메뉴 건너뛰기




Volumn 7, Issue 3, 2011, Pages

Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

CHECKPOINT KINASE 2; FUNGAL DNA; MRE11 PROTEIN; MRX COMPLEX; PROTEIN XRS2; RAD50 PROTEIN; RAD52 PROTEIN; SACCHAROMYCES CEREVISIAE PROTEIN; UNCLASSIFIED DRUG; CELL CYCLE PROTEIN; DEOXYRIBONUCLEASE; EXODEOXYRIBONUCLEASE; HYDROXYUREA; MRE11 PROTEIN, S CEREVISIAE; NUCLEIC ACID SYNTHESIS INHIBITOR; PROTEIN SERINE THREONINE KINASE; RAD53 PROTEIN, S CEREVISIAE;

EID: 79953753026     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1001339     Document Type: Article
Times cited : (31)

References (53)
  • 1
    • 54549127139 scopus 로고    scopus 로고
    • Comparative genomics and molecular dynamics of DNA repeats in eukaryotes
    • Richard GF, Kerrest A, Dujon B, (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72: 686-727.
    • (2008) Microbiol Mol Biol Rev , vol.72 , pp. 686-727
    • Richard, G.F.1    Kerrest, A.2    Dujon, B.3
  • 2
    • 34547692622 scopus 로고    scopus 로고
    • Trinucleotide repeat disorders
    • Orr HT, Zoghbi HY, (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30: 575-621.
    • (2007) Annu Rev Neurosci , vol.30 , pp. 575-621
    • Orr, H.T.1    Zoghbi, H.Y.2
  • 3
    • 59849089676 scopus 로고    scopus 로고
    • Microsatellite repeat instability and neurological disease
    • Brouwer JR, Willemsen R, Oostra BA, (2009) Microsatellite repeat instability and neurological disease. Bioessays 31: 71-83.
    • (2009) Bioessays , vol.31 , pp. 71-83
    • Brouwer, J.R.1    Willemsen, R.2    Oostra, B.A.3
  • 4
    • 34250878426 scopus 로고    scopus 로고
    • Expandable DNA repeats and human disease
    • Mirkin SM, (2007) Expandable DNA repeats and human disease. Nature 447: 932-940.
    • (2007) Nature , vol.447 , pp. 932-940
    • Mirkin, S.M.1
  • 5
    • 0030725454 scopus 로고    scopus 로고
    • Trinucleotide repeats affect DNA replication in vivo
    • Samadashwily GM, Raca G, Mirkin SM, (1997) Trinucleotide repeats affect DNA replication in vivo. Nat Genet 17: 298-304.
    • (1997) Nat Genet , vol.17 , pp. 298-304
    • Samadashwily, G.M.1    Raca, G.2    Mirkin, S.M.3
  • 7
    • 59649119505 scopus 로고    scopus 로고
    • SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination
    • Kerrest A, Anand RP, Sundararajan R, Bermejo R, Liberi G, et al. (2009) SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nat Struct Mol Biol 16: 159-167.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 159-167
    • Kerrest, A.1    Anand, R.P.2    Sundararajan, R.3    Bermejo, R.4    Liberi, G.5
  • 8
    • 3943086339 scopus 로고    scopus 로고
    • Flap endonuclease 1: a central component of DNA metabolism
    • Liu Y, Kao HI, Bambara RA, (2004) Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem 73: 589-615.
    • (2004) Annu Rev Biochem , vol.73 , pp. 589-615
    • Liu, Y.1    Kao, H.I.2    Bambara, R.A.3
  • 9
    • 25844524498 scopus 로고    scopus 로고
    • Slipped (CTG)*(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair
    • Panigrahi GB, Lau R, Montgomery SE, Leonard MR, Pearson CE, (2005) Slipped (CTG)*(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair. Nat Struct Mol Biol 12: 654-662.
    • (2005) Nat Struct Mol Biol , vol.12 , pp. 654-662
    • Panigrahi, G.B.1    Lau, R.2    Montgomery, S.E.3    Leonard, M.R.4    Pearson, C.E.5
  • 10
    • 34547681831 scopus 로고    scopus 로고
    • Chromosome fragility: molecular mechanisms and cellular consequences
    • Freudenreich CH, (2007) Chromosome fragility: molecular mechanisms and cellular consequences. Front Biosci 12: 4911-4924.
    • (2007) Front Biosci , vol.12 , pp. 4911-4924
    • Freudenreich, C.H.1
  • 11
    • 55549095970 scopus 로고    scopus 로고
    • Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair
    • Kim HM, Narayanan V, Mieczkowski PA, Petes TD, Krasilnikova MM, et al. (2008) Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair. EMBO J 27: 2896-2906.
    • (2008) EMBO J , vol.27 , pp. 2896-2906
    • Kim, H.M.1    Narayanan, V.2    Mieczkowski, P.A.3    Petes, T.D.4    Krasilnikova, M.M.5
  • 12
    • 74249111370 scopus 로고    scopus 로고
    • Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae
    • Sundararajan R, Gellon L, Zunder RM, Freudenreich CH, (2010) Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae. Genetics 184: 65-77.
    • (2010) Genetics , vol.184 , pp. 65-77
    • Sundararajan, R.1    Gellon, L.2    Zunder, R.M.3    Freudenreich, C.H.4
  • 13
    • 10344263324 scopus 로고    scopus 로고
    • Recombination proteins in yeast
    • Krogh BO, Symington LS, (2004) Recombination proteins in yeast. Annu Rev Genet 38: 233-271.
    • (2004) Annu Rev Genet , vol.38 , pp. 233-271
    • Krogh, B.O.1    Symington, L.S.2
  • 14
    • 68249125048 scopus 로고    scopus 로고
    • Choreography of recombination proteins during the DNA damage response
    • Lisby M, Rothstein R, (2009) Choreography of recombination proteins during the DNA damage response. DNA Repair (Amst) 8: 1068-1076.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 1068-1076
    • Lisby, M.1    Rothstein, R.2
  • 15
    • 0037178740 scopus 로고    scopus 로고
    • Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects
    • Sogo JM, Lopes M, Foiani M, (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297: 599-602.
    • (2002) Science , vol.297 , pp. 599-602
    • Sogo, J.M.1    Lopes, M.2    Foiani, M.3
  • 16
    • 33751419716 scopus 로고    scopus 로고
    • Surviving the breakup: the DNA damage checkpoint
    • Harrison JC, Haber JE, (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40: 209-235.
    • (2006) Annu Rev Genet , vol.40 , pp. 209-235
    • Harrison, J.C.1    Haber, J.E.2
  • 17
    • 68249099217 scopus 로고    scopus 로고
    • Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae
    • Putnam CD, Jaehnig EJ, Kolodner RD, (2009) Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair (Amst) 8: 974-982.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 974-982
    • Putnam, C.D.1    Jaehnig, E.J.2    Kolodner, R.D.3
  • 18
    • 0029085781 scopus 로고
    • A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage
    • Paulovich AG, Hartwell LH, (1995) A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82: 841-847.
    • (1995) Cell , vol.82 , pp. 841-847
    • Paulovich, A.G.1    Hartwell, L.H.2
  • 19
    • 0035797383 scopus 로고    scopus 로고
    • The DNA replication checkpoint response stabilizes stalled replication forks
    • Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P, et al. (2001) The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412: 557-561.
    • (2001) Nature , vol.412 , pp. 557-561
    • Lopes, M.1    Cotta-Ramusino, C.2    Pellicioli, A.3    Liberi, G.4    Plevani, P.5
  • 20
    • 0043066728 scopus 로고    scopus 로고
    • Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage
    • Redon C, Pilch DR, Rogakou EP, Orr AH, Lowndes NF, et al. (2003) Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Rep 4: 678-684.
    • (2003) EMBO Rep , vol.4 , pp. 678-684
    • Redon, C.1    Pilch, D.R.2    Rogakou, E.P.3    Orr, A.H.4    Lowndes, N.F.5
  • 21
    • 0027421043 scopus 로고
    • Loss of a yeast telomere: arrest, recovery, and chromosome loss
    • Sandell LL, Zakian VA, (1993) Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75: 729-739.
    • (1993) Cell , vol.75 , pp. 729-739
    • Sandell, L.L.1    Zakian, V.A.2
  • 22
    • 0030885666 scopus 로고    scopus 로고
    • CDC5 and CKII control adaptation to the yeast DNA damage checkpoint
    • Toczyski DP, Galgoczy DJ, Hartwell LH, (1997) CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90: 1097-1106.
    • (1997) Cell , vol.90 , pp. 1097-1106
    • Toczyski, D.P.1    Galgoczy, D.J.2    Hartwell, L.H.3
  • 23
    • 68249119893 scopus 로고    scopus 로고
    • DNA damage checkpoint inactivation: adaptation and recovery
    • Clemenson C, Marsolier-Kergoat MC, (2009) DNA damage checkpoint inactivation: adaptation and recovery. DNA Repair (Amst) 8: 1101-1109.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 1101-1109
    • Clemenson, C.1    Marsolier-Kergoat, M.C.2
  • 24
    • 0035093737 scopus 로고    scopus 로고
    • DNA double-strand breaks: signaling, repair and the cancer connection
    • Khanna KK, Jackson SP, (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27: 247-254.
    • (2001) Nat Genet , vol.27 , pp. 247-254
    • Khanna, K.K.1    Jackson, S.P.2
  • 26
    • 13444253858 scopus 로고    scopus 로고
    • Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases
    • Freudenreich CH, Lahiri M, (2004) Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases. Cell Cycle 3: 1370-1374.
    • (2004) Cell Cycle , vol.3 , pp. 1370-1374
    • Freudenreich, C.H.1    Lahiri, M.2
  • 27
    • 3242658268 scopus 로고    scopus 로고
    • Expanded CAG repeats activate the DNA damage checkpoint pathway
    • Lahiri M, Gustafson TL, Majors ER, Freudenreich CH, (2004) Expanded CAG repeats activate the DNA damage checkpoint pathway. Mol Cell 15: 287-293.
    • (2004) Mol Cell , vol.15 , pp. 287-293
    • Lahiri, M.1    Gustafson, T.L.2    Majors, E.R.3    Freudenreich, C.H.4
  • 28
    • 40649114958 scopus 로고    scopus 로고
    • Mrc1, Tof1 and Csm3 inhibit CAG.CTG repeat instability by at least two mechanisms
    • Razidlo DF, Lahue RS, (2008) Mrc1, Tof1 and Csm3 inhibit CAG.CTG repeat instability by at least two mechanisms. DNA Repair (Amst) 7: 633-640.
    • (2008) DNA Repair (Amst) , vol.7 , pp. 633-640
    • Razidlo, D.F.1    Lahue, R.S.2
  • 29
    • 0142027842 scopus 로고    scopus 로고
    • Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility
    • Callahan JL, Andrews KJ, Zakian VA, Freudenreich CH, (2003) Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility. Mol Cell Biol 23: 7849-7860.
    • (2003) Mol Cell Biol , vol.23 , pp. 7849-7860
    • Callahan, J.L.1    Andrews, K.J.2    Zakian, V.A.3    Freudenreich, C.H.4
  • 30
    • 0030598342 scopus 로고    scopus 로고
    • Relationship between Escherichia coli growth and deletions of CTG.CAG triplet repeats in plasmids
    • Bowater RP, Rosche WA, Jaworski A, Sinden RR, Wells RD, (1996) Relationship between Escherichia coli growth and deletions of CTG.CAG triplet repeats in plasmids. J Mol Biol 264: 82-96.
    • (1996) J Mol Biol , vol.264 , pp. 82-96
    • Bowater, R.P.1    Rosche, W.A.2    Jaworski, A.3    Sinden, R.R.4    Wells, R.D.5
  • 31
    • 0023712476 scopus 로고
    • The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae
    • Weinert TA, Hartwell LH, (1988) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241: 317-322.
    • (1988) Science , vol.241 , pp. 317-322
    • Weinert, T.A.1    Hartwell, L.H.2
  • 32
    • 0032493889 scopus 로고    scopus 로고
    • Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage
    • Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, et al. (1998) Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94: 399-409.
    • (1998) Cell , vol.94 , pp. 399-409
    • Lee, S.E.1    Moore, J.K.2    Holmes, A.3    Umezu, K.4    Kolodner, R.D.5
  • 33
    • 0142011461 scopus 로고    scopus 로고
    • The cellular response to DNA double-strand breaks: defining the sensors and mediators
    • Petrini JH, Stracker TH, (2003) The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 13: 458-462.
    • (2003) Trends Cell Biol , vol.13 , pp. 458-462
    • Petrini, J.H.1    Stracker, T.H.2
  • 34
    • 0036671706 scopus 로고    scopus 로고
    • Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase
    • Vaze MB, Pellicioli A, Lee SE, Ira G, Liberi G, et al. (2002) Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell 10: 373-385.
    • (2002) Mol Cell , vol.10 , pp. 373-385
    • Vaze, M.B.1    Pellicioli, A.2    Lee, S.E.3    Ira, G.4    Liberi, G.5
  • 35
  • 36
    • 33845337082 scopus 로고    scopus 로고
    • Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae
    • Enserink JM, Smolka MB, Zhou H, Kolodner RD, (2006) Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae. J Cell Biol 175: 729-741.
    • (2006) J Cell Biol , vol.175 , pp. 729-741
    • Enserink, J.M.1    Smolka, M.B.2    Zhou, H.3    Kolodner, R.D.4
  • 37
    • 0344443650 scopus 로고    scopus 로고
    • Induction of S. cerevisiae filamentous differentiation by slowed DNA synthesis involves Mec1, Rad53 and Swe1 checkpoint proteins
    • Jiang YW, Kang CM, (2003) Induction of S. cerevisiae filamentous differentiation by slowed DNA synthesis involves Mec1, Rad53 and Swe1 checkpoint proteins. Mol Biol Cell 14: 5116-5124.
    • (2003) Mol Biol Cell , vol.14 , pp. 5116-5124
    • Jiang, Y.W.1    Kang, C.M.2
  • 38
    • 0032488872 scopus 로고    scopus 로고
    • Expansion and length-dependent fragility of CTG repeats in yeast
    • Freudenreich CH, Kantrow SM, Zakian VA, (1998) Expansion and length-dependent fragility of CTG repeats in yeast. Science 279: 853-856.
    • (1998) Science , vol.279 , pp. 853-856
    • Freudenreich, C.H.1    Kantrow, S.M.2    Zakian, V.A.3
  • 39
    • 77956680298 scopus 로고    scopus 로고
    • Convergent Transcription through a Long CAG Tract Destabilizes Repeats and Induces Apoptosis
    • Lin Y, Leng M, Wan M, Wilson JH, (2010) Convergent Transcription through a Long CAG Tract Destabilizes Repeats and Induces Apoptosis. Mol Cell Biol.
    • (2010) Mol Cell Biol
    • Lin, Y.1    Leng, M.2    Wan, M.3    Wilson, J.H.4
  • 40
    • 67349167663 scopus 로고    scopus 로고
    • The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress
    • Tittel-Elmer M, Alabert C, Pasero P, Cobb JA, (2009) The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress. EMBO J 28: 1142-1156.
    • (2009) EMBO J , vol.28 , pp. 1142-1156
    • Tittel-Elmer, M.1    Alabert, C.2    Pasero, P.3    Cobb, J.A.4
  • 41
    • 0035902579 scopus 로고    scopus 로고
    • DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination
    • Kuzminov A, (2001) DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination. Proc Natl Acad Sci U S A 98: 8461-8468.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 8461-8468
    • Kuzminov, A.1
  • 42
    • 65249104138 scopus 로고    scopus 로고
    • Checkpoint responses to unusual structures formed by DNA repeats
    • Voineagu I, Freudenreich CH, Mirkin SM, (2009) Checkpoint responses to unusual structures formed by DNA repeats. Mol Carcinog 48: 309-318.
    • (2009) Mol Carcinog , vol.48 , pp. 309-318
    • Voineagu, I.1    Freudenreich, C.H.2    Mirkin, S.M.3
  • 43
    • 59649105477 scopus 로고    scopus 로고
    • Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility
    • Voineagu I, Surka CF, Shishkin AA, Krasilnikova MM, Mirkin SM, (2009) Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility. Nat Struct Mol Biol 16: 226-228.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 226-228
    • Voineagu, I.1    Surka, C.F.2    Shishkin, A.A.3    Krasilnikova, M.M.4    Mirkin, S.M.5
  • 44
    • 71049195737 scopus 로고    scopus 로고
    • ATM and ATR protect the genome against two different types of tandem repeat instability in Fragile X premutation mice
    • Entezam A, Usdin K, (2009) ATM and ATR protect the genome against two different types of tandem repeat instability in Fragile X premutation mice. Nucleic Acids Res 37: 6371-6377.
    • (2009) Nucleic Acids Res , vol.37 , pp. 6371-6377
    • Entezam, A.1    Usdin, K.2
  • 45
    • 39549086548 scopus 로고    scopus 로고
    • ATR protects the genome against CGG.CCG-repeat expansion in Fragile X premutation mice
    • Entezam A, Usdin K, (2008) ATR protects the genome against CGG.CCG-repeat expansion in Fragile X premutation mice. Nucleic Acids Res 36: 1050-1056.
    • (2008) Nucleic Acids Res , vol.36 , pp. 1050-1056
    • Entezam, A.1    Usdin, K.2
  • 46
    • 0034017208 scopus 로고    scopus 로고
    • CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae
    • Balakumaran BS, Freudenreich CH, Zakian VA, (2000) CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae. Hum Mol Genet 9: 93-100.
    • (2000) Hum Mol Genet , vol.9 , pp. 93-100
    • Balakumaran, B.S.1    Freudenreich, C.H.2    Zakian, V.A.3
  • 47
    • 32244438870 scopus 로고    scopus 로고
    • Transcription promotes contraction of CAG repeat tracts in human cells
    • Lin Y, Dion V, Wilson JH, (2006) Transcription promotes contraction of CAG repeat tracts in human cells. Nat Struct Mol Biol 13: 179-180.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 179-180
    • Lin, Y.1    Dion, V.2    Wilson, J.H.3
  • 48
    • 38449084379 scopus 로고    scopus 로고
    • DNA damage response and neuroprotection
    • Kruman II, Schwartz EI, (2008) DNA damage response and neuroprotection. Front Biosci 13: 2504-2515.
    • (2008) Front Biosci , vol.13 , pp. 2504-2515
    • Kruman, I.I.1    Schwartz, E.I.2
  • 49
  • 50
    • 4544281398 scopus 로고    scopus 로고
    • Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins
    • Lisby M, Barlow JH, Burgess RC, Rothstein R, (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118: 699-713.
    • (2004) Cell , vol.118 , pp. 699-713
    • Lisby, M.1    Barlow, J.H.2    Burgess, R.C.3    Rothstein, R.4
  • 51
  • 52
    • 0037979272 scopus 로고    scopus 로고
    • Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II
    • Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, et al. (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 23: 4207-4218.
    • (2003) Mol Cell Biol , vol.23 , pp. 4207-4218
    • Krogan, N.J.1    Kim, M.2    Tong, A.3    Golshani, A.4    Cagney, G.5
  • 53
    • 39749128389 scopus 로고    scopus 로고
    • Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo
    • Unit 21 23
    • Aparicio O, Geisberg JV, Sekinger E, Yang A, Moqtaderi Z, et al. (2005) Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr Protoc Mol Biol Chapter 21: Unit 21 23.
    • (2005) Curr Protoc Mol Biol Chapter , vol.21
    • Aparicio, O.1    Geisberg, J.V.2    Sekinger, E.3    Yang, A.4    Moqtaderi, Z.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.