메뉴 건너뛰기




Volumn 243, Issue 1, 2011, Pages 40-60

Peptidoglycan: A critical activator of the mammalian immune system during infection and homeostasis

Author keywords

Nod like receptors; Nod1; Nod2; Peptidoglycan; Peptidoglycan recognition proteins; PGLYRP

Indexed keywords

CASPASE 12; CASPASE RECRUITMENT DOMAIN PROTEIN 15; CASPASE RECRUITMENT DOMAIN PROTEIN 4; PEPTIDOGLYCAN; PEPTIDOGLYCAN RECOGNITION PROTEIN; REACTIVE OXYGEN METABOLITE;

EID: 80052174103     PISSN: 01052896     EISSN: 1600065X     Source Type: Journal    
DOI: 10.1111/j.1600-065X.2011.01047.x     Document Type: Article
Times cited : (103)

References (201)
  • 1
    • 79952701515 scopus 로고    scopus 로고
    • Bacterial cell wall assembly: still an attractive antibacterial target
    • Bugg TD, Braddick D, Dowson CG, Roper DI. Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotechnol 2011;29:167-173.
    • (2011) Trends Biotechnol , vol.29 , pp. 167-173
    • Bugg, T.D.1    Braddick, D.2    Dowson, C.G.3    Roper, D.I.4
  • 2
    • 0015462556 scopus 로고
    • Peptidoglycan types of bacterial cell walls and their taxonomic implications
    • Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407-477.
    • (1972) Bacteriol Rev , vol.36 , pp. 407-477
    • Schleifer, K.H.1    Kandler, O.2
  • 3
    • 43149103657 scopus 로고    scopus 로고
    • Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity
    • Erbs G, et al. Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity. Chem Biol 2008;15:438-448.
    • (2008) Chem Biol , vol.15 , pp. 438-448
    • Erbs, G.1
  • 4
    • 77953305549 scopus 로고    scopus 로고
    • Review: mammalian peptidoglycan recognition proteins (PGRPs) in innate immunity
    • Dziarski R, Gupta D. Review: mammalian peptidoglycan recognition proteins (PGRPs) in innate immunity. Innate Immun 2010;16:168-174.
    • (2010) Innate Immun , vol.16 , pp. 168-174
    • Dziarski, R.1    Gupta, D.2
  • 5
    • 0034637543 scopus 로고    scopus 로고
    • Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth
    • Liu C, Gelius E, Liu G, Steiner H, Dziarski R. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth. J Biol Chem 2000;275:24490-24499.
    • (2000) J Biol Chem , vol.275 , pp. 24490-24499
    • Liu, C.1    Gelius, E.2    Liu, G.3    Steiner, H.4    Dziarski, R.5
  • 6
    • 33646850266 scopus 로고    scopus 로고
    • Peptidoglycan recognition proteins are a new class of human bactericidal proteins
    • Lu X, et al. Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J Biol Chem 2006;281:5895-5907.
    • (2006) J Biol Chem , vol.281 , pp. 5895-5907
    • Lu, X.1
  • 7
    • 0012722659 scopus 로고    scopus 로고
    • Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection
    • Girardin SE, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003;278:8869-8872.
    • (2003) J Biol Chem , vol.278 , pp. 8869-8872
    • Girardin, S.E.1
  • 8
    • 0142180157 scopus 로고    scopus 로고
    • Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2
    • Girardin SE, et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem 2003;278:41702-41708.
    • (2003) J Biol Chem , vol.278 , pp. 41702-41708
    • Girardin, S.E.1
  • 9
    • 0037458665 scopus 로고    scopus 로고
    • Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease
    • Inohara N, et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J Biol Chem 2003;278:5509-5512.
    • (2003) J Biol Chem , vol.278 , pp. 5509-5512
    • Inohara, N.1
  • 10
    • 0038615855 scopus 로고    scopus 로고
    • Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan
    • Girardin SE, et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 2003;300:1584-1587.
    • (2003) Science , vol.300 , pp. 1584-1587
    • Girardin, S.E.1
  • 11
    • 0038824980 scopus 로고    scopus 로고
    • An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid
    • Chamaillard M, et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 2003;4:702-707.
    • (2003) Nat Immunol , vol.4 , pp. 702-707
    • Chamaillard, M.1
  • 12
    • 17944380130 scopus 로고    scopus 로고
    • CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive Shigella flexneri
    • Girardin SE, et al. CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive Shigella flexneri. EMBO Rep 2001;2:736-742.
    • (2001) EMBO Rep , vol.2 , pp. 736-742
    • Girardin, S.E.1
  • 13
    • 33846526208 scopus 로고    scopus 로고
    • A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system
    • Boneca IG, et al. A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci USA 2007;104:997-1002.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 997-1002
    • Boneca, I.G.1
  • 14
    • 29644434743 scopus 로고    scopus 로고
    • Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells
    • Opitz B, et al. Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J Immunol 2006;176:484-490.
    • (2006) J Immunol , vol.176 , pp. 484-490
    • Opitz, B.1
  • 15
    • 79951496236 scopus 로고    scopus 로고
    • NOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis BCG in human macrophages
    • Brooks MN, et al. NOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis BCG in human macrophages. Cell Microbiol 2011;13:402-418.
    • (2011) Cell Microbiol , vol.13 , pp. 402-418
    • Brooks, M.N.1
  • 16
    • 77951073629 scopus 로고    scopus 로고
    • NOD2 and Toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis
    • Ferwerda G, et al. NOD2 and Toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog 2005;1:279-285.
    • (2005) PLoS Pathog , vol.1 , pp. 279-285
    • Ferwerda, G.1
  • 17
    • 27744606975 scopus 로고    scopus 로고
    • Nod1 participates in the innate immune response to Pseudomonas aeruginosa
    • Travassos LH, et al. Nod1 participates in the innate immune response to Pseudomonas aeruginosa. J Biol Chem 2005;280:36714-36718.
    • (2005) J Biol Chem , vol.280 , pp. 36714-36718
    • Travassos, L.H.1
  • 18
    • 46449093146 scopus 로고    scopus 로고
    • The cytosolic pattern recognition receptor NOD1 induces inflammatory interleukin-8 during Chlamydia trachomatis infection
    • Buchholz KR, Stephens RS. The cytosolic pattern recognition receptor NOD1 induces inflammatory interleukin-8 during Chlamydia trachomatis infection. Infect Immun 2008;76:3150-3155.
    • (2008) Infect Immun , vol.76 , pp. 3150-3155
    • Buchholz, K.R.1    Stephens, R.S.2
  • 19
    • 33646382812 scopus 로고    scopus 로고
    • Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum
    • Welter-Stahl L, et al. Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum. Cell Microbiol 2006;8:1047-1057.
    • (2006) Cell Microbiol , vol.8 , pp. 1047-1057
    • Welter-Stahl, L.1
  • 20
    • 4344699028 scopus 로고    scopus 로고
    • Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae
    • Opitz B, et al. Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem 2004;279: 36426-36432.
    • (2004) J Biol Chem , vol.279 , pp. 36426-36432
    • Opitz, B.1
  • 21
    • 72749098197 scopus 로고    scopus 로고
    • Internalization-dependent recognition of Mycobacterium avium ssp. paratuberculosis by intestinal epithelial cells
    • Pott J, Basler T, Duerr CU, Rohde M, Goethe R, Hornef MW. Internalization-dependent recognition of Mycobacterium avium ssp. paratuberculosis by intestinal epithelial cells. Cell Microbiol 2009;11:1802-1815.
    • (2009) Cell Microbiol , vol.11 , pp. 1802-1815
    • Pott, J.1    Basler, T.2    Duerr, C.U.3    Rohde, M.4    Goethe, R.5    Hornef, M.W.6
  • 22
    • 78649957904 scopus 로고    scopus 로고
    • Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model
    • Geddes K, et al. Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model. Infect Immun 2010;78:5107-5115.
    • (2010) Infect Immun , vol.78 , pp. 5107-5115
    • Geddes, K.1
  • 23
    • 70349433671 scopus 로고    scopus 로고
    • Role of Nod1 in mucosal dendritic cells during Salmonella pathogenicity island 1-independent Salmonella enterica serovar Typhimurium infection
    • Le Bourhis L, et al. Role of Nod1 in mucosal dendritic cells during Salmonella pathogenicity island 1-independent Salmonella enterica serovar Typhimurium infection. Infect Immun 2009;77:4480-4486.
    • (2009) Infect Immun , vol.77 , pp. 4480-4486
    • Le Bourhis, L.1
  • 24
    • 9244245293 scopus 로고    scopus 로고
    • Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island
    • Viala J, et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 2004;5:1166-1174.
    • (2004) Nat Immunol , vol.5 , pp. 1166-1174
    • Viala, J.1
  • 25
    • 76249086428 scopus 로고    scopus 로고
    • Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism
    • Allison CC, Kufer TA, Kremmer E, Kaparakis M, Ferrero RL. Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism. J Immunol 2009;183:8099-8109.
    • (2009) J Immunol , vol.183 , pp. 8099-8109
    • Allison, C.C.1    Kufer, T.A.2    Kremmer, E.3    Kaparakis, M.4    Ferrero, R.L.5
  • 26
    • 78049434748 scopus 로고    scopus 로고
    • Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells
    • Hutton ML, Kaparakis-Liaskos M, Turner L, Cardona A, Kwok T, Ferrero RL. Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells. Infect Immun 2010;78:4523-4531.
    • (2010) Infect Immun , vol.78 , pp. 4523-4531
    • Hutton, M.L.1    Kaparakis-Liaskos, M.2    Turner, L.3    Cardona, A.4    Kwok, T.5    Ferrero, R.L.6
  • 27
    • 35349031591 scopus 로고    scopus 로고
    • Helicobacter exploits integrin for type IV secretion and kinase activation
    • Kwok T, et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 2007;449:862-866.
    • (2007) Nature , vol.449 , pp. 862-866
    • Kwok, T.1
  • 28
    • 0028333611 scopus 로고
    • Expression cloning of a mammalian proton-coupled oligopeptide transporter
    • Fei YJ, et al. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 1994;368:563-566.
    • (1994) Nature , vol.368 , pp. 563-566
    • Fei, Y.J.1
  • 29
    • 0035011324 scopus 로고    scopus 로고
    • Colonic epithelial hPepT1 expression occurs in inflammatory bowel disease: transport of bacterial peptides influences expression of MHC class 1 molecules
    • Merlin D, et al. Colonic epithelial hPepT1 expression occurs in inflammatory bowel disease: transport of bacterial peptides influences expression of MHC class 1 molecules. Gastroenterology 2001;120:1666-1679.
    • (2001) Gastroenterology , vol.120 , pp. 1666-1679
    • Merlin, D.1
  • 31
    • 7644234401 scopus 로고    scopus 로고
    • hPepT1 transports muramyl dipeptide, activating NF-kappaB and stimulating IL-8 secretion in human colonic Caco2/bbe cells
    • Vavricka SR, et al. hPepT1 transports muramyl dipeptide, activating NF-kappaB and stimulating IL-8 secretion in human colonic Caco2/bbe cells. Gastroenterology 2004;127:1401-1409.
    • (2004) Gastroenterology , vol.127 , pp. 1401-1409
    • Vavricka, S.R.1
  • 32
    • 69949125920 scopus 로고    scopus 로고
    • pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling
    • Lee J, Tattoli I, Wojtal KA, Vavricka SR, Philpott DJ, Girardin SE. pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling. J Biol Chem 2009;284:23818-23829.
    • (2009) J Biol Chem , vol.284 , pp. 23818-23829
    • Lee, J.1    Tattoli, I.2    Wojtal, K.A.3    Vavricka, S.R.4    Philpott, D.J.5    Girardin, S.E.6
  • 33
    • 64249166480 scopus 로고    scopus 로고
    • Clathrin- and dynamin-dependent endocytic pathway regulates muramyl dipeptide internalization and NOD2 activation
    • Marina-Garcia N, et al. Clathrin- and dynamin-dependent endocytic pathway regulates muramyl dipeptide internalization and NOD2 activation. J Immunol 2009;182: 4321-4327.
    • (2009) J Immunol , vol.182 , pp. 4321-4327
    • Marina-Garcia, N.1
  • 34
    • 79955402781 scopus 로고    scopus 로고
    • The solute carrier family 15A4 regulates TLR9 and NOD1 functions in the innate immune system and promotes colitis in mice
    • Sasawatari S, et al. The solute carrier family 15A4 regulates TLR9 and NOD1 functions in the innate immune system and promotes colitis in mice. Gastroenterology 2011;140:1513-1525.
    • (2011) Gastroenterology , vol.140 , pp. 1513-1525
    • Sasawatari, S.1
  • 35
    • 79955048935 scopus 로고    scopus 로고
    • Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophil recruitment and protection against the pathogen
    • Hasegawa M, et al. Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophil recruitment and protection against the pathogen. J Immunol 2011;186:4872-4880.
    • (2011) J Immunol , vol.186 , pp. 4872-4880
    • Hasegawa, M.1
  • 36
    • 79953318804 scopus 로고    scopus 로고
    • NOD-like receptor activation by outer membrane vesicles from Vibrio cholerae non-O1 non-O139 strains is modulated by the quorum-sensing regulator HapR
    • Bielig H, et al. NOD-like receptor activation by outer membrane vesicles from Vibrio cholerae non-O1 non-O139 strains is modulated by the quorum-sensing regulator HapR. Infect Immun 2011;79:1418-1427.
    • (2011) Infect Immun , vol.79 , pp. 1418-1427
    • Bielig, H.1
  • 37
    • 77950621399 scopus 로고    scopus 로고
    • Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells
    • Kaparakis M, et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell Microbiol 2010;12:372-385.
    • (2010) Cell Microbiol , vol.12 , pp. 372-385
    • Kaparakis, M.1
  • 38
    • 27744480818 scopus 로고    scopus 로고
    • Bacterial outer membrane vesicles and the host-pathogen interaction
    • Kuehn MJ, Kesty NC. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 2005;19:2645-2655.
    • (2005) Genes Dev , vol.19 , pp. 2645-2655
    • Kuehn, M.J.1    Kesty, N.C.2
  • 39
    • 2342583513 scopus 로고    scopus 로고
    • Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition
    • Tanabe T, et al. Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J 2004;23:1587-1597.
    • (2004) EMBO J , vol.23 , pp. 1587-1597
    • Tanabe, T.1
  • 40
    • 33846936219 scopus 로고    scopus 로고
    • RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs
    • Park JH, et al. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J Immunol 2007;178:2380-2386.
    • (2007) J Immunol , vol.178 , pp. 2380-2386
    • Park, J.H.1
  • 41
    • 0037075549 scopus 로고    scopus 로고
    • Involvement of receptor-interacting protein 2 in innate and adaptive immune responses
    • Chin AI, Dempsey PW, Bruhn K, Miller JF, Xu Y, Cheng G. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses. Nature 2002;416:190-194.
    • (2002) Nature , vol.416 , pp. 190-194
    • Chin, A.I.1    Dempsey, P.W.2    Bruhn, K.3    Miller, J.F.4    Xu, Y.5    Cheng, G.6
  • 42
    • 0035895992 scopus 로고    scopus 로고
    • Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB
    • Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 2001;276:4812-4818.
    • (2001) J Biol Chem , vol.276 , pp. 4812-4818
    • Ogura, Y.1    Inohara, N.2    Benito, A.3    Chen, F.F.4    Yamaoka, S.5    Nunez, G.6
  • 43
    • 0033591330 scopus 로고    scopus 로고
    • Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB
    • Inohara N, et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem 1999;274:14560-14567.
    • (1999) J Biol Chem , vol.274 , pp. 14560-14567
    • Inohara, N.1
  • 44
    • 70149099161 scopus 로고    scopus 로고
    • XIAP mediates NOD signaling via interaction with RIP2
    • Krieg A, et al. XIAP mediates NOD signaling via interaction with RIP2. Proc Natl Acad Sci USA 2009;106:14524-14529.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 14524-14529
    • Krieg, A.1
  • 45
    • 38549084725 scopus 로고    scopus 로고
    • A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation
    • Hasegawa M, et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J 2008;27:373-383.
    • (2008) EMBO J , vol.27 , pp. 373-383
    • Hasegawa, M.1
  • 46
    • 37548999003 scopus 로고    scopus 로고
    • NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2
    • Yang Y, Yin C, Pandey A, Abbott D, Sassetti C, Kelliher MA. NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2. J Biol Chem 2007;282:36223-36229.
    • (2007) J Biol Chem , vol.282 , pp. 36223-36229
    • Yang, Y.1    Yin, C.2    Pandey, A.3    Abbott, D.4    Sassetti, C.5    Kelliher, M.A.6
  • 47
    • 40449136493 scopus 로고    scopus 로고
    • The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals
    • Hitotsumatsu O, et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 2008;28:381-390.
    • (2008) Immunity , vol.28 , pp. 381-390
    • Hitotsumatsu, O.1
  • 48
    • 63649116570 scopus 로고    scopus 로고
    • Ubiquitylation in innate and adaptive immunity
    • Bhoj VG, Chen ZJ. Ubiquitylation in innate and adaptive immunity. Nature 2009;458:430-437.
    • (2009) Nature , vol.458 , pp. 430-437
    • Bhoj, V.G.1    Chen, Z.J.2
  • 49
    • 68149170034 scopus 로고    scopus 로고
    • ITCH K63-ubiquitinates the NOD2 binding protein, RIP2, to influence inflammatory signaling pathways
    • Tao M, Scacheri PC, Marinis JM, Harhaj EW, Matesic LE, Abbott DW. ITCH K63-ubiquitinates the NOD2 binding protein, RIP2, to influence inflammatory signaling pathways. Curr Biol 2009;19:1255-1263.
    • (2009) Curr Biol , vol.19 , pp. 1255-1263
    • Tao, M.1    Scacheri, P.C.2    Marinis, J.M.3    Harhaj, E.W.4    Matesic, L.E.5    Abbott, D.W.6
  • 50
    • 23144449789 scopus 로고    scopus 로고
    • Ubiquitin signalling in the NF-kappaB pathway
    • Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005;7:758-765.
    • (2005) Nat Cell Biol , vol.7 , pp. 758-765
    • Chen, Z.J.1
  • 51
    • 66949138341 scopus 로고    scopus 로고
    • Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2
    • Bertrand MJ, Doiron K, Labbe K, Korneluk RG, Barker PA, Saleh M. Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 2009;30:789-801.
    • (2009) Immunity , vol.30 , pp. 789-801
    • Bertrand, M.J.1    Doiron, K.2    Labbe, K.3    Korneluk, R.G.4    Barker, P.A.5    Saleh, M.6
  • 52
    • 51149088572 scopus 로고    scopus 로고
    • Itchy mice: the identification of a new pathway for the development of autoimmunity
    • Matesic LE, Copeland NG, Jenkins NA. Itchy mice: the identification of a new pathway for the development of autoimmunity. Curr Top Microbiol Immunol 2008;321:185-200.
    • (2008) Curr Top Microbiol Immunol , vol.321 , pp. 185-200
    • Matesic, L.E.1    Copeland, N.G.2    Jenkins, N.A.3
  • 53
    • 0037061450 scopus 로고    scopus 로고
    • The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein
    • Gottar M, et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 2002;416:640-644.
    • (2002) Nature , vol.416 , pp. 640-644
    • Gottar, M.1
  • 54
    • 0037066464 scopus 로고    scopus 로고
    • Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila
    • Choe KM, Werner T, Stoven S, Hultmark D, Anderson KV. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 2002;296:359-362.
    • (2002) Science , vol.296 , pp. 359-362
    • Choe, K.M.1    Werner, T.2    Stoven, S.3    Hultmark, D.4    Anderson, K.V.5
  • 55
    • 0037061482 scopus 로고    scopus 로고
    • Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli
    • Ramet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz RA. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 2002;416:644-648.
    • (2002) Nature , vol.416 , pp. 644-648
    • Ramet, M.1    Manfruelli, P.2    Pearson, A.3    Mathey-Prevot, B.4    Ezekowitz, R.A.5
  • 56
    • 27144475536 scopus 로고    scopus 로고
    • Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway
    • Kleino A, et al. Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO J 2005;24:3423-3434.
    • (2005) EMBO J , vol.24 , pp. 3423-3434
    • Kleino, A.1
  • 57
    • 33750330952 scopus 로고    scopus 로고
    • The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection
    • Leulier F, Lhocine N, Lemaitre B, Meier P. The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection. Mol Cell Biol 2006;26:7821-7831.
    • (2006) Mol Cell Biol , vol.26 , pp. 7821-7831
    • Leulier, F.1    Lhocine, N.2    Lemaitre, B.3    Meier, P.4
  • 58
    • 26644432726 scopus 로고    scopus 로고
    • The role of ubiquitination in Drosophila innate immunity
    • Zhou R, et al. The role of ubiquitination in Drosophila innate immunity. J Biol Chem 2005;280:34048-34055.
    • (2005) J Biol Chem , vol.280 , pp. 34048-34055
    • Zhou, R.1
  • 59
    • 34548225910 scopus 로고    scopus 로고
    • Coordinated regulation of Toll-like receptor and NOD2 signaling by K63-linked polyubiquitin chains
    • Abbott DW, Yang Y, Hutti JE, Madhavarapu S, Kelliher MA, Cantley LC. Coordinated regulation of Toll-like receptor and NOD2 signaling by K63-linked polyubiquitin chains. Mol Cell Biol 2007;27:6012-6025.
    • (2007) Mol Cell Biol , vol.27 , pp. 6012-6025
    • Abbott, D.W.1    Yang, Y.2    Hutti, J.E.3    Madhavarapu, S.4    Kelliher, M.A.5    Cantley, L.C.6
  • 60
    • 11144289688 scopus 로고    scopus 로고
    • The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO
    • Abbott DW, Wilkins A, Asara JM, Cantley LC. The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr Biol 2004;14:2217-2227.
    • (2004) Curr Biol , vol.14 , pp. 2217-2227
    • Abbott, D.W.1    Wilkins, A.2    Asara, J.M.3    Cantley, L.C.4
  • 61
    • 79957962932 scopus 로고    scopus 로고
    • Non-apoptotic role of BID in inflammation and innate immunity
    • Yeretssian G, et al. Non-apoptotic role of BID in inflammation and innate immunity. Nature 2011;474:96-99.
    • (2011) Nature , vol.474 , pp. 96-99
    • Yeretssian, G.1
  • 62
    • 34249826059 scopus 로고    scopus 로고
    • Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide
    • Windheim M, Lang C, Peggie M, Plater LA, Cohen P. Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide. Biochem J 2007;404:179-190.
    • (2007) Biochem J , vol.404 , pp. 179-190
    • Windheim, M.1    Lang, C.2    Peggie, M.3    Plater, L.A.4    Cohen, P.5
  • 63
    • 67749095245 scopus 로고    scopus 로고
    • The kinase activity of Rip2 determines its stability and consequently Nod1- and Nod2-mediated immune responses
    • Nembrini C, et al. The kinase activity of Rip2 determines its stability and consequently Nod1- and Nod2-mediated immune responses. J Biol Chem 2009;284:19183-19188.
    • (2009) J Biol Chem , vol.284 , pp. 19183-19188
    • Nembrini, C.1
  • 64
    • 78649890151 scopus 로고    scopus 로고
    • Inhibition of RIP2's tyrosine kinase activity limits NOD2-driven cytokine responses
    • Tigno-Aranjuez JT, Asara JM, Abbott DW. Inhibition of RIP2's tyrosine kinase activity limits NOD2-driven cytokine responses. Genes Dev 2010;24:2666-2677.
    • (2010) Genes Dev , vol.24 , pp. 2666-2677
    • Tigno-Aranjuez, J.T.1    Asara, J.M.2    Abbott, D.W.3
  • 65
    • 33846469538 scopus 로고    scopus 로고
    • The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens
    • Hsu YM, et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol 2007;8:198-205.
    • (2007) Nat Immunol , vol.8 , pp. 198-205
    • Hsu, Y.M.1
  • 66
    • 56149111709 scopus 로고    scopus 로고
    • Cross-tolerization between Nod1 and Nod2 signaling results in reduced refractoriness to bacterial infection in Nod2-deficient macrophages
    • Kim YG, Park JH, Daignault S, Fukase K, Nunez G. Cross-tolerization between Nod1 and Nod2 signaling results in reduced refractoriness to bacterial infection in Nod2-deficient macrophages. J Immunol 2008;181:4340-4346.
    • (2008) J Immunol , vol.181 , pp. 4340-4346
    • Kim, Y.G.1    Park, J.H.2    Daignault, S.3    Fukase, K.4    Nunez, G.5
  • 67
    • 13244292161 scopus 로고    scopus 로고
    • Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract
    • Kobayashi KS, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005;307:731-734.
    • (2005) Science , vol.307 , pp. 731-734
    • Kobayashi, K.S.1
  • 68
    • 77951784552 scopus 로고    scopus 로고
    • NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway
    • Watanabe T, et al. NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway. J Clin Invest 2010;120:1645-1662.
    • (2010) J Clin Invest , vol.120 , pp. 1645-1662
    • Watanabe, T.1
  • 69
    • 33644772156 scopus 로고    scopus 로고
    • A short isoform of NOD2/CARD15, NOD2-S, is an endogenous inhibitor of NOD2/receptor-interacting protein kinase 2-induced signaling pathways
    • Rosenstiel P, et al. A short isoform of NOD2/CARD15, NOD2-S, is an endogenous inhibitor of NOD2/receptor-interacting protein kinase 2-induced signaling pathways. Proc Natl Acad Sci USA 2006;103:3280-3285.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 3280-3285
    • Rosenstiel, P.1
  • 70
    • 40149084641 scopus 로고    scopus 로고
    • Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity
    • LeBlanc PM, et al. Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity. Cell Host Microbe 2008;3:146-157.
    • (2008) Cell Host Microbe , vol.3 , pp. 146-157
    • LeBlanc, P.M.1
  • 71
    • 0028984948 scopus 로고
    • Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock
    • Li P, et al. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 1995;80:401-411.
    • (1995) Cell , vol.80 , pp. 401-411
    • Li, P.1
  • 72
    • 33646175602 scopus 로고    scopus 로고
    • Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice
    • Saleh M, et al. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 2006;440:1064-1068.
    • (2006) Nature , vol.440 , pp. 1064-1068
    • Saleh, M.1
  • 73
    • 33845975666 scopus 로고    scopus 로고
    • Centaurin beta1 down-regulates nucleotide-binding oligomerization domains 1- and 2-dependent NF-kappaB activation
    • Yamamoto-Furusho JK, Barnich N, Xavier R, Hisamatsu T, Podolsky DK. Centaurin beta1 down-regulates nucleotide-binding oligomerization domains 1- and 2-dependent NF-kappaB activation. J Biol Chem 2006;281:36060-36070.
    • (2006) J Biol Chem , vol.281 , pp. 36060-36070
    • Yamamoto-Furusho, J.K.1    Barnich, N.2    Xavier, R.3    Hisamatsu, T.4    Podolsky, D.K.5
  • 74
    • 52049114650 scopus 로고    scopus 로고
    • MEKK4 sequesters RIP2 to dictate NOD2 signal specificity
    • Clark NM, Marinis JM, Cobb BA, Abbott DW. MEKK4 sequesters RIP2 to dictate NOD2 signal specificity. Curr Biol 2008;18:1402-1408.
    • (2008) Curr Biol , vol.18 , pp. 1402-1408
    • Clark, N.M.1    Marinis, J.M.2    Cobb, B.A.3    Abbott, D.W.4
  • 75
    • 78751493016 scopus 로고    scopus 로고
    • A novel motif in the Crohn's disease susceptibility protein, NOD2, allows TRAF4 to down-regulate innate immune responses
    • Marinis JM, Homer CR, McDonald C, Abbott DW. A novel motif in the Crohn's disease susceptibility protein, NOD2, allows TRAF4 to down-regulate innate immune responses. J Biol Chem 2011;286:1938-1950.
    • (2011) J Biol Chem , vol.286 , pp. 1938-1950
    • Marinis, J.M.1    Homer, C.R.2    McDonald, C.3    Abbott, D.W.4
  • 77
    • 28844448136 scopus 로고    scopus 로고
    • A role for Erbin in the regulation of Nod2-dependent NF-kappaB signaling
    • McDonald C, et al. A role for Erbin in the regulation of Nod2-dependent NF-kappaB signaling. J Biol Chem 2005;280:40301-40309.
    • (2005) J Biol Chem , vol.280 , pp. 40301-40309
    • McDonald, C.1
  • 78
    • 0033776145 scopus 로고    scopus 로고
    • ERBIN: a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor
    • Borg JP, et al. ERBIN: a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor. Nat Cell Biol 2000;2:407-414.
    • (2000) Nat Cell Biol , vol.2 , pp. 407-414
    • Borg, J.P.1
  • 79
    • 33644854068 scopus 로고    scopus 로고
    • Erbin inhibits RAF activation by disrupting the sur-8-Ras-Raf complex
    • Dai P, Xiong WC, Mei L. Erbin inhibits RAF activation by disrupting the sur-8-Ras-Raf complex. J Biol Chem 2006;281:927-933.
    • (2006) J Biol Chem , vol.281 , pp. 927-933
    • Dai, P.1    Xiong, W.C.2    Mei, L.3
  • 81
    • 61749090602 scopus 로고    scopus 로고
    • Erbin and the NF2 tumor suppressor Merlin cooperatively regulate cell-type-specific activation of PAK2 by TGF-beta
    • Wilkes MC, et al. Erbin and the NF2 tumor suppressor Merlin cooperatively regulate cell-type-specific activation of PAK2 by TGF-beta. Dev Cell 2009;16:433-444.
    • (2009) Dev Cell , vol.16 , pp. 433-444
    • Wilkes, M.C.1
  • 83
    • 53149153194 scopus 로고    scopus 로고
    • Beta-PIX and Rac1 GTPase mediate trafficking and negative regulation of NOD2
    • Eitel J, et al. Beta-PIX and Rac1 GTPase mediate trafficking and negative regulation of NOD2. J Immunol 2008;181:2664-2671.
    • (2008) J Immunol , vol.181 , pp. 2664-2671
    • Eitel, J.1
  • 84
    • 77949907276 scopus 로고    scopus 로고
    • Extracellular and intracellular pathogen recognition by Drosophila PGRP-LE and PGRP-LC
    • Kurata S. Extracellular and intracellular pathogen recognition by Drosophila PGRP-LE and PGRP-LC. Int Immunol 2010;22:143-148.
    • (2010) Int Immunol , vol.22 , pp. 143-148
    • Kurata, S.1
  • 85
    • 4444246692 scopus 로고    scopus 로고
    • Primate defensins
    • Lehrer RI. Primate defensins. Nat Rev Microbiol 2004;2:727-738.
    • (2004) Nat Rev Microbiol , vol.2 , pp. 727-738
    • Lehrer, R.I.1
  • 86
    • 58849084704 scopus 로고    scopus 로고
    • Defensins and inflammation: the role of defensins in inflammatory bowel disease
    • Ramasundara M, Leach ST, Lemberg DA, Day AS. Defensins and inflammation: the role of defensins in inflammatory bowel disease. J Gastroenterol Hepatol 2009;24:202-208.
    • (2009) J Gastroenterol Hepatol , vol.24 , pp. 202-208
    • Ramasundara, M.1    Leach, S.T.2    Lemberg, D.A.3    Day, A.S.4
  • 87
    • 77954332543 scopus 로고    scopus 로고
    • The innate immune molecule, NOD1, regulates direct killing of Helicobacter pylori by antimicrobial peptides
    • Grubman A, et al. The innate immune molecule, NOD1, regulates direct killing of Helicobacter pylori by antimicrobial peptides. Cell Microbiol 2010;12:626-639.
    • (2010) Cell Microbiol , vol.12 , pp. 626-639
    • Grubman, A.1
  • 88
    • 33744965671 scopus 로고    scopus 로고
    • Nucleotide-binding oligomerization domain-1 and epidermal growth factor receptor: critical regulators of beta-defensins during Helicobacter pylori infection
    • Boughan PK, et al. Nucleotide-binding oligomerization domain-1 and epidermal growth factor receptor: critical regulators of beta-defensins during Helicobacter pylori infection. J Biol Chem 2006;281:11637-11648.
    • (2006) J Biol Chem , vol.281 , pp. 11637-11648
    • Boughan, P.K.1
  • 89
    • 33644849605 scopus 로고    scopus 로고
    • NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2
    • Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J. NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 2006;281:2005-2011.
    • (2006) J Biol Chem , vol.281 , pp. 2005-2011
    • Voss, E.1    Wehkamp, J.2    Wehkamp, K.3    Stange, E.F.4    Schroder, J.M.5    Harder, J.6
  • 90
    • 7244257312 scopus 로고    scopus 로고
    • NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha-defensin expression
    • Wehkamp J, et al. NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha-defensin expression. Gut 2004;53:1658-1664.
    • (2004) Gut , vol.53 , pp. 1658-1664
    • Wehkamp, J.1
  • 91
    • 79951471683 scopus 로고    scopus 로고
    • Inducible NO synthase and antibacterial host defence in times of Th17/Th22/T22 immunity
    • Muhl H, Bachmann M, Pfeilschifter J. Inducible NO synthase and antibacterial host defence in times of Th17/Th22/T22 immunity. Cell Microbiol 2011;13:340-348.
    • (2011) Cell Microbiol , vol.13 , pp. 340-348
    • Muhl, H.1    Bachmann, M.2    Pfeilschifter, J.3
  • 92
    • 34250888664 scopus 로고    scopus 로고
    • Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells
    • Park JH, et al. Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. J Immunol 2007;179:514-521.
    • (2007) J Immunol , vol.179 , pp. 514-521
    • Park, J.H.1
  • 94
    • 77956264661 scopus 로고    scopus 로고
    • Hepatocytes express functional NOD1 and NOD2 receptors: a role for NOD1 in hepatocyte CC and CXC chemokine production
    • Scott MJ, Chen C, Sun Q, Billiar TR. Hepatocytes express functional NOD1 and NOD2 receptors: a role for NOD1 in hepatocyte CC and CXC chemokine production. J Hepatol 2010;53:693-701.
    • (2010) J Hepatol , vol.53 , pp. 693-701
    • Scott, M.J.1    Chen, C.2    Sun, Q.3    Billiar, T.R.4
  • 95
    • 77954882468 scopus 로고    scopus 로고
    • Nucleotide oligomerization domain 1 is a dominant pathway for NOS2 induction in vascular smooth muscle cells: comparison with Toll-like receptor 4 responses in macrophages
    • Moreno L, et al. Nucleotide oligomerization domain 1 is a dominant pathway for NOS2 induction in vascular smooth muscle cells: comparison with Toll-like receptor 4 responses in macrophages. Br J Pharmacol 2010;160:1997-2007.
    • (2010) Br J Pharmacol , vol.160 , pp. 1997-2007
    • Moreno, L.1
  • 96
    • 28544434876 scopus 로고    scopus 로고
    • Murine Nod1 but not its human orthologue mediates innate immune detection of tracheal cytotoxin
    • Magalhaes JG, et al. Murine Nod1 but not its human orthologue mediates innate immune detection of tracheal cytotoxin. EMBO Rep 2005;6:1201-1207.
    • (2005) EMBO Rep , vol.6 , pp. 1201-1207
    • Magalhaes, J.G.1
  • 97
    • 67650076436 scopus 로고    scopus 로고
    • Nonhematopoietic cells control the outcome of infection with Listeria monocytogenes in a nucleotide oligomerization domain 1-dependent manner
    • Mosa A, et al. Nonhematopoietic cells control the outcome of infection with Listeria monocytogenes in a nucleotide oligomerization domain 1-dependent manner. Infect Immun 2009;77:2908-2918.
    • (2009) Infect Immun , vol.77 , pp. 2908-2918
    • Mosa, A.1
  • 98
    • 33645789048 scopus 로고    scopus 로고
    • IFN-gamma enhances production of nitric oxide from macrophages via a mechanism that depends on nucleotide oligomerization domain-2
    • Totemeyer S, et al. IFN-gamma enhances production of nitric oxide from macrophages via a mechanism that depends on nucleotide oligomerization domain-2. J Immunol 2006;176:4804-4810.
    • (2006) J Immunol , vol.176 , pp. 4804-4810
    • Totemeyer, S.1
  • 99
    • 1542406446 scopus 로고    scopus 로고
    • NOX enzymes and the biology of reactive oxygen
    • Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev 2004;4:181-189.
    • (2004) Nat Rev , vol.4 , pp. 181-189
    • Lambeth, J.D.1
  • 100
    • 70350380878 scopus 로고    scopus 로고
    • DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses
    • Lipinski S, et al. DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J Cell Sci 2009;122:3522-3530.
    • (2009) J Cell Sci , vol.122 , pp. 3522-3530
    • Lipinski, S.1
  • 101
    • 79951910694 scopus 로고    scopus 로고
    • Autophagy in immunity and cell-autonomous defense against intracellular microbes
    • Deretic V. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev 2011;240:92-104.
    • (2011) Immunol Rev , vol.240 , pp. 92-104
    • Deretic, V.1
  • 102
    • 77956180361 scopus 로고    scopus 로고
    • Autophagy and innate immunity: triggering, targeting and tuning
    • Sumpter R Jr, Levine B. Autophagy and innate immunity: triggering, targeting and tuning. Semin Cell Dev Biol 2010;21:699-711.
    • (2010) Semin Cell Dev Biol , vol.21 , pp. 699-711
    • Sumpter Jr., R.1    Levine, B.2
  • 106
    • 37549043217 scopus 로고    scopus 로고
    • Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
    • Sanjuan MA, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 2007;450:1253-1257.
    • (2007) Nature , vol.450 , pp. 1253-1257
    • Sanjuan, M.A.1
  • 107
    • 0037039442 scopus 로고    scopus 로고
    • Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway
    • Talloczy Z, et al. Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA 2002;99:190-195.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 190-195
    • Talloczy, Z.1
  • 108
    • 72649089533 scopus 로고    scopus 로고
    • Autophagy induction by the pathogen receptor CD46
    • Joubert PE, et al. Autophagy induction by the pathogen receptor CD46. Cell Host Microbe 2009;6:354-366.
    • (2009) Cell Host Microbe , vol.6 , pp. 354-366
    • Joubert, P.E.1
  • 109
    • 47849094901 scopus 로고    scopus 로고
    • Autophagic control of listeria through intracellular innate immune recognition in drosophila
    • Yano T, et al. Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nat Immunol 2008;9:908-916.
    • (2008) Nat Immunol , vol.9 , pp. 908-916
    • Yano, T.1
  • 110
    • 73849151394 scopus 로고    scopus 로고
    • NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation
    • Cooney R, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 2010;16:90-97.
    • (2010) Nat Med , vol.16 , pp. 90-97
    • Cooney, R.1
  • 111
    • 73849121209 scopus 로고    scopus 로고
    • Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
    • Travassos LH, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 2010;11:55-62.
    • (2010) Nat Immunol , vol.11 , pp. 55-62
    • Travassos, L.H.1
  • 112
    • 77957682295 scopus 로고    scopus 로고
    • ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis
    • Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology 2010;139:1630-1641.
    • (2010) Gastroenterology , vol.139 , pp. 1630-1641
    • Homer, C.R.1    Richmond, A.L.2    Rebert, N.A.3    Achkar, J.P.4    McDonald, C.5
  • 113
    • 77953637385 scopus 로고    scopus 로고
    • The pathogen recognition receptor NOD2 regulates human FOXP3+ T cell survival
    • Rahman MK, et al. The pathogen recognition receptor NOD2 regulates human FOXP3+ T cell survival. J Immunol 2010;184:7247-7256.
    • (2010) J Immunol , vol.184 , pp. 7247-7256
    • Rahman, M.K.1
  • 114
    • 70449722759 scopus 로고    scopus 로고
    • T cell-intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii
    • Shaw MH, et al. T cell-intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii. Nat Immunol 2009;10:1267-1274.
    • (2009) Nat Immunol , vol.10 , pp. 1267-1274
    • Shaw, M.H.1
  • 115
    • 0036136321 scopus 로고    scopus 로고
    • Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine
    • Hamada H, et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 2002;168:57-64.
    • (2002) J Immunol , vol.168 , pp. 57-64
    • Hamada, H.1
  • 116
  • 117
    • 0037851984 scopus 로고    scopus 로고
    • Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin beta receptor, and TNF receptor I function
    • Lorenz RG, Chaplin DD, McDonald KG, McDonough JS, Newberry RD. Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin beta receptor, and TNF receptor I function. J Immunol 2003;170:5475-5482.
    • (2003) J Immunol , vol.170 , pp. 5475-5482
    • Lorenz, R.G.1    Chaplin, D.D.2    McDonald, K.G.3    McDonough, J.S.4    Newberry, R.D.5
  • 118
    • 33750818632 scopus 로고    scopus 로고
    • Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling
    • Pabst O, et al. Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling. J Immunol 2006;177:6824-6832.
    • (2006) J Immunol , vol.177 , pp. 6824-6832
    • Pabst, O.1
  • 119
    • 56749146467 scopus 로고    scopus 로고
    • Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis
    • Bouskra D, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008;456:507-510.
    • (2008) Nature , vol.456 , pp. 507-510
    • Bouskra, D.1
  • 120
    • 4444301744 scopus 로고    scopus 로고
    • Innate immune responses in peptidoglycan recognition protein L-deficient mice
    • Xu M, Wang Z, Locksley RM. Innate immune responses in peptidoglycan recognition protein L-deficient mice. Mol Cell Biol 2004;24:7949-7957.
    • (2004) Mol Cell Biol , vol.24 , pp. 7949-7957
    • Xu, M.1    Wang, Z.2    Locksley, R.M.3
  • 121
    • 23944434403 scopus 로고    scopus 로고
    • Identification of serum N-acetylmuramoyl-L-alanine amidase as liver peptidoglycan recognition protein 2
    • Zhang Y, et al. Identification of serum N-acetylmuramoyl-L-alanine amidase as liver peptidoglycan recognition protein 2. Biochim Biophys Acta 2005;1752:34-46.
    • (2005) Biochim Biophys Acta , vol.1752 , pp. 34-46
    • Zhang, Y.1
  • 122
    • 33847357075 scopus 로고    scopus 로고
    • Human peptidoglycan recognition proteins require zinc to kill both gram-positive and gram-negative bacteria and are synergistic with antibacterial peptides
    • Wang M, et al. Human peptidoglycan recognition proteins require zinc to kill both gram-positive and gram-negative bacteria and are synergistic with antibacterial peptides. J Immunol 2007;178:3116-3125.
    • (2007) J Immunol , vol.178 , pp. 3116-3125
    • Wang, M.1
  • 123
    • 33646140122 scopus 로고    scopus 로고
    • Crystal structure of human peptidoglycan recognition protein I alpha bound to a muramyl pentapeptide from Gram-positive bacteria
    • Guan R, Brown PH, Swaminathan CP, Roychowdhury A, Boons GJ, Mariuzza RA. Crystal structure of human peptidoglycan recognition protein I alpha bound to a muramyl pentapeptide from Gram-positive bacteria. Protein Sci 2006;15:1199-1206.
    • (2006) Protein Sci , vol.15 , pp. 1199-1206
    • Guan, R.1    Brown, P.H.2    Swaminathan, C.P.3    Roychowdhury, A.4    Boons, G.J.5    Mariuzza, R.A.6
  • 124
    • 3843067734 scopus 로고    scopus 로고
    • Crystal structure of the C-terminal peptidoglycan-binding domain of human peptidoglycan recognition protein Ialpha
    • Guan R, Malchiodi EL, Wang Q, Schuck P, Mariuzza RA. Crystal structure of the C-terminal peptidoglycan-binding domain of human peptidoglycan recognition protein Ialpha. J Biol Chem 2004;279:31873-31882.
    • (2004) J Biol Chem , vol.279 , pp. 31873-31882
    • Guan, R.1    Malchiodi, E.L.2    Wang, Q.3    Schuck, P.4    Mariuzza, R.A.5
  • 125
    • 14844353929 scopus 로고    scopus 로고
    • Crystal structure of human peptidoglycan recognition protein S (PGRP-S) at 1.70 A resolution
    • Guan R, Wang Q, Sundberg EJ, Mariuzza RA. Crystal structure of human peptidoglycan recognition protein S (PGRP-S) at 1.70 A resolution. J Mol Biol 2005;347:683-691.
    • (2005) J Mol Biol , vol.347 , pp. 683-691
    • Guan, R.1    Wang, Q.2    Sundberg, E.J.3    Mariuzza, R.A.4
  • 126
    • 0346822374 scopus 로고    scopus 로고
    • Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase
    • Wang ZM, et al. Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. J Biol Chem 2003;278:49044-49052.
    • (2003) J Biol Chem , vol.278 , pp. 49044-49052
    • Wang, Z.M.1
  • 127
    • 0037470091 scopus 로고    scopus 로고
    • A scavenger function for a Drosophila peptidoglycan recognition protein
    • Mellroth P, Karlsson J, Steiner H. A scavenger function for a Drosophila peptidoglycan recognition protein. J Biol Chem 2003;278:7059-7064.
    • (2003) J Biol Chem , vol.278 , pp. 7059-7064
    • Mellroth, P.1    Karlsson, J.2    Steiner, H.3
  • 128
    • 33645994799 scopus 로고    scopus 로고
    • The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection
    • Zaidman-Remy A, et al. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 2006;24:463-473.
    • (2006) Immunity , vol.24 , pp. 463-473
    • Zaidman-Remy, A.1
  • 129
    • 79957714527 scopus 로고    scopus 로고
    • Regulation of innate and adaptive immunity by the commensal microbiota
    • Jarchum I, Pamer EG. Regulation of innate and adaptive immunity by the commensal microbiota. Curr Opin Immunol 2011;23:353-360.
    • (2011) Curr Opin Immunol , vol.23 , pp. 353-360
    • Jarchum, I.1    Pamer, E.G.2
  • 130
    • 33749384363 scopus 로고    scopus 로고
    • Differential release and distribution of Nod1 and Nod2 immunostimulatory molecules among bacterial species and environments
    • Hasegawa M, et al. Differential release and distribution of Nod1 and Nod2 immunostimulatory molecules among bacterial species and environments. J Biol Chem 2006;281:29054-29063.
    • (2006) J Biol Chem , vol.281 , pp. 29054-29063
    • Hasegawa, M.1
  • 131
    • 70350343544 scopus 로고    scopus 로고
    • Induction of intestinal Th17 cells by segmented filamentous bacteria
    • Ivanov II, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009;139:485-498.
    • (2009) Cell , vol.139 , pp. 485-498
    • Ivanov, I.I.1
  • 132
    • 79955079700 scopus 로고    scopus 로고
    • Control of intestinal Nod2-mediated peptidoglycan recognition by epithelium-associated lymphocytes
    • Duerr CU, et al. Control of intestinal Nod2-mediated peptidoglycan recognition by epithelium-associated lymphocytes. Mucosal Imunol 2011;4:325-334.
    • (2011) Mucosal Imunol , vol.4 , pp. 325-334
    • Duerr, C.U.1
  • 133
    • 70349468054 scopus 로고    scopus 로고
    • Nod2 is required for the regulation of commensal microbiota in the intestine
    • Petnicki-Ocwieja T, et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA 2009;106:15813-15818.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 15813-15818
    • Petnicki-Ocwieja, T.1
  • 134
    • 80052580369 scopus 로고    scopus 로고
    • Nod2 is essential for temporal development of intestinal microbial communities
    • Rehman A, et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut 2011; doi:.
    • (2011) Gut
    • Rehman, A.1
  • 135
    • 77956306627 scopus 로고    scopus 로고
    • Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-gamma
    • Saha S, et al. Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-gamma. Cell Host Microbe 2010;8:147-162.
    • (2010) Cell Host Microbe , vol.8 , pp. 147-162
    • Saha, S.1
  • 136
    • 76749110853 scopus 로고    scopus 로고
    • Transitions in oral and intestinal microflora composition and innate immune receptor-dependent stimulation during mouse development
    • Hasegawa M, et al. Transitions in oral and intestinal microflora composition and innate immune receptor-dependent stimulation during mouse development. Infect Immun 2010;78:639-650.
    • (2010) Infect Immun , vol.78 , pp. 639-650
    • Hasegawa, M.1
  • 137
    • 70049109028 scopus 로고    scopus 로고
    • Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells
    • Bruno VM, Hannemann S, Lara-Tejero M, Flavell RA, Kleinstein SH, Galan JE. Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells. PLoS Pathog 2009;5:e1000538.
    • (2009) PLoS Pathog , vol.5
    • Bruno, V.M.1    Hannemann, S.2    Lara-Tejero, M.3    Flavell, R.A.4    Kleinstein, S.H.5    Galan, J.E.6
  • 138
    • 79960131814 scopus 로고    scopus 로고
    • Identification of an innate T helper type 17 response to intestinal bacterial pathogens
    • Geddes K, et al. Identification of an innate T helper type 17 response to intestinal bacterial pathogens. Nat Med 2011;17:837-844.
    • (2011) Nat Med , vol.17 , pp. 837-844
    • Geddes, K.1
  • 139
    • 79956319462 scopus 로고    scopus 로고
    • The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes
    • Kim YG, et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 2011;34:769-780.
    • (2011) Immunity , vol.34 , pp. 769-780
    • Kim, Y.G.1
  • 140
    • 39149094587 scopus 로고    scopus 로고
    • The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands
    • Kim YG, Park JH, Shaw MH, Franchi L, Inohara N, Nunez G. The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands. Immunity 2008;28:246-257.
    • (2008) Immunity , vol.28 , pp. 246-257
    • Kim, Y.G.1    Park, J.H.2    Shaw, M.H.3    Franchi, L.4    Inohara, N.5    Nunez, G.6
  • 141
    • 67649391053 scopus 로고    scopus 로고
    • Clostridium difficile infection: new developments in epidemiology and pathogenesis
    • Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 2009;7:526-536.
    • (2009) Nat Rev Microbiol , vol.7 , pp. 526-536
    • Rupnik, M.1    Wilcox, M.H.2    Gerding, D.N.3
  • 143
    • 16844364804 scopus 로고    scopus 로고
    • Innate immune recognition of the extracellular mucosal pathogen, Helicobacter pylori
    • Ferrero RL. Innate immune recognition of the extracellular mucosal pathogen, Helicobacter pylori. Mol Immunol 2005;42:879-885.
    • (2005) Mol Immunol , vol.42 , pp. 879-885
    • Ferrero, R.L.1
  • 144
    • 34247254780 scopus 로고    scopus 로고
    • Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity
    • Fritz JH, et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 2007;26:445-459.
    • (2007) Immunity , vol.26 , pp. 445-459
    • Fritz, J.H.1
  • 145
    • 0035978533 scopus 로고    scopus 로고
    • A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease
    • Ogura Y, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001;411:603-606.
    • (2001) Nature , vol.411 , pp. 603-606
    • Ogura, Y.1
  • 146
    • 0035978651 scopus 로고    scopus 로고
    • Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease
    • Hugot JP, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001;411:599-603.
    • (2001) Nature , vol.411 , pp. 599-603
    • Hugot, J.P.1
  • 147
    • 0037221395 scopus 로고    scopus 로고
    • Crohn's disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan
    • Bonen DK, et al. Crohn's disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology 2003;124:140-146.
    • (2003) Gastroenterology , vol.124 , pp. 140-146
    • Bonen, D.K.1
  • 148
    • 4444332518 scopus 로고    scopus 로고
    • Regulation of IL-8 and IL-1beta expression in Crohn's disease associated NOD2/CARD15 mutations
    • Li J, et al. Regulation of IL-8 and IL-1beta expression in Crohn's disease associated NOD2/CARD15 mutations. Hum Mol Genet 2004;13:1715-1725.
    • (2004) Hum Mol Genet , vol.13 , pp. 1715-1725
    • Li, J.1
  • 149
    • 38849163741 scopus 로고    scopus 로고
    • Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis
    • Watanabe T, et al. Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. J Clin Invest 2008;118:545-559.
    • (2008) J Clin Invest , vol.118 , pp. 545-559
    • Watanabe, T.1
  • 150
    • 35648995482 scopus 로고    scopus 로고
    • NOD2 transgenic mice exhibit enhanced MDP-mediated down-regulation of TLR2 responses and resistance to colitis induction
    • Yang Z, et al. NOD2 transgenic mice exhibit enhanced MDP-mediated down-regulation of TLR2 responses and resistance to colitis induction. Gastroenterology 2007;133:1510-1521.
    • (2007) Gastroenterology , vol.133 , pp. 1510-1521
    • Yang, Z.1
  • 151
    • 0035207279 scopus 로고    scopus 로고
    • CD4 T cells monospecific to ovalbumin produced by Escherichia coli can induce colitis upon transfer to BALB/c and SCID mice
    • Yoshida M, et al. CD4 T cells monospecific to ovalbumin produced by Escherichia coli can induce colitis upon transfer to BALB/c and SCID mice. Int Immunol 2001;13:1561-1570.
    • (2001) Int Immunol , vol.13 , pp. 1561-1570
    • Yoshida, M.1
  • 152
    • 33748493563 scopus 로고    scopus 로고
    • Nucleotide binding oligomerization domain 2 deficiency leads to dysregulated TLR2 signaling and induction of antigen-specific colitis
    • Watanabe T, Kitani A, Murray PJ, Wakatsuki Y, Fuss IJ, Strober W. Nucleotide binding oligomerization domain 2 deficiency leads to dysregulated TLR2 signaling and induction of antigen-specific colitis. Immunity 2006;25:473-485.
    • (2006) Immunity , vol.25 , pp. 473-485
    • Watanabe, T.1    Kitani, A.2    Murray, P.J.3    Wakatsuki, Y.4    Fuss, I.J.5    Strober, W.6
  • 153
    • 0038237665 scopus 로고    scopus 로고
    • Card15 gene overexpression in mononuclear and epithelial cells of the inflamed Crohn's disease colon
    • Berrebi D, et al. Card15 gene overexpression in mononuclear and epithelial cells of the inflamed Crohn's disease colon. Gut 2003;52:840-846.
    • (2003) Gut , vol.52 , pp. 840-846
    • Berrebi, D.1
  • 154
    • 79960302320 scopus 로고    scopus 로고
    • Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide
    • Fernandez E, et al. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 2011;60:1050-1059.
    • (2011) Gut , vol.60 , pp. 1050-1059
    • Fernandez, E.1
  • 155
    • 2942625911 scopus 로고    scopus 로고
    • Interactions between commensal intestinal bacteria and the immune system
    • Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev 2004;4:478-485.
    • (2004) Nat Rev , vol.4 , pp. 478-485
    • Macpherson, A.J.1    Harris, N.L.2
  • 156
    • 7944231342 scopus 로고    scopus 로고
    • Does the microbiota regulate immune responses outside the gut?
    • Noverr MC, Huffnagle GB. Does the microbiota regulate immune responses outside the gut? Trends Microbiol 2004;12:562-568.
    • (2004) Trends Microbiol , vol.12 , pp. 562-568
    • Noverr, M.C.1    Huffnagle, G.B.2
  • 157
    • 76249120134 scopus 로고    scopus 로고
    • Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity
    • Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010;16:228-231.
    • (2010) Nat Med , vol.16 , pp. 228-231
    • Clarke, T.B.1    Davis, K.M.2    Lysenko, E.S.3    Zhou, A.Y.4    Yu, Y.5    Weiser, J.N.6
  • 158
    • 74549148895 scopus 로고    scopus 로고
    • Long-range activation of systemic immunity through peptidoglycan diffusion in Drosophila
    • Gendrin M, Welchman DP, Poidevin M, Herve M, Lemaitre B. Long-range activation of systemic immunity through peptidoglycan diffusion in Drosophila. PLoS Pathog 2009;5:e1000694.
    • (2009) PLoS Pathog , vol.5
    • Gendrin, M.1    Welchman, D.P.2    Poidevin, M.3    Herve, M.4    Lemaitre, B.5
  • 159
    • 77149169405 scopus 로고    scopus 로고
    • Nod2 regulates the host response towards microflora by modulating T cell function and epithelial permeability in mouse Peyer's patches
    • Barreau F, et al. Nod2 regulates the host response towards microflora by modulating T cell function and epithelial permeability in mouse Peyer's patches. Gut 2010;59:207-217.
    • (2010) Gut , vol.59 , pp. 207-217
    • Barreau, F.1
  • 160
    • 34848928674 scopus 로고    scopus 로고
    • CARD15/NOD2 is required for Peyer's patches homeostasis in mice
    • Barreau F, et al. CARD15/NOD2 is required for Peyer's patches homeostasis in mice. PLoS ONE 2007;2:e523.
    • (2007) PLoS ONE , vol.2
    • Barreau, F.1
  • 161
    • 74549167783 scopus 로고    scopus 로고
    • Regulation of adaptive immunity by the innate immune system
    • Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 2010;327:291-295.
    • (2010) Science , vol.327 , pp. 291-295
    • Iwasaki, A.1    Medzhitov, R.2
  • 162
    • 0034886143 scopus 로고    scopus 로고
    • Toll-like receptors: critical proteins linking innate and acquired immunity
    • Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001;2:675-680.
    • (2001) Nat Immunol , vol.2 , pp. 675-680
    • Akira, S.1    Takeda, K.2    Kaisho, T.3
  • 163
    • 0036604930 scopus 로고    scopus 로고
    • Control of adaptive immune responses by Toll-like receptors
    • Barton GM, Medzhitov R. Control of adaptive immune responses by Toll-like receptors. Curr Opin Immunol 2002;14:380-383.
    • (2002) Curr Opin Immunol , vol.14 , pp. 380-383
    • Barton, G.M.1    Medzhitov, R.2
  • 164
    • 71849108536 scopus 로고    scopus 로고
    • Nod2-dependent Th2 polarization of antigen-specific immunity
    • Magalhaes JG, et al. Nod2-dependent Th2 polarization of antigen-specific immunity. J Immunol 2008;181:7925-7935.
    • (2008) J Immunol , vol.181 , pp. 7925-7935
    • Magalhaes, J.G.1
  • 165
    • 79955129532 scopus 로고    scopus 로고
    • Essential role of Rip2 in the modulation of innate and adaptive immunity triggered by Nod1 and Nod2 ligands
    • Magalhaes JG, Lee J, Geddes K, Rubino S, Philpott DJ, Girardin SE. Essential role of Rip2 in the modulation of innate and adaptive immunity triggered by Nod1 and Nod2 ligands. Eur J Immunol 2011;41:1445-1455.
    • (2011) Eur J Immunol , vol.41 , pp. 1445-1455
    • Magalhaes, J.G.1    Lee, J.2    Geddes, K.3    Rubino, S.4    Philpott, D.J.5    Girardin, S.E.6
  • 166
    • 77954222516 scopus 로고    scopus 로고
    • The role of infections in the pathogenesis and course of multiple sclerosis
    • Pawate S, Sriram S. The role of infections in the pathogenesis and course of multiple sclerosis. Ann Indian Acad Neurol 2010;3:80-86.
    • (2010) Ann Indian Acad Neurol , vol.3 , pp. 80-86
    • Pawate, S.1    Sriram, S.2
  • 167
    • 0034910692 scopus 로고    scopus 로고
    • Bacterial peptidoglycan and immune reactivity in the central nervous system in multiple sclerosis
    • Schrijver IA, et al. Bacterial peptidoglycan and immune reactivity in the central nervous system in multiple sclerosis. Brain 2001;124:1544-1554.
    • (2001) Brain , vol.124 , pp. 1544-1554
    • Schrijver, I.A.1
  • 168
    • 37149024425 scopus 로고    scopus 로고
    • Phagocytes containing a disease-promoting Toll-like receptor/Nod ligand are present in the brain during demyelinating disease in primates
    • Visser L, et al. Phagocytes containing a disease-promoting Toll-like receptor/Nod ligand are present in the brain during demyelinating disease in primates. Am J Pathol 2006;169:1671-1685.
    • (2006) Am J Pathol , vol.169 , pp. 1671-1685
    • Visser, L.1
  • 169
    • 19944427519 scopus 로고    scopus 로고
    • Proinflammatory bacterial peptidoglycan as a cofactor for the development of central nervous system autoimmune disease
    • Visser L, et al. Proinflammatory bacterial peptidoglycan as a cofactor for the development of central nervous system autoimmune disease. J Immunol 2005;174:808-816.
    • (2005) J Immunol , vol.174 , pp. 808-816
    • Visser, L.1
  • 170
    • 20044383560 scopus 로고    scopus 로고
    • Microarray analysis identifies an aberrant expression of apoptosis and DNA damage-regulatory genes in multiple sclerosis
    • Satoh J, et al. Microarray analysis identifies an aberrant expression of apoptosis and DNA damage-regulatory genes in multiple sclerosis. Neurobiol Dis 2005;18:537-550.
    • (2005) Neurobiol Dis , vol.18 , pp. 537-550
    • Satoh, J.1
  • 171
    • 78751690657 scopus 로고    scopus 로고
    • Signaling via the RIP2 adaptor protein in central nervous system-infiltrating dendritic cells promotes inflammation and autoimmunity
    • Shaw PJ, et al. Signaling via the RIP2 adaptor protein in central nervous system-infiltrating dendritic cells promotes inflammation and autoimmunity. Immunity 2011;34:75-84.
    • (2011) Immunity , vol.34 , pp. 75-84
    • Shaw, P.J.1
  • 172
    • 33646433989 scopus 로고    scopus 로고
    • Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis
    • Chen Y, et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 2006;116:1317-1326.
    • (2006) J Clin Invest , vol.116 , pp. 1317-1326
    • Chen, Y.1
  • 173
    • 13244283212 scopus 로고    scopus 로고
    • IL-23 drives a pathogenic T cell population that induces autoimmune inflammation
    • Langrish CL, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005;201:233-240.
    • (2005) J Exp Med , vol.201 , pp. 233-240
    • Langrish, C.L.1
  • 174
    • 27544465354 scopus 로고    scopus 로고
    • A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17
    • Park H, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005;6:1133-1141.
    • (2005) Nat Immunol , vol.6 , pp. 1133-1141
    • Park, H.1
  • 175
    • 78650804976 scopus 로고    scopus 로고
    • New insights into the generation of Th2 immunity and potential therapeutic targets for the treatment of asthma
    • Kaiko GE, Foster PS. New insights into the generation of Th2 immunity and potential therapeutic targets for the treatment of asthma. Curr Opin Allergy Clin Immunol 2011;11:39-45.
    • (2011) Curr Opin Allergy Clin Immunol , vol.11 , pp. 39-45
    • Kaiko, G.E.1    Foster, P.S.2
  • 177
    • 58249136153 scopus 로고    scopus 로고
    • Distinct intracellular signaling pathways control the synthesis of IL-8 and RANTES in TLR1/TLR2, TLR3 or NOD1 activated human airway epithelial cells
    • Berube J, Bourdon C, Yao Y, Rousseau S. Distinct intracellular signaling pathways control the synthesis of IL-8 and RANTES in TLR1/TLR2, TLR3 or NOD1 activated human airway epithelial cells. Cell Signal 2009;21:448-456.
    • (2009) Cell Signal , vol.21 , pp. 448-456
    • Berube, J.1    Bourdon, C.2    Yao, Y.3    Rousseau, S.4
  • 178
    • 44949208352 scopus 로고    scopus 로고
    • Pattern recognition receptors and interleukin-8 mediate effects of Gram-positive and Gram-negative bacteria on lung epithelial cell function
    • Sorrentino R, de Souza PM, Sriskandan S, Duffin C, Paul-Clark MJ, Mitchell JA. Pattern recognition receptors and interleukin-8 mediate effects of Gram-positive and Gram-negative bacteria on lung epithelial cell function. Br J Pharmacol 2008;154:864-871.
    • (2008) Br J Pharmacol , vol.154 , pp. 864-871
    • Sorrentino, R.1    de Souza, P.M.2    Sriskandan, S.3    Duffin, C.4    Paul-Clark, M.J.5    Mitchell, J.A.6
  • 179
    • 51849094527 scopus 로고    scopus 로고
    • Bacterial peptide recognition and immune activation facilitated by human peptide transporter PEPT2
    • Swaan PW, et al. Bacterial peptide recognition and immune activation facilitated by human peptide transporter PEPT2. Am J Respir Cell Mol Biol 2008;39:536-542.
    • (2008) Am J Respir Cell Mol Biol , vol.39 , pp. 536-542
    • Swaan, P.W.1
  • 180
    • 20244364812 scopus 로고    scopus 로고
    • NOD1 variation, immunoglobulin E and asthma
    • Hysi P, et al. NOD1 variation, immunoglobulin E and asthma. Hum Mol Genet 2005;14:935-941.
    • (2005) Hum Mol Genet , vol.14 , pp. 935-941
    • Hysi, P.1
  • 181
    • 0037393553 scopus 로고    scopus 로고
    • Association between polymorphisms in caspase recruitment domain containing protein 15 and allergy in two German populations
    • Kabesch M, Peters W, Carr D, Leupold W, Weiland SK, von Mutius E. Association between polymorphisms in caspase recruitment domain containing protein 15 and allergy in two German populations. J Allergy Clin Immunol 2003;111:813-817.
    • (2003) J Allergy Clin Immunol , vol.111 , pp. 813-817
    • Kabesch, M.1    Peters, W.2    Carr, D.3    Leupold, W.4    Weiland, S.K.5    von Mutius, E.6
  • 182
    • 78649824846 scopus 로고    scopus 로고
    • Innate signals from Nod2 block respiratory tolerance and program T(H)2-driven allergic inflammation
    • Duan W, et al. Innate signals from Nod2 block respiratory tolerance and program T(H)2-driven allergic inflammation. J Allergy Clin Immunol 2010;126:1284-1293.
    • (2010) J Allergy Clin Immunol , vol.126 , pp. 1284-1293
    • Duan, W.1
  • 183
    • 33644862359 scopus 로고    scopus 로고
    • Signals from OX40 regulate nuclear factor of activated T cells c1 and T cell helper 2 lineage commitment
    • So T, Song J, Sugie K, Altman A, Croft M. Signals from OX40 regulate nuclear factor of activated T cells c1 and T cell helper 2 lineage commitment. Proc Natl Acad Sci USA 2006;103:3740-3745.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 3740-3745
    • So, T.1    Song, J.2    Sugie, K.3    Altman, A.4    Croft, M.5
  • 184
    • 0042662863 scopus 로고    scopus 로고
    • OX40 (CD134) controls memory T helper 2 cells that drive lung inflammation
    • Salek-Ardakani S, et al. OX40 (CD134) controls memory T helper 2 cells that drive lung inflammation. J Exp Med 2003;198:315-324.
    • (2003) J Exp Med , vol.198 , pp. 315-324
    • Salek-Ardakani, S.1
  • 185
    • 34548646019 scopus 로고    scopus 로고
    • Cutting edge: OX40 inhibits TGF-beta- and antigen-driven conversion of naive CD4 T cells into CD25+Foxp3+ T cells
    • So T, Croft M. Cutting edge: OX40 inhibits TGF-beta- and antigen-driven conversion of naive CD4 T cells into CD25+Foxp3+ T cells. J Immunol 2007;179:1427-1430.
    • (2007) J Immunol , vol.179 , pp. 1427-1430
    • So, T.1    Croft, M.2
  • 186
    • 34948883517 scopus 로고    scopus 로고
    • OX40 costimulation turns off Foxp3+ Tregs
    • Vu MD, et al. OX40 costimulation turns off Foxp3+ Tregs. Blood 2007;110:2501-2510.
    • (2007) Blood , vol.110 , pp. 2501-2510
    • Vu, M.D.1
  • 187
    • 35248851540 scopus 로고    scopus 로고
    • Childhood asthma after bacterial colonization of the airway in neonates
    • Bisgaard H, et al. Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med 2007;357:1487-1495.
    • (2007) N Engl J Med , vol.357 , pp. 1487-1495
    • Bisgaard, H.1
  • 188
    • 78049277883 scopus 로고    scopus 로고
    • Innate immune cell populations function as initiators and effectors in Th2 cytokine responses
    • Saenz SA, Noti M, Artis D. Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends Immunol 2010;31:407-413.
    • (2010) Trends Immunol , vol.31 , pp. 407-413
    • Saenz, S.A.1    Noti, M.2    Artis, D.3
  • 189
    • 75749122181 scopus 로고    scopus 로고
    • Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells
    • Moro K, et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 2010;463:540-544.
    • (2010) Nature , vol.463 , pp. 540-544
    • Moro, K.1
  • 190
    • 77951817294 scopus 로고    scopus 로고
    • IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses
    • Saenz SA, et al. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 2010;464:1362-1366.
    • (2010) Nature , vol.464 , pp. 1362-1366
    • Saenz, S.A.1
  • 191
    • 77951817855 scopus 로고    scopus 로고
    • Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity
    • Neill DR, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 2010;464:1367-1370.
    • (2010) Nature , vol.464 , pp. 1367-1370
    • Neill, D.R.1
  • 192
    • 77954926597 scopus 로고    scopus 로고
    • Systemically dispersed innate IL-13-expressing cells in type 2 immunity
    • Price AE, et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci USA 2010;107:11489-11494.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 11489-11494
    • Price, A.E.1
  • 193
    • 48249109581 scopus 로고    scopus 로고
    • Differential function of the NACHT-LRR (NLR) members Nod1 and Nod2 in arthritis
    • Joosten LA, et al. Differential function of the NACHT-LRR (NLR) members Nod1 and Nod2 in arthritis. Proc Natl Acad Sci USA 2008;105:9017-9022.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 9017-9022
    • Joosten, L.A.1
  • 194
    • 60649087337 scopus 로고    scopus 로고
    • PGLYRP-2 and Nod2 are both required for peptidoglycan-induced arthritis and local inflammation
    • Saha S, et al. PGLYRP-2 and Nod2 are both required for peptidoglycan-induced arthritis and local inflammation. Cell Host Microbe 2009;5:137-150.
    • (2009) Cell Host Microbe , vol.5 , pp. 137-150
    • Saha, S.1
  • 195
    • 65249170022 scopus 로고    scopus 로고
    • Activation of nucleotide oligomerization domain 2 exacerbates a murine model of proteoglycan-induced arthritis
    • Rosenzweig HL, et al. Activation of nucleotide oligomerization domain 2 exacerbates a murine model of proteoglycan-induced arthritis. J Leuk Biol 2009;85:711-718.
    • (2009) J Leuk Biol , vol.85 , pp. 711-718
    • Rosenzweig, H.L.1
  • 196
    • 10744223444 scopus 로고    scopus 로고
    • Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: critical role of myeloid differentiation factor 88
    • Joosten LA, et al. Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: critical role of myeloid differentiation factor 88. J Immunol 2003;171:6145-6153.
    • (2003) J Immunol , vol.171 , pp. 6145-6153
    • Joosten, L.A.1
  • 197
    • 33746983501 scopus 로고    scopus 로고
    • Increased arthritis susceptibility in cartilage proteoglycan-specific T cell receptor-transgenic mice
    • Berlo SE, et al. Increased arthritis susceptibility in cartilage proteoglycan-specific T cell receptor-transgenic mice. Arthritis Rheum 2006;54:2423-2433.
    • (2006) Arthritis Rheum , vol.54 , pp. 2423-2433
    • Berlo, S.E.1
  • 198
    • 19944431022 scopus 로고    scopus 로고
    • Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome
    • Kanazawa N, et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood 2005;105:1195-1197.
    • (2005) Blood , vol.105 , pp. 1195-1197
    • Kanazawa, N.1
  • 199
    • 17944372335 scopus 로고    scopus 로고
    • CARD15 mutations in Blau syndrome
    • Miceli-Richard C, et al. CARD15 mutations in Blau syndrome. Nat Genet 2001;29:19-20.
    • (2001) Nat Genet , vol.29 , pp. 19-20
    • Miceli-Richard, C.1
  • 200
    • 13444281923 scopus 로고    scopus 로고
    • Blau syndrome mutation of CARD15/NOD2 in sporadic early onset granulomatous arthritis
    • Rose CD, et al. Blau syndrome mutation of CARD15/NOD2 in sporadic early onset granulomatous arthritis. J Rheumatol 2005;32:373-375.
    • (2005) J Rheumatol , vol.32 , pp. 373-375
    • Rose, C.D.1
  • 201
    • 77955655337 scopus 로고    scopus 로고
    • Nod-like receptors: sentinels at host membranes
    • Philpott DJ, Girardin SE. Nod-like receptors: sentinels at host membranes. Curr Opin Immunol 2010;22:428-434.
    • (2010) Curr Opin Immunol , vol.22 , pp. 428-434
    • Philpott, D.J.1    Girardin, S.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.