메뉴 건너뛰기




Volumn 31, Issue 5-6, 2007, Pages 361-372

A hybrid Bayesian network learning method for constructing gene networks

Author keywords

Bayesian network; DNA microarray; Gene network; Hybrid learning

Indexed keywords

COMPUTATIONAL METHODS; DATABASE SYSTEMS; DNA; GENE EXPRESSION; LEARNING ALGORITHMS; LEARNING SYSTEMS; MICROARRAYS;

EID: 34948816667     PISSN: 14769271     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiolchem.2007.08.005     Document Type: Article
Times cited : (38)

References (43)
  • 1
    • 0002460150 scopus 로고
    • The ALARM monitoring system: a case study with two probabilistic inference techniques for belief networks
    • Hunter J., Cookson J., and Wyatt J. (Eds), Springer Berlin, London, UK
    • Beinlich I.A., Suermondt H.J., Chavez R.M., and Cooper G.F. The ALARM monitoring system: a case study with two probabilistic inference techniques for belief networks. In: Hunter J., Cookson J., and Wyatt J. (Eds). Proceedings of 2nd European Conference on Artificial Intelligence and Medicine (1989), Springer Berlin, London, UK 247-256
    • (1989) Proceedings of 2nd European Conference on Artificial Intelligence and Medicine , pp. 247-256
    • Beinlich, I.A.1    Suermondt, H.J.2    Chavez, R.M.3    Cooper, G.F.4
  • 2
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • Binder J., Koller D., Russell S., and Kanazawa K. Adaptive probabilistic networks with hidden variables. Mach. Learn. 29 2-3 (1997) 213-244
    • (1997) Mach. Learn. , vol.29 , Issue.2-3 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.3    Kanazawa, K.4
  • 3
    • 85044704322 scopus 로고    scopus 로고
    • A novel algorithm for scalable and accurate Bayesian network learning
    • Brown L.E., Tsamardinos I., and Aliferis C.F. A novel algorithm for scalable and accurate Bayesian network learning. Medinfo 11 (2004) 711-715
    • (2004) Medinfo , vol.11 , pp. 711-715
    • Brown, L.E.1    Tsamardinos, I.2    Aliferis, C.F.3
  • 4
    • 33745622668 scopus 로고    scopus 로고
    • An effective structure learning method for constructing gene networks
    • Chen X.W., Anantha G., and Wang X. An effective structure learning method for constructing gene networks. Bioinformatics 22 11 (2006) 1367-1374
    • (2006) Bioinformatics , vol.22 , Issue.11 , pp. 1367-1374
    • Chen, X.W.1    Anantha, G.2    Wang, X.3
  • 5
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: an information-theory based approach
    • Cheng J., Greiner R., Kelly J., Bell D., and Liu W. Learning Bayesian networks from data: an information-theory based approach. Artif. Intell. 137 1-2 (2002) 43-90
    • (2002) Artif. Intell. , vol.137 , Issue.1-2 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.4    Liu, W.5
  • 6
    • 0002332440 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian network structures
    • Horvitz E., and Jensen F.V. (Eds), Morgan Kaufmann, Porland, OR, USA
    • Chickering D.M. Learning equivalence classes of Bayesian network structures. In: Horvitz E., and Jensen F.V. (Eds). Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence (UAI) (1996), Morgan Kaufmann, Porland, OR, USA 150-157
    • (1996) Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence (UAI) , pp. 150-157
    • Chickering, D.M.1
  • 7
    • 33646082044 scopus 로고    scopus 로고
    • On the incompatibility of faithfulness and monotone DAG faithfulness
    • Chickering D.M., and Meek C. On the incompatibility of faithfulness and monotone DAG faithfulness. Artif. Intell. 170 8-9 (2006) 653-666
    • (2006) Artif. Intell. , vol.170 , Issue.8-9 , pp. 653-666
    • Chickering, D.M.1    Meek, C.2
  • 8
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G.F., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9 4 (1992) 309-347
    • (1992) Mach. Learn. , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 9
    • 21944436304 scopus 로고    scopus 로고
    • A simple constraint-based algorithm for efficiently mining observational databases for causal relationships
    • Cooper G.F. A simple constraint-based algorithm for efficiently mining observational databases for causal relationships. Data Min. Knowl. Discov. 1 2 (1997) 203-224
    • (1997) Data Min. Knowl. Discov. , vol.1 , Issue.2 , pp. 203-224
    • Cooper, G.F.1
  • 10
    • 34948848213 scopus 로고    scopus 로고
    • Conditions under which conditional independence and scoring methods lead to identical selection of Bayesian network models
    • Breese J.S., and Koller D. (Eds), Morgan Kaufmann, Seattle, WA, USA
    • Cowell G.R. Conditions under which conditional independence and scoring methods lead to identical selection of Bayesian network models. In: Breese J.S., and Koller D. (Eds). Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence (UAI) (2001), Morgan Kaufmann, Seattle, WA, USA 91-97
    • (2001) Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence (UAI) , pp. 91-97
    • Cowell, G.R.1
  • 11
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N., Linial M., Nachman L., and Pe'er D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7 3-4 (2000) 601-620
    • (2000) J. Comput. Biol. , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, L.3    Pe'er, D.4
  • 12
    • 0002219642 scopus 로고    scopus 로고
    • Learning Bayesian network structure from massive datasets: the "sparse candidate" algorithm
    • Laskey K.B., and Prade H. (Eds), Morgan Kaufmann, Stockholm, Sweden
    • Friedman N., Nachman I., and Pe'er D. Learning Bayesian network structure from massive datasets: the "sparse candidate" algorithm. In: Laskey K.B., and Prade H. (Eds). Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI) (1999), Morgan Kaufmann, Stockholm, Sweden 206-215
    • (1999) Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI) , pp. 206-215
    • Friedman, N.1    Nachman, I.2    Pe'er, D.3
  • 14
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov Chain Monte Carlo model search for data mining
    • Giudici P., and Castelo R. Improving Markov Chain Monte Carlo model search for data mining. Mach. Learn. 50 1-2 (2003) 127-158
    • (2003) Mach. Learn. , vol.50 , Issue.1-2 , pp. 127-158
    • Giudici, P.1    Castelo, R.2
  • 16
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory network models
    • Hartemink A.J., Gifford D.K., Jaakkola T.S., and Young R.A. Combining location and expression data for principled discovery of genetic regulatory network models. Pac. Symp. Biocomput. 7 (2002) 437-449
    • (2002) Pac. Symp. Biocomput. , vol.7 , pp. 437-449
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 17
    • 34249761849 scopus 로고
    • Learning Bayesian networks: the combination of knowledge and statistical data
    • Heckerman D., Geiger D., and Chichering D. Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20 3 (1995) 197-243
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chichering, D.3
  • 18
    • 4344578226 scopus 로고    scopus 로고
    • Bayesian networks for data mining
    • Heckerman D. Bayesian networks for data mining. Data Min. Knowl. Discov. 1 1 (1997) 79-119
    • (1997) Data Min. Knowl. Discov. , vol.1 , Issue.1 , pp. 79-119
    • Heckerman, D.1
  • 19
    • 34948837417 scopus 로고    scopus 로고
    • Heckerman, D., Meek, C., Cooper, G., 1997. A Bayesian approach to causal discovery. Technical Report, Microsoft.
  • 20
  • 22
    • 34250013587 scopus 로고    scopus 로고
    • Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining
    • Huang Z., Li J., Su H., Watts G.S., and Chen H. Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining. Decis. Support. Syst. 43 4 (2007) 1207-1225
    • (2007) Decis. Support. Syst. , vol.43 , Issue.4 , pp. 1207-1225
    • Huang, Z.1    Li, J.2    Su, H.3    Watts, G.S.4    Chen, H.5
  • 23
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19 17 (2003) 2271-2282
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 24
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
    • Imoto S., Goto T., and Miyano S. Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. Pac. Symp. Biocomput. 7 (2002) 175-186
    • (2002) Pac. Symp. Biocomput. , vol.7 , pp. 175-186
    • Imoto, S.1    Goto, T.2    Miyano, S.3
  • 25
    • 34948864495 scopus 로고    scopus 로고
    • Jensen, C.S., 1997. Blocking Gibbs sampling for inference in large and complex Bayeisan networks with applications in genetics. Ph.D. Thesis, Aalborg University, Denmark.
  • 26
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • Kalisch M., and Bühlmann P. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 8 (2007) 613-636
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 27
    • 0030699092 scopus 로고    scopus 로고
    • Sin mutations of histone H3: influence on nucleosome core structure and function
    • Kurumizaka H., and Wolffe A.P. Sin mutations of histone H3: influence on nucleosome core structure and function. Mol. Cell Biol. 17 12 (1997) 6953-6969
    • (1997) Mol. Cell Biol. , vol.17 , Issue.12 , pp. 6953-6969
    • Kurumizaka, H.1    Wolffe, A.P.2
  • 28
    • 34948842557 scopus 로고    scopus 로고
    • Murphy, K., Mian, S., 1999. Modeling gene expression data using dynamic Bayesian networks. Technical Report, Computer Science Division, University of California, Berkeley, CA.
  • 30
    • 2442703194 scopus 로고    scopus 로고
    • Finding optimal models for small gene networks
    • Ott S., Imoto S., and Miyano S. Finding optimal models for small gene networks. Pac. Symp. Biocomput. 9 (2004) 557-567
    • (2004) Pac. Symp. Biocomput. , vol.9 , pp. 557-567
    • Ott, S.1    Imoto, S.2    Miyano, S.3
  • 31
    • 33646338193 scopus 로고    scopus 로고
    • MinReg: a scalable algorithm for learning parsimonious regulatory networks in yeast and mammals
    • Pe'er D., Tanay A., and Regev A. MinReg: a scalable algorithm for learning parsimonious regulatory networks in yeast and mammals. J. Mach. Learn. Res. 7 (2006) 167-189
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 167-189
    • Pe'er, D.1    Tanay, A.2    Regev, A.3
  • 35
    • 27544503451 scopus 로고    scopus 로고
    • Growing Bayesian network models of gene networks from seed genes
    • Peña J.M., Björkegren J., and Tegnér J. Growing Bayesian network models of gene networks from seed genes. Bioinformatics 21 2 (2006) ii224-ii229
    • (2006) Bioinformatics , vol.21 , Issue.2
    • Peña, J.M.1    Björkegren, J.2    Tegnér, J.3
  • 37
  • 40
    • 34948851948 scopus 로고    scopus 로고
    • Statnikov, A., Tsamardinos, I., Aliferis, C.F., 2003. An algorithm for generation of large Bayesian networks. Technical report DSL TR-03-01, May 28, 2003. Vanderbilt University, Nashville, TN, USA.
  • 41
    • 85156264409 scopus 로고    scopus 로고
    • On the Dirichlet prior and Bayesian regularization
    • Becker S., Thrun S., and Obermayer K. (Eds), MIT Press, Vancouver, BC, Canada
    • Steck H., and Jaakkola T. On the Dirichlet prior and Bayesian regularization. In: Becker S., Thrun S., and Obermayer K. (Eds). Advances in Neural Information Processing Systems (NIPS) (2002), MIT Press, Vancouver, BC, Canada 697-704
    • (2002) Advances in Neural Information Processing Systems (NIPS) , pp. 697-704
    • Steck, H.1    Jaakkola, T.2
  • 42
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • Tsamardinos I., Brown L.E., and Aliferis C.F. The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65 1 (2006) 31-78
    • (2006) Mach. Learn. , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 43
    • 34948893527 scopus 로고    scopus 로고
    • Mining gene expression databases for local causal relationships using a simple constraint-based algorithm
    • Wang M., Lu H., Chen Z., and Wu P. Mining gene expression databases for local causal relationships using a simple constraint-based algorithm. Int. J. Pattern Recogn. 12 2 (2006) 311-327
    • (2006) Int. J. Pattern Recogn. , vol.12 , Issue.2 , pp. 311-327
    • Wang, M.1    Lu, H.2    Chen, Z.3    Wu, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.