-
1
-
-
37249012876
-
Obesity: genetic, molecular, and environmental aspects
-
Barness, L.A., J.M. Opitz & E. Gilbert-Barness. 2007. Obesity: genetic, molecular, and environmental aspects. Am. J. Med. Genet. A 143A: 3016-3034.
-
(2007)
Am. J. Med. Genet. A
, vol.143 A
, pp. 3016-3034
-
-
Barness, L.A.1
Opitz, J.M.2
Gilbert-Barness, E.3
-
3
-
-
0028904194
-
Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms
-
Welsh, D.K. et al. 1995. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron. 14: 697-706.
-
(1995)
Neuron
, vol.14
, pp. 697-706
-
-
Welsh, D.K.1
-
4
-
-
0141843610
-
In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus
-
Meijer, J.H. & W.J. Schwartz. 2003. In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J. Biol. Rhythms 18: 235-249.
-
(2003)
J. Biol. Rhythms
, vol.18
, pp. 235-249
-
-
Meijer, J.H.1
Schwartz, W.J.2
-
5
-
-
0037039784
-
Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity
-
Hattar, S. et al. 2002. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295: 1065-1070.
-
(2002)
Science
, vol.295
, pp. 1065-1070
-
-
Hattar, S.1
-
6
-
-
33749031807
-
Molecular components of the mammalian circadian clock
-
Ko, C.H. & J.S. Takahashi. 2006. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15: R271-R277.
-
(2006)
Hum. Mol. Genet.
, vol.15
-
-
Ko, C.H.1
Takahashi, J.S.2
-
7
-
-
0037178787
-
The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator
-
Preitner, N. et al. 2002. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110: 251-260.
-
(2002)
Cell
, vol.110
, pp. 251-260
-
-
Preitner, N.1
-
8
-
-
24944460267
-
Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors
-
Guillaumond, F. et al. 2005. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J. Biol. Rhythms 20: 391-403.
-
(2005)
J. Biol. Rhythms
, vol.20
, pp. 391-403
-
-
Guillaumond, F.1
-
9
-
-
78149245166
-
Characterization of the core mammalian clock component, NPAS2, as a REV-ERBalpha/RORalpha target gene
-
Crumbley, C. et al. 2010. Characterization of the core mammalian clock component, NPAS2, as a REV-ERBalpha/RORalpha target gene. J. Biol. Chem. 285: 35386-35392.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 35386-35392
-
-
Crumbley, C.1
-
10
-
-
79953178583
-
Direct regulation of Clock expression by REV-ERB
-
Crumbley, C. & T.P. Burris. 2011. Direct regulation of Clock expression by REV-ERB. PLoS One 6: e17290.
-
(2011)
PLoS One
, vol.6
-
-
Crumbley, C.1
Burris, T.P.2
-
11
-
-
0035966317
-
Posttranslational mechanisms regulate the mammalian circadian clock
-
Lee, C. et al. 2001. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107: 855-867.
-
(2001)
Cell
, vol.107
, pp. 855-867
-
-
Lee, C.1
-
12
-
-
77951889295
-
The mammalian circadian timing system: organization and coordination of central and peripheral clocks
-
Dibner, C., U. Schibler & U. Albrecht. 2010. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72: 517-549.
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 517-549
-
-
Dibner, C.1
Schibler, U.2
Albrecht, U.3
-
13
-
-
0023105452
-
Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat
-
Watts, A.G. & L.W. Swanson. 1987. Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J. Comp. Neurol. 258: 230-252.
-
(1987)
J. Comp. Neurol.
, vol.258
, pp. 230-252
-
-
Watts, A.G.1
Swanson, L.W.2
-
14
-
-
0034648118
-
Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver
-
la Fleur, S.E. et al. 2000. Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver. Brain Res. 871: 50-56.
-
(2000)
Brain Res
, vol.871
, pp. 50-56
-
-
la Fleur, S.E.1
-
15
-
-
4944262038
-
Neural regulation of the hepatic circadian rhythm
-
Shibata, S. 2004. Neural regulation of the hepatic circadian rhythm. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 280: 901-909.
-
(2004)
Anat. Rec. A Discov. Mol. Cell. Evol. Biol.
, vol.280
, pp. 901-909
-
-
Shibata, S.1
-
16
-
-
0035911803
-
Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake
-
Buijs, R.M. et al. 2001. Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J. Comp. Neurol. 431: 405-423.
-
(2001)
J. Comp. Neurol.
, vol.431
, pp. 405-423
-
-
Buijs, R.M.1
-
17
-
-
0036839976
-
Selective parasympathetic innervation of subcutaneous and intra-abdominal fat-functional implications
-
Kreier, F. et al. 2002. Selective parasympathetic innervation of subcutaneous and intra-abdominal fat-functional implications. J. Clin. Invest. 110: 1243-1250.
-
(2002)
J. Clin. Invest.
, vol.110
, pp. 1243-1250
-
-
Kreier, F.1
-
18
-
-
43049096057
-
Adipokines and the peripheral and neural control of energy balance
-
Ahima, R.S. & M.A. Lazar. 2008. Adipokines and the peripheral and neural control of energy balance. Mol. Endocrinol. 22: 1023-1031.
-
(2008)
Mol. Endocrinol.
, vol.22
, pp. 1023-1031
-
-
Ahima, R.S.1
Lazar, M.A.2
-
19
-
-
42249107130
-
Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies
-
Gerozissis, K. 2008. Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies. Eur. J. Pharmacol. 585: 38-49.
-
(2008)
Eur. J. Pharmacol.
, vol.585
, pp. 38-49
-
-
Gerozissis, K.1
-
20
-
-
42549165949
-
Central nervous system regulation of energy metabolism: ghrelin versus leptin
-
Nogueiras, R., M.H. Tschop & J.M. Zigman. 2008. Central nervous system regulation of energy metabolism: ghrelin versus leptin. Ann. N.Y. Acad. Sci. 1126: 14-19.
-
(2008)
Ann. N.Y. Acad. Sci.
, vol.1126
, pp. 14-19
-
-
Nogueiras, R.1
Tschop, M.H.2
Zigman, J.M.3
-
21
-
-
0032798663
-
A suprachiasmatic nucleus generated rhythm in basal glucose concentrations
-
La Fleur, S.E. et al. 1999. A suprachiasmatic nucleus generated rhythm in basal glucose concentrations. J. Neuroendocrinol. 11: 643-652.
-
(1999)
J. Neuroendocrinol.
, vol.11
, pp. 643-652
-
-
La Fleur, S.E.1
-
22
-
-
0023463777
-
Role of SCN in daily rhythms of plasma glucose, FFA, insulin and glucagon
-
Yamamoto, H., K. Nagai & H. Nakagawa. 1987. Role of SCN in daily rhythms of plasma glucose, FFA, insulin and glucagon. Chronobiol. Int. 4: 483-491.
-
(1987)
Chronobiol. Int.
, vol.4
, pp. 483-491
-
-
Yamamoto, H.1
Nagai, K.2
Nakagawa, H.3
-
23
-
-
0013293960
-
The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels
-
Kalsbeek, A. et al. 2001. The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 142: 2677-2685.
-
(2001)
Endocrinology
, vol.142
, pp. 2677-2685
-
-
Kalsbeek, A.1
-
24
-
-
0030800739
-
Circadian oscillation of a mammalian homologue of the Drosophila period gene
-
Tei, H. et al. 1997. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389: 512-516.
-
(1997)
Nature
, vol.389
, pp. 512-516
-
-
Tei, H.1
-
25
-
-
0033637383
-
Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
-
Damiola, F. et al. 2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14: 2950-2961.
-
(2000)
Genes Dev.
, vol.14
, pp. 2950-2961
-
-
Damiola, F.1
-
26
-
-
0036138898
-
Circadian rhythms in isolated brain regions
-
Abe, M. et al. 2002. Circadian rhythms in isolated brain regions. J. Neurosci. 22: 350-356.
-
(2002)
J. Neurosci.
, vol.22
, pp. 350-356
-
-
Abe, M.1
-
27
-
-
0017887884
-
Effect of bilateral lesions of the suprachiasmatic nuclei on the circadian rhythm of food-intake
-
Nagai, K. et al. 1978. Effect of bilateral lesions of the suprachiasmatic nuclei on the circadian rhythm of food-intake. Brain Res. 142: 384-389.
-
(1978)
Brain Res
, vol.142
, pp. 384-389
-
-
Nagai, K.1
-
28
-
-
11144353910
-
PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
-
Yoo, S.H. et al. 2004. PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA 101: 5339-5346.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 5339-5346
-
-
Yoo, S.H.1
-
29
-
-
0037006795
-
Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus
-
Akhtar, R.A. et al. 2002. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12: 540-550.
-
(2002)
Curr. Biol.
, vol.12
, pp. 540-550
-
-
Akhtar, R.A.1
-
30
-
-
66349107101
-
Harmonics of circadian gene transcription in mammals
-
Hughes, M.E. et al. 2009. Harmonics of circadian gene transcription in mammals. PLoS Genet. 5: e1000442.
-
(2009)
PLoS Genet
, vol.5
-
-
Hughes, M.E.1
-
31
-
-
33847632469
-
Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation
-
Miller, B.H. et al. 2007. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc. Natl. Acad. Sci. USA 104: 3342-3347.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 3342-3347
-
-
Miller, B.H.1
-
32
-
-
16744364055
-
Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes
-
Oishi, K. et al. 2003. Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J. Biol. Chem. 278: 41519-41527.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 41519-41527
-
-
Oishi, K.1
-
33
-
-
33646561211
-
Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse liver
-
Oishi, K. et al. 2005. Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse liver. DNA Res. 12: 191-202.
-
(2005)
DNA Res
, vol.12
, pp. 191-202
-
-
Oishi, K.1
-
34
-
-
0036682099
-
A transcription factor response element for gene expression during circadian night
-
Ueda, H.R. et al. 2002. A transcription factor response element for gene expression during circadian night. Nature 418: 534-539.
-
(2002)
Nature
, vol.418
, pp. 534-539
-
-
Ueda, H.R.1
-
35
-
-
4544362674
-
Mammalian circadian biology: elucidating genome-wide levels of temporal organization
-
Lowrey, P.L. & J.S. Takahashi. 2004. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5: 407-441.
-
(2004)
Annu. Rev. Genomics Hum. Genet.
, vol.5
, pp. 407-441
-
-
Lowrey, P.L.1
Takahashi, J.S.2
-
36
-
-
33747157406
-
Nuclear receptor expression links the circadian clock to metabolism
-
Yang, X. et al. 2006. Nuclear receptor expression links the circadian clock to metabolism. Cell 126: 801-810.
-
(2006)
Cell
, vol.126
, pp. 801-810
-
-
Yang, X.1
-
37
-
-
33744515807
-
Circadian orchestration of the hepatic proteome
-
Reddy, A.B. et al. 2006. Circadian orchestration of the hepatic proteome. Curr. Biol. 16: 1107-1115.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1107-1115
-
-
Reddy, A.B.1
-
38
-
-
33750026895
-
Lack of food anticipation in Per2 mutant mice
-
Feillet, C.A. et al. 2006. Lack of food anticipation in Per2 mutant mice. Curr. Biol. 16: 2016-2022.
-
(2006)
Curr. Biol.
, vol.16
, pp. 2016-2022
-
-
Feillet, C.A.1
-
39
-
-
0035910387
-
Entrainment of the circadian clock in the liver by feeding
-
Stokkan, K.A. et al. 2001. Entrainment of the circadian clock in the liver by feeding. Science 291: 490-493.
-
(2001)
Science
, vol.291
, pp. 490-493
-
-
Stokkan, K.A.1
-
40
-
-
77952487491
-
Interactions between light, mealtime and calorie restriction to control daily timing in mammals
-
Challet, E. 2010. Interactions between light, mealtime and calorie restriction to control daily timing in mammals. J. Comp. Physiol. B 180: 631-644.
-
(2010)
J. Comp. Physiol. B
, vol.180
, pp. 631-644
-
-
Challet, E.1
-
41
-
-
0024345665
-
Distribution of insulin receptor-like immunoreactivity in the rat forebrain
-
Unger, J. et al. 1989. Distribution of insulin receptor-like immunoreactivity in the rat forebrain. Neuroscience 31: 143-157.
-
(1989)
Neuroscience
, vol.31
, pp. 143-157
-
-
Unger, J.1
-
42
-
-
29044434688
-
Expression of ghrelin receptor mRNA in the rat and the mouse brain
-
Zigman, J.M. et al. 2006. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol. 494: 528-548.
-
(2006)
J. Comp. Neurol.
, vol.494
, pp. 528-548
-
-
Zigman, J.M.1
-
43
-
-
0031963436
-
Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus
-
Hakansson, M.L. et al. 1998. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J. Neurosci. 18: 559-572.
-
(1998)
J. Neurosci.
, vol.18
, pp. 559-572
-
-
Hakansson, M.L.1
-
44
-
-
0344450708
-
A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction
-
Clement, K. et al. 1998. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392: 398-401.
-
(1998)
Nature
, vol.392
, pp. 398-401
-
-
Clement, K.1
-
45
-
-
0027086837
-
Advance shift of feeding circadian rhythm induced by obesity progression in Zucker rats
-
Fukagawa, K. et al. 1992. Advance shift of feeding circadian rhythm induced by obesity progression in Zucker rats. Am. J. Physiol. 263: R1169-R1175.
-
(1992)
Am. J. Physiol.
, vol.263
-
-
Fukagawa, K.1
-
46
-
-
0032104653
-
Circadian rhythms in the Zucker obese rat: assessment and intervention
-
Mistlberger, R.E., H. Lukman & B.G. Nadeau. 1998. Circadian rhythms in the Zucker obese rat: assessment and intervention. Appetite 30: 255-267.
-
(1998)
Appetite
, vol.30
, pp. 255-267
-
-
Mistlberger, R.E.1
Lukman, H.2
Nadeau, B.G.3
-
47
-
-
0028791774
-
Circadian rhythms of temperature and activity in obese and lean Zucker rats
-
Murakami, D.M., B.A. Horwitz & C.A. Fuller. 1995. Circadian rhythms of temperature and activity in obese and lean Zucker rats. Am. J. Physiol. 269: R1038-R1043.
-
(1995)
Am. J. Physiol.
, vol.269
-
-
Murakami, D.M.1
Horwitz, B.A.2
Fuller, C.A.3
-
48
-
-
33847292902
-
Night eating and obesity in the EP3R-deficient mouse
-
Sanchez-Alavez, M. et al. 2007. Night eating and obesity in the EP3R-deficient mouse. Proc. Natl. Acad. Sci. USA 104: 3009-3014.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 3009-3014
-
-
Sanchez-Alavez, M.1
-
49
-
-
0024532715
-
Sleep patterns in the genetically obese Zucker rat: effect of acarbose treatment
-
Danguir, J. 1989. Sleep patterns in the genetically obese Zucker rat: effect of acarbose treatment. Am. J. Physiol. 256: R281-R283.
-
(1989)
Am. J. Physiol.
, vol.256
-
-
Danguir, J.1
-
50
-
-
0031933051
-
Mechanism controlling sleep organization of the obese Zucker rats
-
Megirian, D., J. Dmochowski & G.A. Farkas. 1998. Mechanism controlling sleep organization of the obese Zucker rats. J. Appl. Physiol. 84: 253-256.
-
(1998)
J. Appl. Physiol.
, vol.84
, pp. 253-256
-
-
Megirian, D.1
Dmochowski, J.2
Farkas, G.A.3
-
51
-
-
4544289814
-
Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver
-
Kudo, T. et al. 2004. Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver. Diabetologia 47: 1425-1436.
-
(2004)
Diabetologia
, vol.47
, pp. 1425-1436
-
-
Kudo, T.1
-
53
-
-
57749116199
-
Sleep-wake regulation is altered in leptin-resistant (db/db) genetically obese and diabetic mice
-
Laposky, A.D. et al. 2008. Sleep-wake regulation is altered in leptin-resistant (db/db) genetically obese and diabetic mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295: R2059-R2066.
-
(2008)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.295
-
-
Laposky, A.D.1
-
54
-
-
76749168527
-
Light responses of the circadian system in leptin deficient mice
-
Sans-Fuentes, M.A., A. Diez-Noguera & T. Cambras. 2010. Light responses of the circadian system in leptin deficient mice. Physiol. Behav. 99: 487-494.
-
(2010)
Physiol. Behav.
, vol.99
, pp. 487-494
-
-
Sans-Fuentes, M.A.1
Diez-Noguera, A.2
Cambras, T.3
-
55
-
-
79953227373
-
Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice
-
Ando, H. et al. 2011. Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice. Endocrinology 152: 1347-1354.
-
(2011)
Endocrinology
, vol.152
, pp. 1347-1354
-
-
Ando, H.1
-
56
-
-
27844565269
-
Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue
-
Ando, H. et al. 2005. Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 146: 5631-5636.
-
(2005)
Endocrinology
, vol.146
, pp. 5631-5636
-
-
Ando, H.1
-
57
-
-
61849092631
-
Obesity alters circadian expressions of molecular clock genes in the brainstem
-
Kaneko, K. et al. 2009. Obesity alters circadian expressions of molecular clock genes in the brainstem. Brain Res. 1263: 58-68.
-
(2009)
Brain Res
, vol.1263
, pp. 58-68
-
-
Kaneko, K.1
-
58
-
-
0031930804
-
Dietary fat, genetic predisposition, and obesity: lessons from animal models
-
West, D.B. & B. York. 1998. Dietary fat, genetic predisposition, and obesity: lessons from animal models. Am. J. Clin. Nutr. 67: 505S-512S.
-
(1998)
Am. J. Clin. Nutr.
, vol.67
-
-
West, D.B.1
York, B.2
-
59
-
-
0026534940
-
Development of dietary obesity in rats: influence of amount and composition of dietary fat
-
Hill, J.O. et al. 1992. Development of dietary obesity in rats: influence of amount and composition of dietary fat. Int. J. Obes. Relat. Metab. Disord. 16: 321-333.
-
(1992)
Int. J. Obes. Relat. Metab. Disord.
, vol.16
, pp. 321-333
-
-
Hill, J.O.1
-
60
-
-
0034030876
-
High-fat diet feeding reduces the diurnal variation of plasma leptin concentration in rats
-
Cha, M.C., C.J. Chou & C.N. Boozer. 2000. High-fat diet feeding reduces the diurnal variation of plasma leptin concentration in rats. Metabolism 49: 503-507.
-
(2000)
Metabolism
, vol.49
, pp. 503-507
-
-
Cha, M.C.1
Chou, C.J.2
Boozer, C.N.3
-
61
-
-
0033009882
-
High-fat meals reduce 24-h circulating leptin concentrations in women
-
Havel, P.J. et al. 1999. High-fat meals reduce 24-h circulating leptin concentrations in women. Diabetes 48: 334-341.
-
(1999)
Diabetes
, vol.48
, pp. 334-341
-
-
Havel, P.J.1
-
62
-
-
35548930677
-
High-fat diet disrupts behavioral and molecular circadian rhythms in mice
-
Kohsaka, A. et al. 2007. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6: 414-421.
-
(2007)
Cell Metab
, vol.6
, pp. 414-421
-
-
Kohsaka, A.1
-
63
-
-
31944440254
-
Sleep is increased in mice with obesity induced by high-fat food
-
Jenkins, J.B. et al. 2006. Sleep is increased in mice with obesity induced by high-fat food. Physiol. Behav. 87: 255-262.
-
(2006)
Physiol. Behav.
, vol.87
, pp. 255-262
-
-
Jenkins, J.B.1
-
64
-
-
0030920352
-
Influences of fat and carbohydrate on postprandial sleepiness, mood, and hormones
-
Wells, A.S. et al. 1997. Influences of fat and carbohydrate on postprandial sleepiness, mood, and hormones. Physiol. Behav. 61: 679-686.
-
(1997)
Physiol. Behav.
, vol.61
, pp. 679-686
-
-
Wells, A.S.1
-
65
-
-
57649207949
-
High-fat feeding alters the clock synchronization to light
-
Mendoza, J., P. Pevet & E. Challet. 2008. High-fat feeding alters the clock synchronization to light. J. Physiol. 586: 5901-5910.
-
(2008)
J. Physiol.
, vol.586
, pp. 5901-5910
-
-
Mendoza, J.1
Pevet, P.2
Challet, E.3
-
66
-
-
79955087906
-
An approximation to the temporal order in endogenous circadian rhythms of genes implicated in human adipose tissue metabolism
-
Garaulet, M. et al. 2011. An approximation to the temporal order in endogenous circadian rhythms of genes implicated in human adipose tissue metabolism. J. Cell Physiol. 226: 2075-2080.
-
(2011)
J. Cell Physiol.
, vol.226
, pp. 2075-2080
-
-
Garaulet, M.1
-
67
-
-
79959455661
-
Rhythmic diurnal gene expression in human adipose tissue from individuals who are lean, overweight, and type 2 diabetic
-
Otway, D.T. et al. 2011. Rhythmic diurnal gene expression in human adipose tissue from individuals who are lean, overweight, and type 2 diabetic. Diabetes 60: 1577-1581.
-
(2011)
Diabetes
, vol.60
, pp. 1577-1581
-
-
Otway, D.T.1
-
68
-
-
14044264801
-
BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
-
Rudic, R.D. et al. 2004. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2: e377.
-
(2004)
PLoS Biol
, vol.2
-
-
Rudic, R.D.1
-
69
-
-
58149464684
-
High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver
-
Barnea, M., Z. Madar & O. Froy. 2009. High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver. Endocrinology 150: 161-168.
-
(2009)
Endocrinology
, vol.150
, pp. 161-168
-
-
Barnea, M.1
Madar, Z.2
Froy, O.3
-
70
-
-
33750099570
-
High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues
-
Yanagihara, H. et al. 2006. High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues. Chronobiol. Int. 23: 905-914.
-
(2006)
Chronobiol. Int.
, vol.23
, pp. 905-914
-
-
Yanagihara, H.1
-
71
-
-
76749162708
-
Abnormal expressions of circadian-clock and circadian clock-controlled genes in the livers and kidneys of long-term, high-fat-diet-treated mice
-
Hsieh, M.C. et al. 2010. Abnormal expressions of circadian-clock and circadian clock-controlled genes in the livers and kidneys of long-term, high-fat-diet-treated mice. Int. J. Obes. (Lond) 34: 227-239.
-
(2010)
Int. J. Obes. (Lond)
, vol.34
, pp. 227-239
-
-
Hsieh, M.C.1
-
72
-
-
20844461135
-
Obesity and metabolic syndrome in circadian Clock mutant mice
-
Turek, F.W. et al. 2005. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308: 1043-1045.
-
(2005)
Science
, vol.308
, pp. 1043-1045
-
-
Turek, F.W.1
-
73
-
-
77954590348
-
CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2
-
Doi, R., K. Oishi & N. Ishida. 2010. CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2. J. Biol. Chem. 285: 22114-22121.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 22114-22121
-
-
Doi, R.1
Oishi, K.2
Ishida, N.3
-
74
-
-
35148870598
-
Metabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues
-
Kennaway, D.J. et al. 2007. Metabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293: R1528-R1537.
-
(2007)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.293
-
-
Kennaway, D.J.1
-
75
-
-
29344452934
-
Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice
-
Oishi, K. et al. 2006. Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice. FEBS Lett. 580: 127-130.
-
(2006)
FEBS Lett
, vol.580
, pp. 127-130
-
-
Oishi, K.1
-
76
-
-
34447579941
-
Attenuating effect of clock mutation on triglyceride contents in the ICR mouse liver under a high-fat diet
-
Kudo, T. et al. 2007. Attenuating effect of clock mutation on triglyceride contents in the ICR mouse liver under a high-fat diet. J. Biol. Rhythms 22: 312-323.
-
(2007)
J. Biol. Rhythms
, vol.22
, pp. 312-323
-
-
Kudo, T.1
-
77
-
-
38349078243
-
Clock mutation facilitates accumulation of cholesterol in the liver of mice fed a cholesterol and/or cholic acid diet
-
Kudo, T. et al. 2008. Clock mutation facilitates accumulation of cholesterol in the liver of mice fed a cholesterol and/or cholic acid diet. Am. J. Physiol. Endocrinol. Metab. 294: E120-130.
-
(2008)
Am. J. Physiol. Endocrinol. Metab.
, vol.294
-
-
Kudo, T.1
-
78
-
-
33746603912
-
CLOCK is involved in obesity-induced disordered fibrinolysis in ob/ob mice by regulating PAI-1 gene expression
-
Oishi, K. et al. 2006. CLOCK is involved in obesity-induced disordered fibrinolysis in ob/ob mice by regulating PAI-1 gene expression. J. Thromb. Haemost. 4: 1774-1780.
-
(2006)
J. Thromb. Haemost.
, vol.4
, pp. 1774-1780
-
-
Oishi, K.1
-
79
-
-
24744470282
-
Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis
-
Shimba, S. et al. 2005. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc. Natl. Acad. Sci. USA 102: 12071-12076.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 12071-12076
-
-
Shimba, S.1
-
80
-
-
54449085416
-
Physiological significance of a peripheral tissue circadian clock
-
Lamia, K.A., K.F. Storch & C.J. Weitz. 2008. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. USA 105: 15172-15177.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 15172-15177
-
-
Lamia, K.A.1
Storch, K.F.2
Weitz, C.J.3
-
81
-
-
35448972542
-
Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes
-
Woon, P.Y. et al. 2007. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc. Natl. Acad. Sci. USA 104: 14412-14417.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 14412-14417
-
-
Woon, P.Y.1
-
82
-
-
42149170517
-
Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man
-
Scott, E.M., A.M. Carter & P.J. Grant. 2008. Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int. J. Obes. (Lond) 32: 658-662.
-
(2008)
Int. J. Obes. (Lond)
, vol.32
, pp. 658-662
-
-
Scott, E.M.1
Carter, A.M.2
Grant, P.J.3
-
83
-
-
45749158901
-
Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity
-
Sookoian, S. et al. 2008. Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am. J. Clin. Nutr. 87: 1606-1615.
-
(2008)
Am. J. Clin. Nutr.
, vol.87
, pp. 1606-1615
-
-
Sookoian, S.1
-
84
-
-
79953323827
-
An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice
-
Sadacca, L.A. et al. 2011. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54: 120-124.
-
(2011)
Diabetologia
, vol.54
, pp. 120-124
-
-
Sadacca, L.A.1
-
85
-
-
77954848215
-
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
-
Marcheva, B. et al. 2010. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466: 627-631.
-
(2010)
Nature
, vol.466
, pp. 627-631
-
-
Marcheva, B.1
-
86
-
-
66449103104
-
The role of mPer2 clock gene in glucocorticoid and feeding rhythms
-
Yang, S. et al. 2009. The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 150: 2153-2160.
-
(2009)
Endocrinology
, vol.150
, pp. 2153-2160
-
-
Yang, S.1
-
87
-
-
78049437320
-
PER2 controls lipid metabolism by direct regulation of PPARgamma
-
Grimaldi, B. et al. 2010. PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab. 12: 509-520.
-
(2010)
Cell Metab
, vol.12
, pp. 509-520
-
-
Grimaldi, B.1
-
88
-
-
33745727073
-
Impaired daily glucocorticoid rhythm in Per1 (Brd) mice
-
Dallmann, R. et al. 2006. Impaired daily glucocorticoid rhythm in Per1 (Brd) mice. J. Comp. Physiol. A 192: 769-775.
-
(2006)
J. Comp. Physiol. A
, vol.192
, pp. 769-775
-
-
Dallmann, R.1
-
89
-
-
77954965008
-
Altered body mass regulation in male mPeriod mutant mice on high-fat diet
-
Dallmann, R. & D.R. Weaver. 2010. Altered body mass regulation in male mPeriod mutant mice on high-fat diet. Chronobiol. Int. 27: 1317-1328.
-
(2010)
Chronobiol. Int.
, vol.27
, pp. 1317-1328
-
-
Dallmann, R.1
Weaver, D.R.2
-
90
-
-
0035951788
-
Transcriptional regulation of apolipoprotein C-III gene expression by the orphan nuclear receptor RORalpha
-
Raspe, E. et al. 2001. Transcriptional regulation of apolipoprotein C-III gene expression by the orphan nuclear receptor RORalpha. J. Biol. Chem. 276: 2865-2871.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 2865-2871
-
-
Raspe, E.1
-
91
-
-
4344668155
-
RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR
-
Lau, P. et al. 2004. RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR. J. Biol. Chem. 279: 36828-36840.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 36828-36840
-
-
Lau, P.1
-
92
-
-
0141621135
-
The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation
-
Fontaine, C. et al. 2003. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation. J. Biol. Chem. 278: 37672-37680.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 37672-37680
-
-
Fontaine, C.1
-
93
-
-
41149132147
-
Bifunctional role of Rev-erbalpha in adipocyte differentiation
-
Wang, J. & M.A. Lazar. 2008. Bifunctional role of Rev-erbalpha in adipocyte differentiation. Mol. Cell. Biol. 28: 2213-2220.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 2213-2220
-
-
Wang, J.1
Lazar, M.A.2
-
94
-
-
70349764508
-
REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis
-
Le Martelot, G. et al. 2009. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 7: e1000181.
-
(2009)
PLoS Biol
, vol.7
-
-
Le Martelot, G.1
-
95
-
-
0036906591
-
Identification of Rev-erbalpha as a physiological repressor of apoC-III gene transcription
-
Raspe, E. et al. 2002. Identification of Rev-erbalpha as a physiological repressor of apoC-III gene transcription. J. Lipid Res. 43: 2172-2179.
-
(2002)
J. Lipid Res.
, vol.43
, pp. 2172-2179
-
-
Raspe, E.1
-
96
-
-
76749139528
-
The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors
-
Schmutz, I. et al. 2010. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24: 345-357.
-
(2010)
Genes Dev
, vol.24
, pp. 345-357
-
-
Schmutz, I.1
-
97
-
-
0037316406
-
Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA
-
Baggs, J.E. & C.B. Green. 2003. Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA. Curr. Biol. 13: 189-198.
-
(2003)
Curr. Biol.
, vol.13
, pp. 189-198
-
-
Baggs, J.E.1
Green, C.B.2
-
98
-
-
34547434830
-
Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity
-
Green, C.B. et al. 2007. Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc. Natl. Acad. Sci. USA 104: 9888-9893.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 9888-9893
-
-
Green, C.B.1
-
99
-
-
79952148685
-
Disruption of circadian clocks has ramifications for metabolism, brain, and behavior
-
Karatsoreos, I.N. et al. 2011. Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc. Natl. Acad. Sci. USA 108: 1657-1662.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 1657-1662
-
-
Karatsoreos, I.N.1
-
100
-
-
34247849230
-
Disturbed diurnal rhythm alters gene expression and exacerbates cardiovascular disease with rescue by resynchronization
-
Martino, T.A. et al. 2007. Disturbed diurnal rhythm alters gene expression and exacerbates cardiovascular disease with rescue by resynchronization. Hypertension 49: 1104-1113.
-
(2007)
Hypertension
, vol.49
, pp. 1104-1113
-
-
Martino, T.A.1
-
101
-
-
63149163425
-
Adverse metabolic and cardiovascular consequences of circadian misalignment
-
Scheer, F.A. et al. 2009. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. USA 106: 4453-4458.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 4453-4458
-
-
Scheer, F.A.1
-
102
-
-
78649864368
-
Light at night increases body mass by shifting the time of food intake
-
Fonken, L.K. et al. 2010. Light at night increases body mass by shifting the time of food intake. Proc. Natl. Acad. Sci. USA 107: 18664-18669.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 18664-18669
-
-
Fonken, L.K.1
-
103
-
-
23044444261
-
Repeated light-dark shifts speed up body weight gain in male F344 rats
-
Tsai, L.L. et al. 2005. Repeated light-dark shifts speed up body weight gain in male F344 rats. Am. J. Physiol. Endocrinol. Metab. 289: E212-E217.
-
(2005)
Am. J. Physiol. Endocrinol. Metab.
, vol.289
-
-
Tsai, L.L.1
-
104
-
-
29044432317
-
Combined effects of high-fat feeding and circadian desynchronization
-
Bartol-Munier, I. et al. 2006. Combined effects of high-fat feeding and circadian desynchronization. Int. J. Obes. (Lond) 30: 60-67.
-
(2006)
Int. J. Obes. (Lond)
, vol.30
, pp. 60-67
-
-
Bartol-Munier, I.1
-
105
-
-
69449093818
-
Proteomic changes in the hypothalamus and retroperitoneal fat from male F344 rats subjected to repeated light-dark shifts
-
Mishra, A. et al. 2009. Proteomic changes in the hypothalamus and retroperitoneal fat from male F344 rats subjected to repeated light-dark shifts. Proteomics 9: 4017-4028.
-
(2009)
Proteomics
, vol.9
, pp. 4017-4028
-
-
Mishra, A.1
-
106
-
-
8244255922
-
Shift work and risk factors for coronary heart disease in Japanese blue-collar workers: serum lipids and anthropometric characteristics
-
Nakamura, K. et al. 1997. Shift work and risk factors for coronary heart disease in Japanese blue-collar workers: serum lipids and anthropometric characteristics. Occup. Med. (Lond) 47: 142-146.
-
(1997)
Occup. Med. (Lond)
, vol.47
, pp. 142-146
-
-
Nakamura, K.1
-
107
-
-
0042427700
-
Metabolic disturbances in male workers with rotating three-shift work. Results of the WOLF study
-
Karlsson, B.H. et al. 2003. Metabolic disturbances in male workers with rotating three-shift work. Results of the WOLF study. Int. Arch. Occup. Environ. Health 76: 424-430.
-
(2003)
Int. Arch. Occup. Environ. Health
, vol.76
, pp. 424-430
-
-
Karlsson, B.H.1
-
108
-
-
33846995052
-
Effects of rotating shift work on biomarkers of metabolic syndrome and inflammation
-
Sookoian, S. et al. 2007. Effects of rotating shift work on biomarkers of metabolic syndrome and inflammation. J. Intern. Med. 261: 285-292.
-
(2007)
J. Intern. Med.
, vol.261
, pp. 285-292
-
-
Sookoian, S.1
-
109
-
-
69949097413
-
Shift work is a risk factor for increased total cholesterol level: a 14-year prospective cohort study in 6886 male workers
-
Dochi, M. et al. 2009. Shift work is a risk factor for increased total cholesterol level: a 14-year prospective cohort study in 6886 male workers. Occup. Environ. Med. 66: 592-597.
-
(2009)
Occup. Environ. Med.
, vol.66
, pp. 592-597
-
-
Dochi, M.1
-
110
-
-
0242491850
-
Effect of shift work on body mass index: results of a study performed in 319 glucose-tolerant men working in a Southern Italian industry
-
Di Lorenzo, L. et al. 2003. Effect of shift work on body mass index: results of a study performed in 319 glucose-tolerant men working in a Southern Italian industry. Int. J. Obes. Relat. Metab. Disord. 27: 1353-1358.
-
(2003)
Int. J. Obes. Relat. Metab. Disord.
, vol.27
, pp. 1353-1358
-
-
Di Lorenzo, L.1
-
111
-
-
33646833075
-
Long-term longitudinal study on the relationship between alternating shift work and the onset of diabetes mellitus in male Japanese workers
-
Suwazono, Y. et al. 2006. Long-term longitudinal study on the relationship between alternating shift work and the onset of diabetes mellitus in male Japanese workers. J. Occup. Environ. Med. 48: 455-461.
-
(2006)
J. Occup. Environ. Med.
, vol.48
, pp. 455-461
-
-
Suwazono, Y.1
-
112
-
-
79952216554
-
Chronic sleep disturbance impairs glucose homeostasis in rats
-
Barf, R.P., P. Meerlo & A.J. Scheurink. 2010. Chronic sleep disturbance impairs glucose homeostasis in rats. Int. J. Endocrinol. 2010: 819414.
-
(2010)
Int. J. Endocrinol.
, vol.2010
, pp. 819414
-
-
Barf, R.P.1
Meerlo, P.2
Scheurink, A.J.3
-
113
-
-
67651180846
-
Effects of poor and short sleep on glucose metabolism and obesity risk
-
Spiegel, K. et al. 2009. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat. Rev. Endocrinol. 5: 253-261.
-
(2009)
Nat. Rev. Endocrinol.
, vol.5
, pp. 253-261
-
-
Spiegel, K.1
-
114
-
-
69949086915
-
Exposure to recurrent sleep restriction in the setting of high caloric intake and physical inactivity results in increased insulin resistance and reduced glucose tolerance
-
Nedeltcheva, A.V. et al. 2009. Exposure to recurrent sleep restriction in the setting of high caloric intake and physical inactivity results in increased insulin resistance and reduced glucose tolerance. J. Clin. Endocrinol. Metab. 94: 3242-3250.
-
(2009)
J. Clin. Endocrinol. Metab.
, vol.94
, pp. 3242-3250
-
-
Nedeltcheva, A.V.1
-
115
-
-
0035059442
-
Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus
-
Hara, R. et al. 2001. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6: 269-278.
-
(2001)
Genes Cells
, vol.6
, pp. 269-278
-
-
Hara, R.1
-
116
-
-
58149379032
-
The melanocortin-3 receptor is required for entrainment to meal intake
-
Sutton, G.M. et al. 2008. The melanocortin-3 receptor is required for entrainment to meal intake. J. Neurosci. 28: 12946-12955.
-
(2008)
J. Neurosci.
, vol.28
, pp. 12946-12955
-
-
Sutton, G.M.1
-
117
-
-
4143140748
-
Entrainment of the master circadian clock by scheduled feeding
-
Castillo, M.R. et al. 2004. Entrainment of the master circadian clock by scheduled feeding. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287: R551-R555.
-
(2004)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.287
-
-
Castillo, M.R.1
-
118
-
-
2342507112
-
Dissociation between adipose tissue signals, behavior and the food-entrained oscillator
-
Martinez-Merlos, M.T. et al. 2004. Dissociation between adipose tissue signals, behavior and the food-entrained oscillator. J. Endocrinol. 181: 53-63.
-
(2004)
J. Endocrinol.
, vol.181
, pp. 53-63
-
-
Martinez-Merlos, M.T.1
-
119
-
-
70350574819
-
Circadian timing of food intake contributes to weight gain
-
Arble, D.M. et al. 2009. Circadian timing of food intake contributes to weight gain. Obesity 17: 2100-2102.
-
(2009)
Obesity
, vol.17
, pp. 2100-2102
-
-
Arble, D.M.1
-
120
-
-
45049084269
-
Internal desynchronization in a model of night-work by forced activity in rats
-
Salgado-Delgado, R. et al. 2008. Internal desynchronization in a model of night-work by forced activity in rats. Neuroscience 154: 922-931.
-
(2008)
Neuroscience
, vol.154
, pp. 922-931
-
-
Salgado-Delgado, R.1
-
121
-
-
77149173754
-
Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work
-
Salgado-Delgado, R. et al. 2010. Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 151: 1019-1029.
-
(2010)
Endocrinology
, vol.151
, pp. 1019-1029
-
-
Salgado-Delgado, R.1
-
122
-
-
77949987573
-
Shift work: coping with the biological clock
-
Arendt, J. 2010. Shift work: coping with the biological clock. Occup. Med. (Lond) 60: 10-20.
-
(2010)
Occup. Med. (Lond)
, vol.60
, pp. 10-20
-
-
Arendt, J.1
-
123
-
-
58449108870
-
Circadian rhythm profiles in women with night eating syndrome
-
Goel, N. et al. 2009. Circadian rhythm profiles in women with night eating syndrome. J. Biol. Rhythms 24: 85-94.
-
(2009)
J. Biol. Rhythms
, vol.24
, pp. 85-94
-
-
Goel, N.1
-
124
-
-
34948867657
-
Night eating syndrome and nocturnal snacking: association with obesity, binge eating and psychological distress
-
Colles, S.L., J.B. Dixon & P.E. O'Brien. 2007. Night eating syndrome and nocturnal snacking: association with obesity, binge eating and psychological distress. Int. J. Obes. (Lond) 31: 1722-1730.
-
(2007)
Int. J. Obes. (Lond)
, vol.31
, pp. 1722-1730
-
-
Colles, S.L.1
Dixon, J.B.2
O'Brien, P.E.3
-
125
-
-
77953931699
-
The relationship of night eating to oral health and obesity in community dental clinic patients
-
Lundgren, J.D. et al. 2010. The relationship of night eating to oral health and obesity in community dental clinic patients. Gen. Dent. 58: e134-e139.
-
(2010)
Gen. Dent.
, vol.58
-
-
Lundgren, J.D.1
-
126
-
-
77956592366
-
Nocturnal eating: association with binge eating, obesity, and psychological distress
-
Striegel-Moore, R.H. et al. 2010. Nocturnal eating: association with binge eating, obesity, and psychological distress. Int. J. Eat. Disord. 43: 520-526.
-
(2010)
Int. J. Eat. Disord.
, vol.43
, pp. 520-526
-
-
Striegel-Moore, R.H.1
-
127
-
-
56749182098
-
The nuclear hormone receptor family round the clock
-
Teboul, M. et al. 2008. The nuclear hormone receptor family round the clock. Mol. Endocrinol. 22: 2573-2582.
-
(2008)
Mol. Endocrinol.
, vol.22
, pp. 2573-2582
-
-
Teboul, M.1
-
128
-
-
0029962860
-
A functional Rev-erb alpha responsive element located in the human Rev-erb alpha promoter mediates a repressing activity
-
Adelmant, G. et al. 1996. A functional Rev-erb alpha responsive element located in the human Rev-erb alpha promoter mediates a repressing activity. Proc. Natl. Acad. Sci. USA 93: 3553-3558.
-
(1996)
Proc. Natl. Acad. Sci. USA
, vol.93
, pp. 3553-3558
-
-
Adelmant, G.1
-
129
-
-
0037147205
-
Transcriptional regulation of human Rev-erbalpha gene expression by the orphan nuclear receptor retinoic acid-related orphan receptor alpha
-
Raspe, E. et al. 2002. Transcriptional regulation of human Rev-erbalpha gene expression by the orphan nuclear receptor retinoic acid-related orphan receptor alpha. J. Biol. Chem. 277: 49275-49281.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 49275-49281
-
-
Raspe, E.1
-
130
-
-
0030884232
-
Transcriptional regulation of apolipoprotein A-I gene expression by the nuclear receptor RORalpha
-
Vu-Dac, N. et al. 1997. Transcriptional regulation of apolipoprotein A-I gene expression by the nuclear receptor RORalpha. J. Biol. Chem. 272: 22401-22404.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 22401-22404
-
-
Vu-Dac, N.1
-
131
-
-
1842639533
-
Crystal structure of the human RORalpha Ligand binding domain in complex with cholesterol sulfate at 2.2 A
-
Kallen, J. et al. 2004. Crystal structure of the human RORalpha Ligand binding domain in complex with cholesterol sulfate at 2.2 A. J. Biol. Chem. 279: 14033-14038.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 14033-14038
-
-
Kallen, J.1
-
132
-
-
0032475854
-
The nuclear receptors peroxisome proliferator-activated receptor alpha and Rev-erbalpha mediate the species-specific regulation of apolipoprotein A-I expression by fibrates
-
Vu-Dac, N. et al. 1998. The nuclear receptors peroxisome proliferator-activated receptor alpha and Rev-erbalpha mediate the species-specific regulation of apolipoprotein A-I expression by fibrates. J. Biol. Chem. 273: 25713-25720.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 25713-25720
-
-
Vu-Dac, N.1
-
133
-
-
22344445394
-
The orphan nuclear receptor Rev-erbalpha recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene
-
Yin, L. & M.A. Lazar. 2005. The orphan nuclear receptor Rev-erbalpha recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol. Endocrinol. 19: 1452-1459.
-
(2005)
Mol. Endocrinol.
, vol.19
, pp. 1452-1459
-
-
Yin, L.1
Lazar, M.A.2
-
134
-
-
57749195091
-
Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology
-
Alenghat, T. et al. 2008. Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 456: 997-1000.
-
(2008)
Nature
, vol.456
, pp. 997-1000
-
-
Alenghat, T.1
-
135
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng, D. et al. 2011. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331: 1315-1319.
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
-
136
-
-
33744493616
-
Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects
-
Tsiftsoglou, A.S., A.I. Tsamadou & L.C. Papadopoulou. 2006. Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects. Pharmacol. Ther. 111: 327-345.
-
(2006)
Pharmacol. Ther.
, vol.111
, pp. 327-345
-
-
Tsiftsoglou, A.S.1
Tsamadou, A.I.2
Papadopoulou, L.C.3
-
137
-
-
3343024625
-
Reciprocal regulation of haem biosynthesis and the circadian clock in mammals
-
Kaasik, K. & C.C. Lee. 2004. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430: 467-471.
-
(2004)
Nature
, vol.430
, pp. 467-471
-
-
Kaasik, K.1
Lee, C.C.2
-
138
-
-
36849084107
-
Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta
-
Raghuram, S. et al. 2007. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat. Struct. Mol. Biol. 14: 1207-1213.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 1207-1213
-
-
Raghuram, S.1
-
139
-
-
0035368681
-
Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock
-
Zheng, B. et al. 2001. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105: 683-694.
-
(2001)
Cell
, vol.105
, pp. 683-694
-
-
Zheng, B.1
-
140
-
-
23944476164
-
Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha
-
Handschin, C. et al. 2005. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha. Cell 122: 505-515.
-
(2005)
Cell
, vol.122
, pp. 505-515
-
-
Handschin, C.1
-
141
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
Lin, J., C. Handschin & B.M. Spiegelman. 2005. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1: 361-370.
-
(2005)
Cell Metab
, vol.1
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
-
142
-
-
34249275727
-
Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism
-
Liu, C. et al. 2007. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447: 477-481.
-
(2007)
Nature
, vol.447
, pp. 477-481
-
-
Liu, C.1
-
143
-
-
0346668332
-
NPAS2: a gas-responsive transcription factor
-
Dioum, E.M. et al. 2002. NPAS2: a gas-responsive transcription factor. Science 298: 2385-2387.
-
(2002)
Science
, vol.298
, pp. 2385-2387
-
-
Dioum, E.M.1
-
144
-
-
0034106942
-
Regulation of lipid and lipoprotein metabolism by PPAR activators
-
Gervois, P. et al. 2000. Regulation of lipid and lipoprotein metabolism by PPAR activators. Clin. Chem. Lab. Med. 38: 3-11.
-
(2000)
Clin. Chem. Lab. Med.
, vol.38
, pp. 3-11
-
-
Gervois, P.1
-
145
-
-
67651102871
-
The role of PPARalpha in lipid metabolism and obesity: focusing on the effects of estrogen on PPARalpha actions
-
Yoon, M. 2009. The role of PPARalpha in lipid metabolism and obesity: focusing on the effects of estrogen on PPARalpha actions. Pharmacol. Res. 60: 151-159.
-
(2009)
Pharmacol. Res.
, vol.60
, pp. 151-159
-
-
Yoon, M.1
-
146
-
-
33746591126
-
Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock
-
Canaple, L. et al. 2006. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol. Endocrinol. 20: 1715-1727.
-
(2006)
Mol. Endocrinol.
, vol.20
, pp. 1715-1727
-
-
Canaple, L.1
-
147
-
-
15944382729
-
CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice
-
Oishi, K., H. Shirai & N. Ishida. 2005. CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochem. J. 386: 575-581.
-
(2005)
Biochem. J.
, vol.386
, pp. 575-581
-
-
Oishi, K.1
Shirai, H.2
Ishida, N.3
-
148
-
-
0032910829
-
Fibrates increase human REV-ERBalpha expression in liver via a novel peroxisome proliferator-activated receptor response element
-
Gervois, P. et al. 1999. Fibrates increase human REV-ERBalpha expression in liver via a novel peroxisome proliferator-activated receptor response element. Mol. Endocrinol. 13: 400-409.
-
(1999)
Mol. Endocrinol.
, vol.13
, pp. 400-409
-
-
Gervois, P.1
-
149
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver, P. et al. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829-839.
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
-
150
-
-
0029941669
-
Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor gamma
-
Sears, I.B. et al. 1996. Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor gamma. Mol. Cell. Biol. 16: 3410-3419.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 3410-3419
-
-
Sears, I.B.1
-
151
-
-
79551534130
-
Crosstalk between components of circadian and metabolic cycles in mammals
-
Asher, G. & U. Schibler. 2011. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 13: 125-137.
-
(2011)
Cell Metab
, vol.13
, pp. 125-137
-
-
Asher, G.1
Schibler, U.2
-
152
-
-
0035919479
-
Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
-
Rutter, J. et al. 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293: 510-514.
-
(2001)
Science
, vol.293
, pp. 510-514
-
-
Rutter, J.1
-
153
-
-
0014082605
-
The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver
-
Williamson, D.H., P. Lund & H.A. Krebs. 1967. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103: 514-527.
-
(1967)
Biochem. J.
, vol.103
, pp. 514-527
-
-
Williamson, D.H.1
Lund, P.2
Krebs, H.A.3
-
154
-
-
70350441907
-
The role of sirtuins in the control of metabolic homeostasis
-
Yu, J. & J. Auwerx. 2009. The role of sirtuins in the control of metabolic homeostasis. Ann. N.Y. Acad. Sci. 1173(Suppl 1): E10-E19.
-
(2009)
Ann. N.Y. Acad. Sci.
, vol.1173
, Issue.SUPPL. 1
-
-
Yu, J.1
Auwerx, J.2
-
155
-
-
34547914840
-
Sirtuins: the 'magnificent seven', function, metabolism and longevity
-
Dali-Youcef, N. et al. 2007. Sirtuins: the 'magnificent seven', function, metabolism and longevity. Ann. Med. 39: 335-345.
-
(2007)
Ann. Med.
, vol.39
, pp. 335-345
-
-
Dali-Youcef, N.1
-
156
-
-
3943054839
-
The Sir2 family of protein deacetylases
-
Blander, G. & L. Guarente. 2004. The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 73: 417-435.
-
(2004)
Annu. Rev. Biochem.
, vol.73
, pp. 417-435
-
-
Blander, G.1
Guarente, L.2
-
157
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher, G. et al. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
-
158
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Nakahata, Y. et al. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134: 329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
-
159
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Rodgers, J.T. et al. 2005. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434: 113-118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
-
160
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham, A. et al. 2009. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9: 327-338.
-
(2009)
Cell Metab
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
-
161
-
-
3042681042
-
Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma
-
Picard, F. et al. 2004. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429: 771-776.
-
(2004)
Nature
, vol.429
, pp. 771-776
-
-
Picard, F.1
-
162
-
-
78049281029
-
Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence
-
Villaret, A. et al. 2010. Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence. Diabetes 59: 2755-2763.
-
(2010)
Diabetes
, vol.59
, pp. 2755-2763
-
-
Villaret, A.1
-
163
-
-
0035098133
-
The role of fat depletion in the biological benefits of caloric restriction
-
Barzilai, N. & I. Gabriely. 2001. The role of fat depletion in the biological benefits of caloric restriction. J. Nutr. 131: 903S-906S.
-
(2001)
J. Nutr.
, vol.131
-
-
Barzilai, N.1
Gabriely, I.2
-
164
-
-
20844451123
-
AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism
-
Kahn, B.B. et al. 2005. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1: 15-25.
-
(2005)
Cell Metab
, vol.1
, pp. 15-25
-
-
Kahn, B.B.1
-
165
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
Canto, C. et al. 2009. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458: 1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
-
166
-
-
57049100909
-
Relationship between AMPK and the transcriptional balance of clock-related genes in skeletal muscle
-
Vieira, E. et al. 2008. Relationship between AMPK and the transcriptional balance of clock-related genes in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 295: E1032-E1037.
-
(2008)
Am. J. Physiol. Endocrinol. Metab.
, vol.295
-
-
Vieira, E.1
-
167
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia, K.A. et al. 2009. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326: 437-440.
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
-
168
-
-
34547127625
-
Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2
-
Um, J.H. et al. 2007. Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J. Biol. Chem. 282: 20794-20798.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 20794-20798
-
-
Um, J.H.1
-
169
-
-
79953672068
-
AMPK regulates circadian rhythms in a tissue- and isoform-specific manner
-
Um, J.H. et al. 2011. AMPK regulates circadian rhythms in a tissue- and isoform-specific manner. PLoS One 6: e18450.
-
(2011)
PLoS One
, vol.6
-
-
Um, J.H.1
-
170
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
-
Ramsey, K.M. et al. 2009. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324: 651-654.
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
-
171
-
-
65549118773
-
Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
-
Nakahata, Y. et al. 2009. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324: 654-657.
-
(2009)
Science
, vol.324
, pp. 654-657
-
-
Nakahata, Y.1
-
172
-
-
17144429302
-
Calorie restriction, SIRT1 and metabolism: understanding longevity
-
Bordone, L. & L. Guarente. 2005. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat. Rev. Mol. Cell. Biol. 6: 298-305.
-
(2005)
Nat. Rev. Mol. Cell. Biol.
, vol.6
, pp. 298-305
-
-
Bordone, L.1
Guarente, L.2
-
173
-
-
79251566511
-
Circadian clocks in human red blood cells
-
O'Neill, J.S. & A.B. Reddy. 2011. Circadian clocks in human red blood cells. Nature 469: 498-503.
-
(2011)
Nature
, vol.469
, pp. 498-503
-
-
O'Neill, J.S.1
Reddy, A.B.2
|