메뉴 건너뛰기




Volumn 23, Issue 21, 2003, Pages 7849-7860

Mutations in Yeast Replication Proteins That Increase CAG/CTG Expansions Also Increase Repeat Fragility

Author keywords

[No Author keywords available]

Indexed keywords

ADENINE; CYTOSINE; DNA DIRECTED DNA POLYMERASE DELTA; DNA FRAGMENT; DNA PRIMASE; DNA2 HELICASE; ENDONUCLEASE; EXONUCLEASE; FEN1 PROTEIN; FUNGAL PROTEIN; GUANINE; HELICASE; NUCLEASE; POLYDEOXYRIBONUCLEOTIDE SYNTHASE; RAD27 PROTEIN; REPLICATION PROTEIN; RIBONUCLEASE III; THYMINE; UNCLASSIFIED DRUG;

EID: 0142027842     PISSN: 02707306     EISSN: None     Source Type: Journal    
DOI: 10.1128/MCB.23.21.7849-7860.2003     Document Type: Article
Times cited : (100)

References (93)
  • 1
    • 0033982575 scopus 로고    scopus 로고
    • The function of DNA polymerase α at telomeric G tails is important for telomere homeostasis
    • Adams Martin, A., I. Dionne, R. J. Wellinger, and C. Holm. 2000. The function of DNA polymerase α at telomeric G tails is important for telomere homeostasis. Mol. Cell. Biol. 20:786-796.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 786-796
    • Adams Martin, A.1    Dionne, I.2    Wellinger, R.J.3    Holm, C.4
  • 2
    • 0018801577 scopus 로고
    • Metabolism of Okazaki fragments during simian virus 40 DNA replication
    • Anderson, S., and M. L. DePamphilis. 1979. Metabolism of Okazaki fragments during simian virus 40 DNA replication. J. Biol. Chem. 254:11495-11504.
    • (1979) J. Biol. Chem. , vol.254 , pp. 11495-11504
    • Anderson, S.1    DePamphilis, M.L.2
  • 3
    • 0037449738 scopus 로고    scopus 로고
    • Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 and DNA2
    • Ayyagari, R., X. V. Gomes, D. A. Gordenin, and P. M. Burgers. 2003. Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 and DNA2. J. Biol. Chem. 278:1618-1625.
    • (2003) J. Biol. Chem. , vol.278 , pp. 1618-1625
    • Ayyagari, R.1    Gomes, X.V.2    Gordenin, D.A.3    Burgers, P.M.4
  • 4
    • 0035954737 scopus 로고    scopus 로고
    • RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes
    • Bae, S. H., K. H. Bae, J. A. Kim, and Y. S. Seo. 2001. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412:456-461.
    • (2001) Nature , vol.412 , pp. 456-461
    • Bae, S.H.1    Bae, K.H.2    Kim, J.A.3    Seo, Y.S.4
  • 5
    • 0032500542 scopus 로고    scopus 로고
    • Dna2 of Saccharomyces cerevisiae possesses a single-stranded DNA-specific endonuclease activity that is able to act on double-stranded DNA in the presence of ATP
    • Bae, S.-H., E. Choi, K.-H. Lee, J. S. Park, S.-H. Lee, and Y.-S. Seo. 1998. Dna2 of Saccharomyces cerevisiae possesses a single-stranded DNA-specific endonuclease activity that is able to act on double-stranded DNA in the presence of ATP. J. Biol. Chem. 273:26880-26890.
    • (1998) J. Biol. Chem. , vol.273 , pp. 26880-26890
    • Bae, S.-H.1    Choi, E.2    Lee, K.-H.3    Park, J.S.4    Lee, S.-H.5    Seo, Y.-S.6
  • 6
    • 0037135632 scopus 로고    scopus 로고
    • Coupling of DNA helicase and endonuclease activities of yeast Dna2 facilitates Okazaki fragment processing
    • Bae, S. H., D. W. Kim, J. Kim, J. H. Kim, D. H. Kim, H. D. Kim, H. Y. Kang, and Y. S. Seo. 2002. Coupling of DNA helicase and endonuclease activities of yeast Dna2 facilitates Okazaki fragment processing. J. Biol. Chem. 277: 26632-26641.
    • (2002) J. Biol. Chem. , vol.277 , pp. 26632-26641
    • Bae, S.H.1    Kim, D.W.2    Kim, J.3    Kim, J.H.4    Kim, D.H.5    Kim, H.D.6    Kang, H.Y.7    Seo, Y.S.8
  • 7
    • 0034528196 scopus 로고    scopus 로고
    • Characterization of the enzymatic properties of the yeast Dna2 helicase/endonuclease suggests a new model for Okazaki fragment processing
    • Bae, S. H., and Y. S. Seo. 2000. Characterization of the enzymatic properties of the yeast Dna2 helicase/endonuclease suggests a new model for Okazaki fragment processing. J. Biol. Chem. 275:38022-38031.
    • (2000) J. Biol. Chem. , vol.275 , pp. 38022-38031
    • Bae, S.H.1    Seo, Y.S.2
  • 8
    • 0034017208 scopus 로고    scopus 로고
    • CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae
    • Balakumaran, B. S., C. H. Freudenreich, and V. A. Zakian. 2000. CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae. Hum. Mol. Genet. 9:93-100.
    • (2000) Hum. Mol. Genet. , vol.9 , pp. 93-100
    • Balakumaran, B.S.1    Freudenreich, C.H.2    Zakian, V.A.3
  • 9
    • 0031054051 scopus 로고    scopus 로고
    • Enzymes and reactions at the eukaryotic DNA replication fork
    • Bambara, R. A., R. S. Murante, and L. A. Henricksen. 1997. Enzymes and reactions at the eukaryotic DNA replication fork. J. Biol. Chem. 272:4647-4650.
    • (1997) J. Biol. Chem. , vol.272 , pp. 4647-4650
    • Bambara, R.A.1    Murante, R.S.2    Henricksen, L.A.3
  • 11
    • 0032472223 scopus 로고    scopus 로고
    • Discrete start sites for DNA synthesis in the yeast ARS1 origin
    • Bielinsky, A. K., and S. A. Gerbi. 1998. Discrete start sites for DNA synthesis in the yeast ARS1 origin. Science 279:95-98.
    • (1998) Science , vol.279 , pp. 95-98
    • Bielinsky, A.K.1    Gerbi, S.A.2
  • 12
    • 0029098312 scopus 로고
    • A yeast gene required for DNA replication encodes a protein with homology to DNA helicases
    • Budd, M. E., and J. L. Campbell. 1995. A yeast gene required for DNA replication encodes a protein with homology to DNA helicases. Proc. Natl. Acad. Sci. USA 92:7642-7646.
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 7642-7646
    • Budd, M.E.1    Campbell, J.L.2
  • 13
    • 0031000629 scopus 로고    scopus 로고
    • A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function
    • Budd, M. E., and J. L. Campbell. 1997. A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Mol. Cell. Biol. 17:2136-2142.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 2136-2142
    • Budd, M.E.1    Campbell, J.L.2
  • 14
    • 0034596053 scopus 로고    scopus 로고
    • The nuclease activity of the yeast DNA2 protein, which is related to the RecB-like nucleases, is essential in vivo
    • Budd, M. E., W. Choe, and J. L. Campbell. 2000. The nuclease activity of the yeast DNA2 protein, which is related to the RecB-like nucleases, is essential in vivo. J. Biol. Chem. 275:16518-16529.
    • (2000) J. Biol. Chem. , vol.275 , pp. 16518-16529
    • Budd, M.E.1    Choe, W.2    Campbell, J.L.3
  • 15
    • 0032860479 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
    • Chen, C., and R. Kolodner. 1999. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat. Genet. 23:81-85.
    • (1999) Nat. Genet. , vol.23 , pp. 81-85
    • Chen, C.1    Kolodner, R.2
  • 16
    • 0036578758 scopus 로고    scopus 로고
    • Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells
    • Cleary, J. D., K. Nichol, Y. H. Wang, and C. E. Pearson. 2002. Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells. Nat. Genet. 31:37-46.
    • (2002) Nat. Genet. , vol.31 , pp. 37-46
    • Cleary, J.D.1    Nichol, K.2    Wang, Y.H.3    Pearson, C.E.4
  • 17
    • 0142052269 scopus 로고    scopus 로고
    • The contribution of cis-elements to disease-associated repeat instability. Cytogenet
    • in press
    • Cleary, J. D., and C. E. Pearson. The contribution of cis-elements to disease-associated repeat instability. Cytogenet. Genome Res., in press.
    • Genome Res.
    • Cleary, J.D.1    Pearson, C.E.2
  • 18
    • 0032973426 scopus 로고    scopus 로고
    • Increased instability of human CTG repeat tracts on yeast artificial chromosomes during gametogenesis
    • Cohen, H., D. D. Sears, D. Zenvirth, P. Hieter, and G. Simchen. 1999. Increased instability of human CTG repeat tracts on yeast artificial chromosomes during gametogenesis. Mol. Cell. Biol. 19:4153-4158.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4153-4158
    • Cohen, H.1    Sears, D.D.2    Zenvirth, D.3    Hieter, P.4    Simchen, G.5
  • 19
    • 0034640011 scopus 로고    scopus 로고
    • Fourteen and counting: Unraveling trinucleotide repeat diseases
    • Cummings, C. J., and H. Y. Zoghbi. 2000. Fourteen and counting: unraveling trinucleotide repeat diseases. Hum. Mol. Genet. 9:909-916.
    • (2000) Hum. Mol. Genet. , vol.9 , pp. 909-916
    • Cummings, C.J.1    Zoghbi, H.Y.2
  • 20
    • 0035902495 scopus 로고    scopus 로고
    • Links between replication and recombination in Saccharomyces cerevisiae: A hypersensitive requirement for homologous recombination in the absence of Rad27 activity
    • Debrauwere, H., S. Loeillet, W. Lin, J. Lopes, and A. Nicolas. 2001. Links between replication and recombination in Saccharomyces cerevisiae: a hypersensitive requirement for homologous recombination in the absence of Rad27 activity. Proc. Natl. Acad. Sci. USA 98:8263-8269.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 8263-8269
    • Debrauwere, H.1    Loeillet, S.2    Lin, W.3    Lopes, J.4    Nicolas, A.5
  • 21
    • 0033598944 scopus 로고    scopus 로고
    • Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta
    • Diede, S. J., and D. E. Gottschling. 1999. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 99:723-733.
    • (1999) Cell , vol.99 , pp. 723-733
    • Diede, S.J.1    Gottschling, D.E.2
  • 22
    • 0019484879 scopus 로고
    • Internuclear transfer of genetic information in kar1/ KAR1 heterokaryons in Saccharomyces cerevisiae
    • Dutcher, S. K. 1981. Internuclear transfer of genetic information in kar1/ KAR1 heterokaryons in Saccharomyces cerevisiae. Mol. Cell. Biol. 1:245-253.
    • (1981) Mol. Cell. Biol. , vol.1 , pp. 245-253
    • Dutcher, S.K.1
  • 24
    • 0032472275 scopus 로고    scopus 로고
    • Yeast RNase H(35) is the counterpart of the mammalian RNase HI, and is evolutionarily related to prokaryotic RNase HII
    • Frank, P., C. Craunshofer-Reiter, and U. Wintersberger. 1998. Yeast RNase H(35) is the counterpart of the mammalian RNase HI, and is evolutionarily related to prokaryotic RNase HII. FEBS Lett. 421:23-26.
    • (1998) FEBS Lett. , vol.421 , pp. 23-26
    • Frank, P.1    Craunshofer-Reiter, C.2    Wintersberger, U.3
  • 25
    • 0032488872 scopus 로고    scopus 로고
    • Expansion and length-dependent fragility of CTG repeats in yeast
    • Freudenreich, C. H., S. M. Kantrow, and V. Zakian. 1998. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279:853-856.
    • (1998) Science , vol.279 , pp. 853-856
    • Freudenreich, C.H.1    Kantrow, S.M.2    Zakian, V.3
  • 26
    • 0030895078 scopus 로고    scopus 로고
    • Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome
    • Freudenreich, C. H., J. B. Stavenhagen, and V. A. Zakian. 1997. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol. Cell. Biol. 17:2090-2098.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 2090-2098
    • Freudenreich, C.H.1    Stavenhagen, J.B.2    Zakian, V.A.3
  • 27
    • 0029053371 scopus 로고
    • Trinucleotide repeats that expand in human disease form hairpin structures in vitro
    • Gacy, A. M., G. Goellner, N. Juranic, S. Macura, and C. T. McMurray. 1995. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81:533-540.
    • (1995) Cell , vol.81 , pp. 533-540
    • Gacy, A.M.1    Goellner, G.2    Juranic, N.3    Macura, S.4    McMurray, C.T.5
  • 30
    • 0036828873 scopus 로고    scopus 로고
    • Weak strand displacement activity enables human DNA polymerase beta to expand CAG/ CTG triplet repeats at strand breaks
    • Hartenstine, M. J., M. F. Goodman, and J. Petruska. 2002. Weak strand displacement activity enables human DNA polymerase beta to expand CAG/ CTG triplet repeats at strand breaks. J. Biol. Chem. 277:41379-41389.
    • (2002) J. Biol. Chem. , vol.277 , pp. 41379-41389
    • Hartenstine, M.J.1    Goodman, M.F.2    Petruska, J.3
  • 31
    • 0015847513 scopus 로고
    • Genetic control of the cell division cycle in yeast: Genetic analysis of cdc mutants
    • Hartwell, L. H., R. K. Mortimer, J. Culotti, and M. Culotti. 1973. Genetic control of the cell division cycle in yeast: genetic analysis of cdc mutants. Genetics 74:267-286.
    • (1973) Genetics , vol.74 , pp. 267-286
    • Hartwell, L.H.1    Mortimer, R.K.2    Culotti, J.3    Culotti, M.4
  • 32
    • 0034595842 scopus 로고    scopus 로고
    • Inhibition of flap endonuclease 1 by flap secondary structure and relevance to repeat sequence expansion
    • Henricksen, L. A., S. Tom, Y. Liu, and R. A. Bambara. 2000. Inhibition of flap endonuclease 1 by flap secondary structure and relevance to repeat sequence expansion. J. Biol. Chem. 275:16420-16427.
    • (2000) J. Biol. Chem. , vol.275 , pp. 16420-16427
    • Henricksen, L.A.1    Tom, S.2    Liu, Y.3    Bambara, R.A.4
  • 33
    • 0037151114 scopus 로고    scopus 로고
    • DNA ligase I competes with FEN1 to expand repetitive DNA sequences in vitro
    • Henricksen, L. A., J. Veeraraghavan, D. R. Chafin, and R. A. Bambara. 2002. DNA ligase I competes with FEN1 to expand repetitive DNA sequences in vitro. J. Biol. Chem. 277:22361-22369.
    • (2002) J. Biol. Chem. , vol.277 , pp. 22361-22369
    • Henricksen, L.A.1    Veeraraghavan, J.2    Chafin, D.R.3    Bambara, R.A.4
  • 34
    • 0033525095 scopus 로고    scopus 로고
    • Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases
    • Holmes, A. M., and J. E. Haber. 1999. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 96:415-424.
    • (1999) Cell , vol.96 , pp. 415-424
    • Holmes, A.M.1    Haber, J.E.2
  • 35
    • 0032475933 scopus 로고    scopus 로고
    • Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: Coupling DNA and PCNA binding to FEN-1 activity
    • Hosfield, D. J., C. D. Mol, B. Shen, and J. A. Tainer. 1998. Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity. Cell 95:135-146.
    • (1998) Cell , vol.95 , pp. 135-146
    • Hosfield, D.J.1    Mol, C.D.2    Shen, B.3    Tainer, J.A.4
  • 36
    • 0033895728 scopus 로고    scopus 로고
    • The impact of lagging strand replication mutations on the stability of CAG repeat tracts in yeast
    • Ireland, M. J., S. S. Reinke, and D. M. Livingston. 2000. The impact of lagging strand replication mutations on the stability of CAG repeat tracts in yeast. Genetics 155:1657-1665.
    • (2000) Genetics , vol.155 , pp. 1657-1665
    • Ireland, M.J.1    Reinke, S.S.2    Livingston, D.M.3
  • 37
    • 0033551777 scopus 로고    scopus 로고
    • Genetic instabilities in (CTG-CAG) repeats occur by recombination
    • Jakupciak, J. P., and R. D. Wells. 1999. Genetic instabilities in (CTG-CAG) repeats occur by recombination. J. Biol. Chem. 274:23468-23479.
    • (1999) J. Biol. Chem. , vol.274 , pp. 23468-23479
    • Jakupciak, J.P.1    Wells, R.D.2
  • 38
    • 0036211555 scopus 로고    scopus 로고
    • Most meiotic CAG repeat tract-length alterations in yeast are SPO11 dependent
    • Jankowski, C., and D. K. Nag. 2002. Most meiotic CAG repeat tract-length alterations in yeast are SPO11 dependent. Mol. Genet. Genomics 267:64-70.
    • (2002) Mol. Genet. Genomics , vol.267 , pp. 64-70
    • Jankowski, C.1    Nag, D.K.2
  • 39
    • 0034102420 scopus 로고    scopus 로고
    • Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast
    • Jankowski, C., F. Nasar, and D. K. Nag. 2000. Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast. Proc. Natl. Acad. Sci. USA 97:2134-2139.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 2134-2139
    • Jankowski, C.1    Nasar, F.2    Nag, D.K.3
  • 40
    • 0031846463 scopus 로고    scopus 로고
    • Role of yeast Rth1 nuclease and its homologs in mutation avoidance, DNA repair, and DNA replication
    • Johnson, R., G. Kovvali, L. Prakash, and S. Prakash. 1998. Role of yeast Rth1 nuclease and its homologs in mutation avoidance, DNA repair, and DNA replication. Curr. Genet. 34:21-29.
    • (1998) Curr. Genet. , vol.34 , pp. 21-29
    • Johnson, R.1    Kovvali, G.2    Prakash, L.3    Prakash, S.4
  • 41
    • 0029039868 scopus 로고
    • Requirement of the yeast RTH1 5′ to 3′ exonuclease for the stability of simple repetitive DNA
    • Johnson, R. E., G. K. Kowali, L. Prakash, and S. Prakash. 1995. Requirement of the yeast RTH1 5′ to 3′ exonuclease for the stability of simple repetitive DNA. Science 269:238-240.
    • (1995) Science , vol.269 , pp. 238-240
    • Johnson, R.E.1    Kowali, G.K.2    Prakash, L.3    Prakash, S.4
  • 42
    • 0029035379 scopus 로고
    • Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli
    • Kang, S., A. Jaworski, K. Ohshima, and R. D. Wells. 1995. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat. Genet. 10:213-218.
    • (1995) Nat. Genet. , vol.10 , pp. 213-218
    • Kang, S.1    Jaworski, A.2    Ohshima, K.3    Wells, R.D.4
  • 43
    • 0037177823 scopus 로고    scopus 로고
    • Cleavage specificity of Saccharomyces cerevisiae Flap endonuclease 1 suggests a double-flap structure as the cellular substrate
    • Kao, H.-I., L. A. Henricksen, Y. Liu, and R. A. Bambara. 2002. Cleavage specificity of Saccharomyces cerevisiae Flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J. Biol. Chem. 277:14379-14389.
    • (2002) J. Biol. Chem. , vol.277 , pp. 14379-14389
    • Kao, H.-I.1    Henricksen, L.A.2    Liu, Y.3    Bambara, R.A.4
  • 44
    • 0032502675 scopus 로고    scopus 로고
    • Involvement of flap endonuclease 1 in base excision DNA repair
    • Kim, K., S. Biade, and Y. Matsumoto. 1998. Involvement of flap endonuclease 1 in base excision DNA repair. J. Biol. Chem. 273:8842-8848.
    • (1998) J. Biol. Chem. , vol.273 , pp. 8842-8848
    • Kim, K.1    Biade, S.2    Matsumoto, Y.3
  • 45
    • 0030957997 scopus 로고    scopus 로고
    • Second pathway for completion of human DNA base excision -repair: Reconstitution with purified proteins and requirement for DNase IV (FEN1)
    • Klungland, A., and T. Lindahl. 1997. Second pathway for completion of human DNA base excision -repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 16:3341-3348.
    • (1997) EMBO J. , vol.16 , pp. 3341-3348
    • Klungland, A.1    Lindahl, T.2
  • 46
    • 0031953438 scopus 로고    scopus 로고
    • Destabilization of yeast micro- and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase 8 (pol3-t)
    • Kokoska, R. J., L. Stefanovic, H. T. Tran, M. A. Resnick, D. A. Gordenin, and T. D. Petes. 1998. Destabilization of yeast micro- and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase 8 (pol3-t). Mol. Cell. Biol. 18:2779-2788.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 2779-2788
    • Kokoska, R.J.1    Stefanovic, L.2    Tran, H.T.3    Resnick, M.A.4    Gordenin, D.A.5    Petes, T.D.6
  • 47
    • 0035065524 scopus 로고    scopus 로고
    • Trinucleotide expansion in haploid germ cells by gap repair
    • Kovtun, I., and C. McMurray. 2001. Trinucleotide expansion in haploid germ cells by gap repair. Nat. Genet. 27:407-411.
    • (2001) Nat. Genet. , vol.27 , pp. 407-411
    • Kovtun, I.1    McMurray, C.2
  • 48
    • 0034893312 scopus 로고    scopus 로고
    • Structural features of trinucleotide repeats associated with DNA expansion
    • Kovtun, I. V., G. Goellner, and C. T. McMurray. 2001. Structural features of trinucleotide repeats associated with DNA expansion. Biochem. Cell Biol. 79:325-336.
    • (2001) Biochem. Cell Biol. , vol.79 , pp. 325-336
    • Kovtun, I.V.1    Goellner, G.2    McMurray, C.T.3
  • 49
    • 0001313535 scopus 로고
    • The distribution of the numbers of mutants in bacterial populations
    • Lea, D. E., and C. A. Coulson. 1949. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49:264-285.
    • (1949) J. Genet. , vol.49 , pp. 264-285
    • Lea, D.E.1    Coulson, C.A.2
  • 51
    • 0242718930 scopus 로고    scopus 로고
    • Trinucleotide repeat instability: A hairpin curve at the crossroads of replication, recombination, and repair
    • in press
    • Lenzmeier, B. A., and C. H. Freudenreich. Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair. Cytogenet. Genome Res., in press.
    • Cytogenet. Genome Res.
    • Lenzmeier, B.A.1    Freudenreich, C.H.2
  • 52
    • 0037515705 scopus 로고    scopus 로고
    • Analysis of human flap endonuclease 1 mutants reveals a mechanism to prevent triplet repeat expansion
    • Liu, Y., and R. A. Bambara. 2003. Analysis of human flap endonuclease 1 mutants reveals a mechanism to prevent triplet repeat expansion. J. Biol. Chem. 278:13728-13739.
    • (2003) J. Biol. Chem. , vol.278 , pp. 13728-13739
    • Liu, Y.1    Bambara, R.A.2
  • 53
    • 0037124348 scopus 로고    scopus 로고
    • Instability of the human minisatellite CEB1 in rad27Delta and dna2-1 replication-deficient yeast cells
    • Lopes, J., H. Debrauwere, J. Buard, and A. Nicolas. 2002. Instability of the human minisatellite CEB1 in rad27Delta and dna2-1 replication-deficient yeast cells. EMBO J. 21:3201-3211.
    • (2002) EMBO J. , vol.21 , pp. 3201-3211
    • Lopes, J.1    Debrauwere, H.2    Buard, J.3    Nicolas, A.4
  • 54
    • 0033543642 scopus 로고    scopus 로고
    • Abasic sites induce triplet-repeat expansion during DNA replication in vitro
    • Lyons-Darden, T., and M. D. Topal. 1999. Abasic sites induce triplet-repeat expansion during DNA replication in vitro. J. Biol. Chem. 274:25975-25978.
    • (1999) J. Biol. Chem. , vol.274 , pp. 25975-25978
    • Lyons-Darden, T.1    Topal, M.D.2
  • 55
    • 0036935793 scopus 로고    scopus 로고
    • The human minisatellites MS1, MS32, MS205 and CEB1 integrated into the yeast genome exhibit different degrees of mitotic instability but are all stabilised by RAD27
    • Maleki, S., H. Cederberg, and U. Rannug. 2002. The human minisatellites MS1, MS32, MS205 and CEB1 integrated into the yeast genome exhibit different degrees of mitotic instability but are all stabilised by RAD27. Curr. Genet. 41:333-341.
    • (2002) Curr. Genet. , vol.41 , pp. 333-341
    • Maleki, S.1    Cederberg, H.2    Rannug, U.3
  • 56
    • 0032708840 scopus 로고    scopus 로고
    • Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice
    • Manley, K., T. L. Shirley, L. Flaherty, and A. Messer. 1999. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat. Genet. 23:471-473.
    • (1999) Nat. Genet. , vol.23 , pp. 471-473
    • Manley, K.1    Shirley, T.L.2    Flaherty, L.3    Messer, A.4
  • 57
    • 0029958255 scopus 로고    scopus 로고
    • Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae
    • Maurer, D. J., B. L. O'Callaghan, and D. M. Livingston. 1996. Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:6617-6622.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 6617-6622
    • Maurer, D.J.1    O'Callaghan, B.L.2    Livingston, D.M.3
  • 58
    • 0034176967 scopus 로고    scopus 로고
    • Replication fork arrest and DNA recombination
    • Michel, B. 2000. Replication fork arrest and DNA recombination. Trends Biochem. Sci. 25:173-178.
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 173-178
    • Michel, B.1
  • 59
    • 0031025093 scopus 로고    scopus 로고
    • DNA double-strand breaks caused by replication arrest
    • Michel, B., S. D. Erlich, and M. Uzest. 1997. DNA double-strand breaks caused by replication arrest. EMBO J. 16:430-438.
    • (1997) EMBO J. , vol.16 , pp. 430-438
    • Michel, B.1    Erlich, S.D.2    Uzest, M.3
  • 60
    • 0030947319 scopus 로고    scopus 로고
    • Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae
    • Miret, J. J., L. Pessoa-Brandāo, and R. S. Lahue. 1997. Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:3382-3387.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 3382-3387
    • Miret, J.J.1    Pessoa-Brandao, L.2    Lahue, R.S.3
  • 61
    • 0030737538 scopus 로고    scopus 로고
    • Trinucleotide repeats associated with human disease
    • Mitas, M. 1997. Trinucleotide repeats associated with human disease. Nucleic Acids Res. 25:2245-2253.
    • (1997) Nucleic Acids Res. , vol.25 , pp. 2245-2253
    • Mitas, M.1
  • 62
    • 0032478084 scopus 로고    scopus 로고
    • Junction ribonuclease: An activity in Okazaki fragment processing
    • Murante, R. S., L. A. Henricksen, and R. A. Bambara. 1998. Junction ribonuclease: an activity in Okazaki fragment processing. Proc. Natl. Acad. Sci. USA 95:2244-2249.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 2244-2249
    • Murante, R.S.1    Henricksen, L.A.2    Bambara, R.A.3
  • 63
    • 0029242153 scopus 로고
    • The fragile X syndromes
    • Nelson, D. L. 1995. The fragile X syndromes. Cell Biol. 6:5-11.
    • (1995) Cell Biol. , vol.6 , pp. 5-11
    • Nelson, D.L.1
  • 64
    • 0032974345 scopus 로고    scopus 로고
    • Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27
    • Parenteau, J., and R. J. Wellinger. 1999. Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27. Mol. Cell. Biol. 19:4143-4152.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4143-4152
    • Parenteau, J.1    Wellinger, R.J.2
  • 65
    • 0032102835 scopus 로고    scopus 로고
    • Trinucleotide repeat DNA structures: Dynamic mutations from dynamic DNA
    • Pearson, C. E., and R. R. Sinden. 1998. Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA. Curr. Opin. Struct. Biol. 8:321-330.
    • (1998) Curr. Opin. Struct. Biol. , vol.8 , pp. 321-330
    • Pearson, C.E.1    Sinden, R.R.2
  • 67
    • 0024959479 scopus 로고
    • Recombination occurs during telomere formation in yeast
    • Pluta, A. F., and V. A. Zakian. 1989. Recombination occurs during telomere formation in yeast. Nature 337:429-433.
    • (1989) Nature , vol.337 , pp. 429-433
    • Pluta, A.F.1    Zakian, V.A.2
  • 68
    • 0033512305 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging-strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease
    • Qiu, J., Y. Qian, P. Frank, U. Wintersberger, and B. Shen. 1999. Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging-strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease. Mol. Cell. Biol. 19:8361-8371.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 8361-8371
    • Qiu, J.1    Qian, Y.2    Frank, P.3    Wintersberger, U.4    Shen, B.5
  • 69
    • 0028890919 scopus 로고
    • Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene
    • Reagan, M. S., C. Pittenger, W. Siede, and E. C. Friedberg. 1995. Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. J. Bacteriol. 177:364-371.
    • (1995) J. Bacteriol. , vol.177 , pp. 364-371
    • Reagan, M.S.1    Pittenger, C.2    Siede, W.3    Friedberg, E.C.4
  • 70
    • 0342965192 scopus 로고    scopus 로고
    • Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats
    • Richard, G.-F., B. Dujon, and J. E. Haber. 1999. Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats. Mol. Gen. Genet. 261:871-882.
    • (1999) Mol. Gen. Genet. , vol.261 , pp. 871-882
    • Richard, G.-F.1    Dujon, B.2    Haber, J.E.3
  • 71
    • 0034658187 scopus 로고    scopus 로고
    • Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex
    • Richard, G. F., G. M. Goellner, C. T. McMurray, and J. E. Haber. 2000. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex. EMBO J. 19:2381-2390.
    • (2000) EMBO J. , vol.19 , pp. 2381-2390
    • Richard, G.F.1    Goellner, G.M.2    McMurray, C.T.3    Haber, J.E.4
  • 72
    • 0034252264 scopus 로고    scopus 로고
    • Mini- and microsatellite expansions: The recombination connection
    • Richard, G. F., and F. Paques. 2000. Mini- and microsatellite expansions: the recombination connection. EMBO Rep. 1:122-126.
    • (2000) EMBO Rep. , vol.1 , pp. 122-126
    • Richard, G.F.1    Paques, F.2
  • 73
    • 0035475642 scopus 로고    scopus 로고
    • Dynamic mutations: A decade of unstable expanded repeats in human genetic disease
    • Richards, R. I. 2001. Dynamic mutations: a decade of unstable expanded repeats in human genetic disease. Hum. Mol. Genet. 10:2187-2194.
    • (2001) Hum. Mol. Genet. , vol.10 , pp. 2187-2194
    • Richards, R.I.1
  • 74
    • 0033954246 scopus 로고    scopus 로고
    • Replication fork pausing and recombination or "gimme a break."
    • Rothstein, R., B. Michel, and S. Gangloff. 2000. Replication fork pausing and recombination or "gimme a break." Genes Dev. 14:1-10.
    • (2000) Genes Dev. , vol.14 , pp. 1-10
    • Rothstein, R.1    Michel, B.2    Gangloff, S.3
  • 75
    • 0030725454 scopus 로고    scopus 로고
    • Trinucleotide repeats affect DNA replication in vivo
    • Samadashwily, G. M., G. Raca, and S. M. Mirkin. 1997. Trinucleotide repeats affect DNA replication in vivo. Nat. Genet. 17:298-304.
    • (1997) Nat. Genet. , vol.17 , pp. 298-304
    • Samadashwily, G.M.1    Raca, G.2    Mirkin, S.M.3
  • 76
    • 0032514990 scopus 로고    scopus 로고
    • CTG repeats show bimodal amplification in E. coli
    • Sarkar, P. S., H.-C. Chang, B. Boudi, and S. Reddy. 1998. CTG repeats show bimodal amplification in E. coli. Cell 95:531-540.
    • (1998) Cell , vol.95 , pp. 531-540
    • Sarkar, P.S.1    Chang, H.-C.2    Boudi, B.3    Reddy, S.4
  • 77
    • 0028178792 scopus 로고
    • The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation
    • Schulz, V. P., and V. A. Zakian. 1994. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76:145-155.
    • (1994) Cell , vol.76 , pp. 145-155
    • Schulz, V.P.1    Zakian, V.A.2
  • 78
    • 0032779262 scopus 로고    scopus 로고
    • The effect of DNA replication mutations on CAG tract stability in yeast
    • Schweitzer, J. K., and D. M. Livingston. 1999. The effect of DNA replication mutations on CAG tract stability in yeast. Genetics 152:953-963.
    • (1999) Genetics , vol.152 , pp. 953-963
    • Schweitzer, J.K.1    Livingston, D.M.2
  • 79
    • 0031965224 scopus 로고    scopus 로고
    • Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation
    • Schweitzer, J. K., and D. M. Livingston. 1998. Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum. Mol. Genet. 7:69-74.
    • (1998) Hum. Mol. Genet. , vol.7 , pp. 69-74
    • Schweitzer, J.K.1    Livingston, D.M.2
  • 80
    • 0035695412 scopus 로고    scopus 로고
    • Meiotic alterations in CAG repeat tracts
    • Schweitzer, J. K., S. S. Reinke, and D. M. Livingston. 2001. Meiotic alterations in CAG repeat tracts. Genetics 159:1861-1865.
    • (2001) Genetics , vol.159 , pp. 1861-1865
    • Schweitzer, J.K.1    Reinke, S.S.2    Livingston, D.M.3
  • 81
    • 0037016743 scopus 로고    scopus 로고
    • Defective flap endonuclease 1 activity in mammalian cells is associated with impaired DNA repair and prolonged S phase delay
    • Shibata, Y., and T. Nakamura. 2002. Defective flap endonuclease 1 activity in mammalian cells is associated with impaired DNA repair and prolonged S phase delay. J. Biol. Chem. 277:746-754.
    • (2002) J. Biol. Chem. , vol.277 , pp. 746-754
    • Shibata, Y.1    Nakamura, T.2
  • 82
    • 0033070196 scopus 로고    scopus 로고
    • Human Genetics '99: Trinucleotide repeats. Biological implications of the DNA structures associated with disease-causing triplet repeats
    • Sinden, R. R. 1999. Human Genetics '99: trinucleotide repeats. Biological implications of the DNA structures associated with disease-causing triplet repeats. Am. J. Hum. Genet. 64:346-353.
    • (1999) Am. J. Hum. Genet. , vol.64 , pp. 346-353
    • Sinden, R.R.1
  • 83
    • 0028947298 scopus 로고
    • Conditional lethality of null mutations in RTH1 that encodes the yeast counterpart of a mammalian 5′- to 3′-exonuclease required for lagging strand synthesis in reconstituted systems
    • Sommers, C. H., E. J. Miller, B. Dujon, S. Prakash, and L. Prakash. 1995. Conditional lethality of null mutations in RTH1 that encodes the yeast counterpart of a mammalian 5′- to 3′-exonuclease required for lagging strand synthesis in reconstituted systems. J. Biol. Chem. 270:4193-4196.
    • (1995) J. Biol. Chem. , vol.270 , pp. 4193-4196
    • Sommers, C.H.1    Miller, E.J.2    Dujon, B.3    Prakash, S.4    Prakash, L.5
  • 86
    • 0032534704 scopus 로고    scopus 로고
    • Homologous recombination is required for the viability of rad27 mutants
    • Symington, L. S. 1998. Homologous recombination is required for the viability of rad27 mutants. Nucleic Acids Res. 26:5589-5595.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 5589-5595
    • Symington, L.S.1
  • 87
    • 0031442653 scopus 로고    scopus 로고
    • A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair
    • Tishkoff, D. X., N. Filosi, G. A. Gaida, and R. D. Kolodner. 1997. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88:253-263.
    • (1997) Cell , vol.88 , pp. 253-263
    • Tishkoff, D.X.1    Filosi, N.2    Gaida, G.A.3    Kolodner, R.D.4
  • 88
    • 0032925857 scopus 로고    scopus 로고
    • Genetic factors affecting the impact of DNA polymerase 8 activity on mutation avoidance in yeast
    • Tran, H. T., N. P. Degtyareva, D. A. Gordenin, and M. A. Resnick. 1999. Genetic factors affecting the impact of DNA polymerase 8 activity on mutation avoidance in yeast. Genetics 152:47-59.
    • (1999) Genetics , vol.152 , pp. 47-59
    • Tran, H.T.1    Degtyareva, N.P.2    Gordenin, D.A.3    Resnick, M.A.4
  • 89
    • 0029087573 scopus 로고
    • Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes
    • Tran, H. T., N. P. Degtyareva, N. N. Koloteva, A. Sugino, H. Masumoto, D. A. Gordenin, and M. A. Resnick. 1995. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol. Cell. Biol. 15:5607-5617.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 5607-5617
    • Tran, H.T.1    Degtyareva, N.P.2    Koloteva, N.N.3    Sugino, A.4    Masumoto, H.5    Gordenin, D.A.6    Resnick, M.A.7
  • 90
    • 0037081784 scopus 로고    scopus 로고
    • Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins
    • van den Broek, W. J., M. R. Nelen, D. G. Wansink, M. M. Coerwinkel, H. te Riele, P. J. Groenen, and B. Wieringa. 2002. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum. Mol. Genet. 11:191-198.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 191-198
    • Van den Broek, W.J.1    Nelen, M.R.2    Wansink, D.G.3    Coerwinkel, M.M.4    Te Riele, H.5    Groenen, P.J.6    Wieringa, B.7
  • 91
    • 0033515044 scopus 로고    scopus 로고
    • DNA ligation during excision repair in yeast cell-free extracts is specifically catalyzed by the CDC9 gene product
    • Wu, X., E. Braithwaite, and Z. Wang. 1999. DNA ligation during excision repair in yeast cell-free extracts is specifically catalyzed by the CDC9 gene product. Biochemistry 38:2628-2635.
    • (1999) Biochemistry , vol.38 , pp. 2628-2635
    • Wu, X.1    Braithwaite, E.2    Wang, Z.3
  • 92
    • 0033557310 scopus 로고    scopus 로고
    • Relationships between yeast Rad27 and Apn1 in response to apurinic/apyrimidinic (AP) sites in DNA
    • Wu, X., and Z. Wang. 1999. Relationships between yeast Rad27 and Apn1 in response to apurinic/apyrimidinic (AP) sites in DNA. Nucleic Acids Res. 27:956-962.
    • (1999) Nucleic Acids Res. , vol.27 , pp. 956-962
    • Wu, X.1    Wang, Z.2
  • 93
    • 0033574004 scopus 로고    scopus 로고
    • A role for FEN-1 in nonhomologous DNA end joining: The order of strand annealing and nucleolytic processing events
    • Wu, X., T. E. Wilson, and M. R. Lieber. 1999. A role for FEN-1 in nonhomologous DNA end joining: the order of strand annealing and nucleolytic processing events. Proc. Natl. Acad. Sci. USA 96:1303-1308.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 1303-1308
    • Wu, X.1    Wilson, T.E.2    Lieber, M.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.