A.J.1
Gifford, D.K.2
Jaakkola, T.S.3
Young, R.A.4
-
17
-
-
34249761849
-
Learning Bayesian networks: the combination of knowledge and statistical data
-
Heckerman D., Geiger D., and Chichering D. Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20 3 (1995) 197-243
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chichering, D.3
-
18
-
-
4344578226
-
Bayesian networks for data mining
-
Heckerman D. Bayesian networks for data mining. Data Min. Knowl. Discov. 1 1 (1997) 79-119
-
(1997)
Data Min. Knowl. Discov.
, vol.1
, Issue.1
, pp. 79-119
-
-
Heckerman, D.1
-
19
-
-
34948837417
-
-
Heckerman, D., Meek, C., Cooper, G., 1997. A Bayesian approach to causal discovery. Technical Report, Microsoft.
-
-
-
-
20
-
-
0019503177
-
Cell-cycle regulation of yeast histone mRNA
-
Hereford L.M., Osley M.A., Ludwig T.R., and Mclaughlin C.S. Cell-cycle regulation of yeast histone mRNA. Cell 24 2 (1981) 367-375
-
(1981)
Cell
, vol.24
, Issue.2
, pp. 367-375
-
-
Hereford, L.M.1
Osley, M.A.2
Ludwig, T.R.3
Mclaughlin, C.S.4
-
21
-
-
0037050004
-
Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
-
Ho Y., Gruhler A., Heilbut A., Bader G.D., Moore L., Adams S.L., Millar A., Taylor P., Bennett K., Boutilier K., Yang L., Wolting C., Donaldson I., Schandorff S., Shewnarane J., Vo M., Taggart J., Goudreault M., Muskat B., Alfarano C., Dewar D., Lin Z., Michalickova K., Willems A.R., Sassi H., Nielsen P.A., Rasmussen K.J., Andersen J.R., Johansen L.E., Hansen L.H., Jespersen H., Podtelejnikov A., Nielsen E., Crawford J., Poulsen V., Sorensen B.D., Matthiesen J., Hendrickson R.C., Gleeson F., Pawson T., Moran M.F., Durocher D., Mann M., Hogue C.W., Figeys D., and Tyers M. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415 6868 (2002) 180-183
-
(2002)
Nature
, vol.415
, Issue.6868
, pp. 180-183
-
-
Ho, Y.1
Gruhler, A.2
Heilbut, A.3
Bader, G.D.4
Moore, L.5
Adams, S.L.6
Millar, A.7
Taylor, P.8
Bennett, K.9
Boutilier, K.10
Yang, L.11
Wolting, C.12
Donaldson, I.13
Schandorff, S.14
Shewnarane, J.15
Vo, M.16
Taggart, J.17
Goudreault, M.18
Muskat, B.19
Alfarano, C.20
Dewar, D.21
Lin, Z.22
Michalickova, K.23
Willems, A.R.24
Sassi, H.25
Nielsen, P.A.26
Rasmussen, K.J.27
Andersen, J.R.28
Johansen, L.E.29
Hansen, L.H.30
Jespersen, H.31
Podtelejnikov, A.32
Nielsen, E.33
Crawford, J.34
Poulsen, V.35
Sorensen, B.D.36
Matthiesen, J.37
Hendrickson, R.C.38
Gleeson, F.39
Pawson, T.40
Moran, M.F.41
Durocher, D.42
Mann, M.43
Hogue, C.W.44
Figeys, D.45
Tyers, M.46
more..
-
22
-
-
34250013587
-
Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining
-
Huang Z., Li J., Su H., Watts G.S., and Chen H. Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining. Decis. Support. Syst. 43 4 (2007) 1207-1225
-
(2007)
Decis. Support. Syst.
, vol.43
, Issue.4
, pp. 1207-1225
-
-
Huang, Z.1
Li, J.2
Su, H.3
Watts, G.S.4
Chen, H.5
-
23
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19 17 (2003) 2271-2282
-
(2003)
Bioinformatics
, vol.19
, Issue.17
, pp. 2271-2282
-
-
Husmeier, D.1
-
24
-
-
0036372453
-
Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
-
Imoto S., Goto T., and Miyano S. Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. Pac. Symp. Biocomput. 7 (2002) 175-186
-
(2002)
Pac. Symp. Biocomput.
, vol.7
, pp. 175-186
-
-
Imoto, S.1
Goto, T.2
Miyano, S.3
-
25
-
-
34948864495
-
-
Jensen, C.S., 1997. Blocking Gibbs sampling for inference in large and complex Bayeisan networks with applications in genetics. Ph.D. Thesis, Aalborg University, Denmark.
-
-
-
-
26
-
-
33947524259
-
Estimating high-dimensional directed acyclic graphs with the PC-algorithm
-
Kalisch M., and Bühlmann P. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 8 (2007) 613-636
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 613-636
-
-
Kalisch, M.1
Bühlmann, P.2
-
27
-
-
0030699092
-
Sin mutations of histone H3: influence on nucleosome core structure and function
-
Kurumizaka H., and Wolffe A.P. Sin mutations of histone H3: influence on nucleosome core structure and function. Mol. Cell Biol. 17 12 (1997) 6953-6969
-
(1997)
Mol. Cell Biol.
, vol.17
, Issue.12
, pp. 6953-6969
-
-
Kurumizaka, H.1
Wolffe, A.P.2
-
28
-
-
34948842557
-
-
Murphy, K., Mian, S., 1999. Modeling gene expression data using dynamic Bayesian networks. Technical Report, Computer Science Division, University of California, Berkeley, CA.
-
-
-
-
30
-
-
2442703194
-
Finding optimal models for small gene networks
-
Ott S., Imoto S., and Miyano S. Finding optimal models for small gene networks. Pac. Symp. Biocomput. 9 (2004) 557-567
-
(2004)
Pac. Symp. Biocomput.
, vol.9
, pp. 557-567
-
-
Ott, S.1
Imoto, S.2
Miyano, S.3
-
31
-
-
33646338193
-
MinReg: a scalable algorithm for learning parsimonious regulatory networks in yeast and mammals
-
Pe'er D., Tanay A., and Regev A. MinReg: a scalable algorithm for learning parsimonious regulatory networks in yeast and mammals. J. Mach. Learn. Res. 7 (2006) 167-189
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 167-189
-
-
Pe'er, D.1
Tanay, A.2
Regev, A.3
-
33
-
-
0002838962
-
A theory of inferred causation
-
Allen J.F., Fikes R., and Sandewall E. (Eds), Morgan Kaufmann, San Mateo, CA, USA
-
Pearl J., and Verma T.S. A theory of inferred causation. In: Allen J.F., Fikes R., and Sandewall E. (Eds). Principles of Knowledge Representation and Reasoning: Proceedings of the 2nd International Conference (1991), Morgan Kaufmann, San Mateo, CA, USA 441-452
-
(1991)
Principles of Knowledge Representation and Reasoning: Proceedings of the 2nd International Conference
, pp. 441-452
-
-
Pearl, J.1
Verma, T.S.2
-
34
-
-
26944438313
-
Scalable, efficient and correct learning of Markov boundaries under the faithfulness assumption
-
Godo L. (Ed), Springer, Barcelona, Spain
-
Peña J.M., Björkegren J., and Tegnér J. Scalable, efficient and correct learning of Markov boundaries under the faithfulness assumption. In: Godo L. (Ed). Proceedings of the 8th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (2005), Springer, Barcelona, Spain 136-147
-
(2005)
Proceedings of the 8th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
, pp. 136-147
-
-
Peña, J.M.1
Björkegren, J.2
Tegnér, J.3
-
35
-
-
27544503451
-
Growing Bayesian network models of gene networks from seed genes
-
Peña J.M., Björkegren J., and Tegnér J. Growing Bayesian network models of gene networks from seed genes. Bioinformatics 21 2 (2006) ii224-ii229
-
(2006)
Bioinformatics
, vol.21
, Issue.2
-
-
Peña, J.M.1
Björkegren, J.2
Tegnér, J.3
-
36
-
-
21844455527
-
Learning module networks
-
Segal E., Pe'er D., Regev A., Koller D., and Friedman N. Learning module networks. J. Mach. Learn. Res. 6 (2005) 557-588
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 557-588
-
-
Segal, E.1
Pe'er, D.2
Regev, A.3
Koller, D.4
Friedman, N.5
-
37
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
-
Spellman P.T., Sherlock G., Zhang M.Q., Iyer V.R., Anders K., Eisen M.B., Brown P.O., Botstein D., and Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9 12 (1998) 3273-3297
-
(1998)
Mol. Biol. Cell
, vol.9
, Issue.12
, pp. 3273-3297
-
-
Spellman, P.T.1
Sherlock, G.2
Zhang, M.Q.3
Iyer, V.R.4
Anders, K.5
Eisen, M.B.6
Brown, P.O.7
Botstein, D.8
Futcher, B.9
-
38
-
-
0003614273
-
-
Springer, New York
-
Spirtes P., Glymour C., and Schienes R. Causation, Prediction, and Search (1993), Springer, New York
-
(1993)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Schienes, R.3
-
39
-
-
84915827212
-
Learning Bayesian networks with discrete variables from data
-
AAAI Press, Menlo Park, CA, USA
-
Spirtes P., and Meek C. Learning Bayesian networks with discrete variables from data. Proceedings of First International Conference on Knowledge Discovery and Data Mining (1995), AAAI Press, Menlo Park, CA, USA 294-299
-
(1995)
Proceedings of First International Conference on Knowledge Discovery and Data Mining
, pp. 294-299
-
-
Spirtes, P.1
Meek, C.2
-
40
-
-
34948851948
-
-
Statnikov, A., Tsamardinos, I., Aliferis, C.F., 2003. An algorithm for generation of large Bayesian networks. Technical report DSL TR-03-01, May 28, 2003. Vanderbilt University, Nashville, TN, USA.
-
-
-
-
41
-
-
85156264409
-
On the Dirichlet prior and Bayesian regularization
-
Becker S., Thrun S., and Obermayer K. (Eds), MIT Press, Vancouver, BC, Canada
-
Steck H., and Jaakkola T. On the Dirichlet prior and Bayesian regularization. In: Becker S., Thrun S., and Obermayer K. (Eds). Advances in Neural Information Processing Systems (NIPS) (2002), MIT Press, Vancouver, BC, Canada 697-704
-
(2002)
Advances in Neural Information Processing Systems (NIPS)
, pp. 697-704
-
-
Steck, H.1
Jaakkola, T.2
-
42
-
-
33746035971
-
The max-min hill-climbing Bayesian network structure learning algorithm
-
Tsamardinos I., Brown L.E., and Aliferis C.F. The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65 1 (2006) 31-78
-
(2006)
Mach. Learn.
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
-
43
-
-
34948893527
-
Mining gene expression databases for local causal relationships using a simple constraint-based algorithm
-
Wang M., Lu H., Chen Z., and Wu P. Mining gene expression databases for local causal relationships using a simple constraint-based algorithm. Int. J. Pattern Recogn. 12 2 (2006) 311-327
-
(2006)
Int. J. Pattern Recogn.
, vol.12
, Issue.2
, pp. 311-327
-
-
Wang, M.1
Lu, H.2
Chen, Z.3
Wu, P.4
|