메뉴 건너뛰기




Volumn 48, Issue 4, 2009, Pages 309-318

Checkpoint responses to unusual structures formed by DNA repeats

Author keywords

Alternative DNA structures; Chromosomal fragility; DNA damage checkpoints; DNA repeats; Replication

Indexed keywords

ATM PROTEIN; ATR PROTEIN; CHECKPOINT KINASE 1; CHECKPOINT KINASE 2; DOUBLE STRANDED DNA; PROTEIN RAD9; REPETITIVE DNA; CELL CYCLE PROTEIN; DNA;

EID: 65249104138     PISSN: 08991987     EISSN: 10982744     Source Type: Journal    
DOI: 10.1002/mc.20512     Document Type: Review
Times cited : (39)

References (93)
  • 1
    • 38449106276 scopus 로고    scopus 로고
    • Discovery of alternative DNA structures: A heroic decade (1979-1989)
    • Mirkin SM. Discovery of alternative DNA structures: A heroic decade (1979-1989). Front Biosci 2008; 13: 1064-1071.
    • (2008) Front Biosci , vol.13 , pp. 1064-1071
    • Mirkin, S.M.1
  • 2
    • 0027014233 scopus 로고
    • DNA structure, mutations, and human genetic disease
    • Sinden RR, Wells RD. DNA structure, mutations, and human genetic disease. Curr Opin Biotechnol 1992;3: 612-622.
    • (1992) Curr Opin Biotechnol , vol.3 , pp. 612-622
    • Sinden, R.R.1    Wells, R.D.2
  • 3
    • 38049100631 scopus 로고    scopus 로고
    • Features of trinucleotide repeat instability in vivo
    • Kovtun IV, McMurray Ct. Features of trinucleotide repeat instability in vivo. Cell Res 2008;18: 198-213.
    • (2008) Cell Res , vol.18 , pp. 198-213
    • Kovtun, I.V.1    McMurray, Ct.2
  • 4
    • 6344270124 scopus 로고    scopus 로고
    • Regulation of the DNA replication fork: Away to fight genomic instability
    • Toueille M, Hubscher U. Regulation of the DNA replication fork: Away to fight genomic instability. Chromosoma 2004; 113: 113-125.
    • (2004) Chromosoma , vol.113 , pp. 113-125
    • Toueille, M.1    Hubscher, U.2
  • 5
    • 33748173811 scopus 로고    scopus 로고
    • Contribution of DNA repair and cell cycle checkpoint arrest to the maintenance of genomic stability
    • Jeggo PA, Lobrich M. Contribution of DNA repair and cell cycle checkpoint arrest to the maintenance of genomic stability. DNA Repair (Amst) 2006;5: 1192-1198.
    • (2006) DNA Repair (Amst) , vol.5 , pp. 1192-1198
    • Jeggo, P.A.1    Lobrich, M.2
  • 6
    • 9244251125 scopus 로고    scopus 로고
    • Cell-cycle checkpoints and cancer
    • Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004;432: 316-323.
    • (2004) Nature , vol.432 , pp. 316-323
    • Kastan, M.B.1    Bartek, J.2
  • 7
    • 0001158989 scopus 로고    scopus 로고
    • DNA inverted repeats and human disease
    • Bissler JJ. DNA inverted repeats and human disease. Front Biosci 1998;3: d408-d418.
    • (1998) Front Biosci , vol.3
    • Bissler, J.J.1
  • 9
    • 0029053371 scopus 로고
    • Trinucleotide repeats that expand in human disease form hairpin structures in vitro
    • Gacy AM, Goellner G, Juranic N, Macura S, McMurray CT. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 1995;81: 533-540.
    • (1995) Cell , vol.81 , pp. 533-540
    • Gacy, A.M.1    Goellner, G.2    Juranic, N.3    MacUra, S.4    McMurray, C.T.5
  • 10
    • 0025933719 scopus 로고
    • Seven-base-pair inverted repeats in DNA form stable hairpins in vivo in Saccharomyces cerevisiae
    • Nag DK, Petes TD. Seven-base-pair inverted repeats in DNA form stable hairpins in vivo in Saccharomyces cerevisiae. Genetics 1991;129: 669-673.
    • (1991) Genetics , vol.129 , pp. 669-673
    • Nag, D.K.1    Petes, T.D.2
  • 11
    • 0024391833 scopus 로고
    • Slow replication of palindrome-containing DNA
    • Lindsey JC, Leach DR. Slow replication of palindrome-containing DNA. J Mol Biol 1989;206: 779-782.
    • (1989) J Mol Biol , vol.206 , pp. 779-782
    • Lindsey, J.C.1    Leach, D.R.2
  • 12
    • 0023218143 scopus 로고
    • Large palindromes in the lambda phage genome are preserved in a rec+ host by inhibiting lambda DNA replication
    • Shurvinton CE, Stahl MM, Stahl FW. Large palindromes in the lambda phage genome are preserved in a rec+ host by inhibiting lambda DNA replication. Proc Natl Acad Sci USA 1987;84: 1624-1628.
    • (1987) Proc Natl Acad Sci USA , vol.84 , pp. 1624-1628
    • Shurvinton, C.E.1    Stahl, M.M.2    Stahl, F.W.3
  • 13
    • 0142027842 scopus 로고    scopus 로고
    • Mutations in yeast replication proteins that increase CAG/ CTG expansions also increase repeat fragility
    • Callahan JL, Andrews KJ, Zakian VA, Freudenreich CH. Mutations in yeast replication proteins that increase CAG/ CTG expansions also increase repeat fragility. Mol Cell Biol 2003;23: 7849-7860.
    • (2003) Mol Cell Biol , vol.23 , pp. 7849-7860
    • Callahan, J.L.1    Andrews, K.J.2    Zakian, V.A.3    Freudenreich, C.H.4
  • 14
    • 0032779262 scopus 로고    scopus 로고
    • The effect of DNA replication mutations on CAG tract stability in yeast
    • Schweitzer JK, Livingston DM. The effect of DNA replication mutations on CAG tract stability in yeast. Genetics 1999;152: 953-963.
    • (1999) Genetics , vol.152 , pp. 953-963
    • Schweitzer, J.K.1    Livingston, D.M.2
  • 15
    • 0031965224 scopus 로고    scopus 로고
    • Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation
    • Schweitzer JK, Livingston DM. Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum Mol Genet 1998;7: 69-74.
    • (1998) Hum Mol Genet , vol.7 , pp. 69-74
    • Schweitzer, J.K.1    Livingston, D.M.2
  • 16
    • 0032488872 scopus 로고    scopus 로고
    • Expansion and length-dependent fragility of CTG repeats in yeast
    • Freudenreich CH, Kantrow SM, Zakian VA. Expansion and length-dependent fragility of CTG repeats in yeast. Science 1998;279: 853-856.
    • (1998) Science , vol.279 , pp. 853-856
    • Freudenreich, C.H.1    Kantrow, S.M.2    Zakian, V.A.3
  • 17
    • 48249141027 scopus 로고    scopus 로고
    • Replication stalling at unstable inverted repeats: Interplay between DNA hairpins and fork stabilizing proteins
    • Voineagu I, Narayanan V, Lobachev KS, Mirkin SM. Replication stalling at unstable inverted repeats: Interplay between DNA hairpins and fork stabilizing proteins. Proc Natl Acad Sci USA 2008;105: 9936-9941.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 9936-9941
    • Voineagu, I.1    Narayanan, V.2    Lobachev, K.S.3    Mirkin, S.M.4
  • 18
    • 40649101678 scopus 로고    scopus 로고
    • SbcCD causes a double-strand break at a dNa palindrome in the Escherichia coli chromosome
    • Eykelenboom JK, Blackwood JK, Okely E, Leach DR. SbcCD causes a double-strand break at a dNa palindrome in the Escherichia coli chromosome. Mol Cell 2008;29: 644-651.
    • (2008) Mol Cell , vol.29 , pp. 644-651
    • Eykelenboom, J.K.1    Blackwood, J.K.2    Okely, E.3    Leach, D.R.4
  • 19
    • 0028674914 scopus 로고
    • DNA palindromes, cruciform structures, genetic instability and secondary structure repair
    • Leach Long DR. DNA palindromes, cruciform structures, genetic instability and secondary structure repair. Bioessays 1994;16: 893-900.
    • (1994) Bioessays , vol.16 , pp. 893-900
    • Leach Long, D.R.1
  • 20
    • 33748620023 scopus 로고    scopus 로고
    • Palindromes and genomic stress fractures: Bracing and repairing the damage
    • Lewis SM, Cote AG. Palindromes and genomic stress fractures: Bracing and repairing the damage. DNA Repair (Amst) 2006;5: 1146-1160.
    • (2006) DNA Repair (Amst) , vol.5 , pp. 1146-1160
    • Lewis, S.M.1    Cote, A.G.2
  • 21
    • 0023889654 scopus 로고
    • Effect of base composition at the center of inverted repeated DNA sequences on cruciform transitions in DNA
    • Zheng GX, Sinden RR. Effect of base composition at the center of inverted repeated DNA sequences on cruciform transitions in DNA. J Biol Chem 1988;263: 5356-5361.
    • (1988) J Biol Chem , vol.263 , pp. 5356-5361
    • Zheng, G.X.1    Sinden, R.R.2
  • 22
    • 0027200006 scopus 로고
    • Formation of a single base mismatch impedes spontaneous DNA branch migration
    • Panyutin IG, Hsieh P. Formation of a single base mismatch impedes spontaneous DNA branch migration. J Mol Biol 1993;230: 413-424.
    • (1993) J Mol Biol , vol.230 , pp. 413-424
    • Panyutin, I.G.1    Hsieh, P.2
  • 23
    • 0025870925 scopus 로고
    • Torsionally tuned cruciform and Z-DNA probes for measuring unrestrained supercoiling at specific sites in DNA of living cells
    • Zheng GX, Kochel T, Hoepfner RW, Timmons SE, Sinden RR. Torsionally tuned cruciform and Z-DNA probes for measuring unrestrained supercoiling at specific sites in DNA of living cells. J Mol Biol 1991;221: 107-122.
    • (1991) J Mol Biol , vol.221 , pp. 107-122
    • Zheng, G.X.1    Kochel, T.2    Hoepfner, R.W.3    Timmons, S.E.4    Sinden, R.R.5
  • 25
    • 0026440765 scopus 로고
    • Transcriptionally driven cruciform formation in vivo
    • Dayn A, Malkhosyan S, Mirkin SM. Transcriptionally driven cruciform formation in vivo. Nucleic Acids Res 1992;20: 5991-5997.
    • (1992) Nucleic Acids Res , vol.20 , pp. 5991-5997
    • Dayn, A.1    Malkhosyan, S.2    Mirkin, S.M.3
  • 26
    • 52049119340 scopus 로고    scopus 로고
    • Mus81-dependent double-strand DNA breaks at in vivo-generated cruciform structures in S. cerevisiae
    • (a) Cote AG, Lewis SM. Mus81-dependent double-strand DNA breaks at in vivo-generated cruciform structures in S. cerevisiae. Mol Cell 2008;31:800-812.
    • (2008) Mol Cell , vol.31 , pp. 800-812
    • Cote, A.G.1    Lewis, S.M.2
  • 29
    • 0029939657 scopus 로고    scopus 로고
    • Triplex DNA in the nucleus: Direct binding of triplex-specific antibodies and their effect on transcription, replication and cell growth
    • Agazie YM, Burkholder GD, Lee JS. Triplex DNA in the nucleus: Direct binding of triplex-specific antibodies and their effect on transcription, replication and cell growth. Biochem J 1996;316(Pt 2): 461-466.
    • (1996) Biochem J , vol.316 , Issue.2 , pp. 461-466
    • Agazie, Y.M.1    Burkholder, G.D.2    Lee, J.S.3
  • 30
    • 0036765863 scopus 로고    scopus 로고
    • Triplex-forming DNAs in the human interphase nucleus visualized in situ by polypurine/polypyrimidine DNA probes and antitriplex antibodies
    • Ohno M, Fukagawa T, Lee JS, Ikemura T. Triplex-forming DNAs in the human interphase nucleus visualized in situ by polypurine/polypyrimidine DNA probes and antitriplex antibodies. Chromosoma 2002;111: 201-213.
    • (2002) Chromosoma , vol.111 , pp. 201-213
    • Ohno, M.1    Fukagawa, T.2    Lee, J.S.3    Ikemura, T.4
  • 31
    • 34250878426 scopus 로고    scopus 로고
    • Expandable DNA repeats and human disease
    • Mirkin SM. Expandable DNA repeats and human disease. Nature 2007;447: 932-940.
    • (2007) Nature , vol.447 , pp. 932-940
    • Mirkin, S.M.1
  • 32
    • 44949208513 scopus 로고    scopus 로고
    • DNA triplexes and Friedreich Ataxia
    • Wells RD. DNA triplexes and Friedreich ataxia. FASEB J 2008;22: 1625-1634.
    • (2008) FASEB J , vol.22 , pp. 1625-1634
    • Wells, R.D.1
  • 33
    • 33845352895 scopus 로고    scopus 로고
    • Dynamic roles for G4 DNA in the biology of eukaryotic cells
    • Maizels N. Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nat Struct Mol Biol 2006;13: 1055-1059.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 1055-1059
    • Maizels, N.1
  • 34
    • 43949089139 scopus 로고    scopus 로고
    • Thermodynamic prediction of RNA-DNAduplex- forming regions in the human genome
    • Huppert JL. Thermodynamic prediction of RNA-DNAduplex- forming regions in the human genome. Mol Biosyst 2008;4: 686-691.
    • (2008) Mol Biosyst , vol.4 , pp. 686-691
    • Huppert, J.L.1
  • 35
    • 0024787884 scopus 로고
    • Monovalent cation-induced structure of telomeric DNA: The G-quartet model
    • Williamson JR, Raghuraman MK, Cech TR. Monovalent cation-induced structure of telomeric DNA: The G-quartet model. Cell 1989;59: 871-880.
    • (1989) Cell , vol.59 , pp. 871-880
    • Williamson, J.R.1    Raghuraman, M.K.2    Cech, T.R.3
  • 36
    • 0028362201 scopus 로고
    • The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure
    • Fry M, Loeb LA. The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc Natl Acad Sci USA 1994;91: 4950-4954.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 4950-4954
    • Fry, M.1    Loeb, L.A.2
  • 37
    • 0037803571 scopus 로고    scopus 로고
    • Timeline: Z-DNA: The long road to biological function
    • Rich A, Zhang S. Timeline: Z-DNA: The long road to biological function. Nat Rev Genet 2003;4: 566-572.
    • (2003) Nat Rev Genet , vol.4 , pp. 566-572
    • Rich, A.1    Zhang, S.2
  • 38
    • 0019955810 scopus 로고
    • Z-DNA forming sequences are highly dispersed in the human genome
    • Hamada H, Kakunaga Potential T. Z-DNA forming sequences are highly dispersed in the human genome. Nature 1982;298: 396-398.
    • (1982) Nature , vol.298 , pp. 396-398
    • Hamada, H.1    Kakunaga Potential, T.2
  • 41
    • 0242718930 scopus 로고    scopus 로고
    • Trinucleotide repeat instability: A hairpin curve at the crossroads of replication, recombination, and repair
    • Lenzmeier BA, Freudenreich CH. Trinucleotide repeat instability: A hairpin curve at the crossroads of replication, recombination, and repair. Cytogenet Genome Res 2003;100: 7-24.
    • (2003) Cytogenet Genome Res , vol.100 , pp. 7-24
    • Lenzmeier, B.A.1    Freudenreich, C.H.2
  • 42
    • 34347238951 scopus 로고    scopus 로고
    • Hairpin- and cruciform-mediated chromosome breakage: Causes and consequences in eukaryotic cells
    • Lobachev KS, Rattray A, Narayanan V. Hairpin- and cruciform-mediated chromosome breakage: Causes and consequences in eukaryotic cells. Front Biosci 2007;12: 4208-4220.
    • (2007) Front Biosci , vol.12 , pp. 4208-4220
    • Lobachev, K.S.1    Rattray, A.2    Narayanan, V.3
  • 43
    • 33744944261 scopus 로고    scopus 로고
    • Non-B DNA structure-induced genetic instability
    • Wang G, Vasquez KM. Non-B DNA structure-induced genetic instability. Mutat Res 2006;598: 103-119.
    • (2006) Mutat Res , vol.598 , pp. 103-119
    • Wang, G.1    Vasquez, K.M.2
  • 45
    • 34047101901 scopus 로고    scopus 로고
    • Cruciform extrusion propensity of human translocation- mediating palindromic AT-rich repeats
    • Kogo H, Inagaki H, OhyeT, KatoT, Emanuel BS, Kurahashi H. Cruciform extrusion propensity of human translocation- mediating palindromic AT-rich repeats. Nucleic Acids Res 2007;35: 1198-1208.
    • (2007) Nucleic Acids Res , vol.35 , pp. 1198-1208
    • Kogo, H.1    Inagaki, H.2    Ohyet3    Katot4    Emanuel, B.S.5    Kurahashi, H.6
  • 46
    • 33644543741 scopus 로고    scopus 로고
    • Z-DNA-forming sequences generate large-scale deletions in mammalian cells
    • Wang G, Christensen LA, Vasquez KM. Z-DNA-forming sequences generate large-scale deletions in mammalian cells. Proc Natl Acad Sci USA 2006;103: 2677-2682.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 2677-2682
    • Wang, G.1    Christensen, L.A.2    Vasquez, K.M.3
  • 47
    • 4544288618 scopus 로고    scopus 로고
    • Naturally Occurring H-DNA-forming Sequences Are Mutagenic in Mammalian Cells
    • Wang G, Vasquez KM. Naturally occurring H-DNA-forming sequences are mutagenic in mammalian cells. Proc Natl Acad Sci USA 2004;101: 13448-13453.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 13448-13453
    • Wang, G.1    Vasquez, K.M.2
  • 48
    • 2542603042 scopus 로고    scopus 로고
    • PKD1 intron 21: Triplex DNA formation and effect on replication
    • Patel HP, Lu L, Blaszak RT, Bissler JJ. PKD1 intron 21: Triplex DNA formation and effect on replication. Nucleic Acids Res 2004;32: 1460-1468.
    • (2004) Nucleic Acids Res , vol.32 , pp. 1460-1468
    • Patel, H.P.1    Lu, L.2    Blaszak, R.T.3    Bissler, J.J.4
  • 49
    • 1542287213 scopus 로고    scopus 로고
    • A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex
    • Raghavan SC, Swanson PC, Wu X, Hsieh CL, Lieber MR. A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature 2004;428: 88-93.
    • (2004) Nature , vol.428 , pp. 88-93
    • Raghavan, S.C.1    Swanson, P.C.2    Wu, X.3    Hsieh, C.L.4    Lieber, M.R.5
  • 50
    • 34247483506 scopus 로고    scopus 로고
    • ATM activation and DNA damage response
    • Lavin MF, Kozlov S. ATM activation and DNA damage response. Cell Cycle 2007;6: 931-942.
    • (2007) Cell Cycle , vol.6 , pp. 931-942
    • Lavin, M.F.1    Kozlov, S.2
  • 51
    • 47749141560 scopus 로고    scopus 로고
    • ATR: An essential regulator of genome integrity
    • Cimprich KA, Cortez D. ATR: An essential regulator of genome integrity. Nat Rev Mol Cell Biol 2008;9: 616-627.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 616-627
    • Cimprich, K.A.1    Cortez, D.2
  • 52
    • 0037567268 scopus 로고    scopus 로고
    • DNA damage through ATRIP recognition of RPA-ssDNA complexes
    • Zou L, Elledge Sensing SJ. DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003;300: 1542-1548.
    • (2003) Science , vol.300 , pp. 1542-1548
    • Zou, L.1    Elledge Sensing, S.J.2
  • 53
    • 4243156107 scopus 로고    scopus 로고
    • Biochemical characterization of DNA damage checkpoint complexes: Clamp loader and clamp complexes with specificity for 5' recessed DNA
    • Ellison V, Stillman B. Biochemical characterization of DNA damage checkpoint complexes: Clamp loader and clamp complexes with specificity for 5' recessed DNA. PLoS Biol 2003;1: E33.
    • (2003) PLoS Biol , vol.1
    • Ellison, V.1    Stillman, B.2
  • 54
    • 33845607102 scopus 로고    scopus 로고
    • The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint
    • Majka J, Niedziela-Majka A, Burgers PM. The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint. Mol Cell 2006;24: 891-901.
    • (2006) Mol Cell , vol.24 , pp. 891-901
    • Majka, J.1    Niedziela-Majka, A.2    Burgers, P.M.3
  • 55
    • 33644757806 scopus 로고    scopus 로고
    • TopBP1 activates the ATR-ATRIP complex
    • Kumagai A, Lee J, Yoo HY, Dunphy WG. TopBP1 activates the ATR-ATRIP complex. Cell 2006;124: 943-955.
    • (2006) Cell , vol.124 , pp. 943-955
    • Kumagai, A.1    Lee, J.2    Yoo, H.Y.3    Dunphy, W.G.4
  • 56
    • 0035735472 scopus 로고    scopus 로고
    • Mrc1 transduces signals of DNA replication stress to activate Rad53
    • Alcasabas AA, Osborn AJ, Bachant J, et al. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 2001;3: 958-965.
    • (2001) Nat Cell Biol , vol.3 , pp. 958-965
    • Alcasabas, A.A.1    Osborn, A.J.2    Bachant, J.3
  • 57
    • 0842287638 scopus 로고    scopus 로고
    • DNA damage tumor suppressor genes and genomic instability
    • Motoyama N, Naka K. DNA damage tumor suppressor genes and genomic instability. Curr Opin Genet Dev 2004;14: 11-16.
    • (2004) Curr Opin Genet Dev , vol.14 , pp. 11-16
    • Motoyama, N.1    Naka, K.2
  • 58
    • 0038506000 scopus 로고    scopus 로고
    • Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53
    • Osborn AJ, Elledge SJ. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 2003;17: 1755-1767.
    • (2003) Genes Dev , vol.17 , pp. 1755-1767
    • Osborn, A.J.1    Elledge, S.J.2
  • 59
    • 27544445683 scopus 로고    scopus 로고
    • The DNA damage response during DNA replication
    • Branzei D, Foiani M. The DNA damage response during DNA replication. Curr Opin Cell Biol 2005;17: 568-575.
    • (2005) Curr Opin Cell Biol , vol.17 , pp. 568-575
    • Branzei, D.1    Foiani, M.2
  • 60
    • 0042865938 scopus 로고    scopus 로고
    • S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex
    • Katou Y, Kanoh Y, Bando M, et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 2003;424: 1078-1083.
    • (2003) Nature , vol.424 , pp. 1078-1083
    • Katou, Y.1    Kanoh, Y.2    Bando, M.3
  • 61
    • 34948812991 scopus 로고    scopus 로고
    • LabibK. Mrc1 andTof1 regulate DNA replication forks in different ways during normal S phase
    • Hodgson B, Calzada A, LabibK. Mrc1 andTof1 regulate DNA replication forks in different ways during normal S phase. Mol Biol Cell 2007;18: 3894-3902.
    • (2007) Mol Biol Cell , vol.18 , pp. 3894-3902
    • Hodgson, B.1    Calzada, A.2
  • 62
    • 24044552287 scopus 로고    scopus 로고
    • Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53
    • Tourriere H, Versini G, Cordon-Preciado V, Alabert C, Pasero P. Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol Cell 2005;19: 699-706.
    • (2005) Mol Cell , vol.19 , pp. 699-706
    • Tourriere, H.1    Versini, G.2    Cordon-Preciado, V.3    Alabert, C.4    Pasero, P.5
  • 63
    • 48749128133 scopus 로고    scopus 로고
    • Claspin promotes normal replication fork rates in human cells
    • Petermann E, Helleday T, Caldecott KW. Claspin promotes normal replication fork rates in human cells. Mol Biol Cell 2008;19: 2373-2378.
    • (2008) Mol Biol Cell , vol.19 , pp. 2373-2378
    • Petermann, E.1    Helleday, T.2    Caldecott, K.W.3
  • 64
    • 34147201111 scopus 로고    scopus 로고
    • The human Tim/ Tipin complex coordinates an intra-S checkpoint response to UV that slows replication fork displacement
    • Unsal-Kacmaz K, Chastain PD, Qu PP, et al. The human Tim/ Tipin complex coordinates an intra-S checkpoint response to UV that slows replication fork displacement. Mol Cell Biol 2007;27: 3131-3142.
    • (2007) Mol Cell Biol , vol.27 , pp. 3131-3142
    • Unsal-Kacmaz, K.1    Chastain, P.D.2    Qu, P.P.3
  • 65
    • 43249094413 scopus 로고    scopus 로고
    • Chk1 and Claspin potentiate PCNA ubiquitination
    • Yang XH, Shiotani B, Classon M, Zou L. Chk1 and Claspin potentiate PCNA ubiquitination. Genes Dev 2008;22: 1147-1152.
    • (2008) Genes Dev , vol.22 , pp. 1147-1152
    • Yang, X.H.1    Shiotani, B.2    Classon, M.3    Zou, L.4
  • 66
    • 25844468819 scopus 로고    scopus 로고
    • (CAG)(n)-hairpin DNAbindsto Msh2-Msh3 and changes properties of mismatch recognition
    • Owen BA, YangZ, Lai M,et al. (CAG)(n)-hairpin DNAbindsto Msh2-Msh3 and changes properties of mismatch recognition. Nat Struct Mol Biol 2005;12: 663-670.
    • (2005) Nat Struct Mol Biol , vol.12 , pp. 663-670
    • Owen, B.A.1    Yang, Z.2    Lai, M.3
  • 67
    • 0021633812 scopus 로고
    • The role of palindromic and non-palindromic sequences in arresting DNA synthesis in vitro and in vivo
    • Weaver DT, DePamphilis ML. The role of palindromic and non-palindromic sequences in arresting DNA synthesis in vitro and in vivo. J Mol Biol 1984;180: 961-986.
    • (1984) J Mol Biol , vol.180 , pp. 961-986
    • Weaver, D.T.1    Depamphilis, M.L.2
  • 68
    • 0028874391 scopus 로고
    • CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro
    • Usdin K, Woodford KJ. CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. Nucleic Acids Res 1995;23: 4202-4209.
    • (1995) Nucleic Acids Res , vol.23 , pp. 4202-4209
    • Usdin, K.1    Woodford, K.J.2
  • 69
    • 0030725454 scopus 로고    scopus 로고
    • Trinucleotide repeats affect DNA replication in vivo
    • Samadashwily GM, Raca G, Mirkin SM. Trinucleotide repeats affect DNA replication in vivo. Nat Genet 1997;17: 298-304.
    • (1997) Nat Genet , vol.17 , pp. 298-304
    • Samadashwily, G.M.1    Raca, G.2    Mirkin, S.M.3
  • 72
    • 34547205070 scopus 로고    scopus 로고
    • An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae
    • Zhang H, Freudenreich CH. An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell 2007;27: 367-379.
    • (2007) Mol Cell , vol.27 , pp. 367-379
    • Zhang, H.1    Freudenreich, C.H.2
  • 73
    • 1542344344 scopus 로고    scopus 로고
    • Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo
    • Krasilnikova MM, Mirkin SM. Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo. Mol Cell Biol 2004;24: 2286-2295.
    • (2004) Mol Cell Biol , vol.24 , pp. 2286-2295
    • Krasilnikova, M.M.1    Mirkin, S.M.2
  • 74
    • 0037178740 scopus 로고    scopus 로고
    • Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects
    • Sogo JM, Lopes M, Foiani M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 2002;297: 599-602.
    • (2002) Science , vol.297 , pp. 599-602
    • Sogo, J.M.1    Lopes, M.2    Foiani, M.3
  • 75
    • 18244371925 scopus 로고    scopus 로고
    • Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint
    • Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 2005;19: 1040-1052.
    • (2005) Genes Dev , vol.19 , pp. 1040-1052
    • Byun, T.S.1    Pacek, M.2    Yee, M.C.3    Walter, J.C.4    Cimprich, K.A.5
  • 76
    • 0038044616 scopus 로고    scopus 로고
    • Schizosaccharomyces pombe checkpoint response to DNA interstrand cross-links
    • Lambert S, Mason SJ, Barber LJ, et al. Schizosaccharomyces pombe checkpoint response to DNA interstrand cross-links. Mol Cell Biol 2003;23: 4728-4737.
    • (2003) Mol Cell Biol , vol.23 , pp. 4728-4737
    • Lambert, S.1    Mason, S.J.2    Barber, L.J.3
  • 77
    • 20444424939 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier
    • Lambert S, Watson A, Sheedy DM, Martin B, Carr AM. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 2005;121: 689-702.
    • (2005) Cell , vol.121 , pp. 689-702
    • Lambert, S.1    Watson, A.2    Sheedy, D.M.3    Martin, B.4    Carr, A.M.5
  • 78
    • 0018823801 scopus 로고
    • Replication of eukaryotic chromosomes: A close-up of the replication fork
    • DePamphilis ML, Wassarman PM. Replication of eukaryotic chromosomes: A close-up of the replication fork. Annu Rev Biochem 1980;49: 627-666.
    • (1980) Annu Rev Biochem , vol.49 , pp. 627-666
    • Depamphilis, M.L.1    Wassarman, P.M.2
  • 79
    • 0029586324 scopus 로고
    • Differential replication of a single, UV- induced lesion in the leading or lagging strand by a human cell extract: Fork uncoupling or gap formation
    • 1979
    • Svoboda DL, Vos JM. Differential replication of a single, UV- induced lesion in the leading or lagging strand by a human cell extract: Fork uncoupling or gap formation. Proc Natl Acad Sci USA 1995; 92: 11975-11981 1979.
    • (1975) Proc Natl Acad Sci USA , vol.92 , pp. 11975-11981
    • Svoboda, D.L.1    Vos, J.M.2
  • 80
    • 2442686846 scopus 로고    scopus 로고
    • Functional uncoupling of twin polymerases: Mechanism of polymerase dissociation from a lagging-strand block
    • McInerney P, O'Donnell M. Functional uncoupling of twin polymerases: Mechanism of polymerase dissociation from a lagging-strand block. J Biol Chem 2004;279: 21543-21551.
    • (2004) J Biol Chem , vol.279 , pp. 21543-21551
    • McInerney, P.1    O'Donnell, M.2
  • 81
    • 0037436108 scopus 로고    scopus 로고
    • DNA damage-induced replication fork regression and processing in Escherichia coli
    • Courcelle J, Donaldson JR, Chow KH, Courcelle CT. DNA damage-induced replication fork regression and processing in Escherichia coli. Science 2003;299: 1064-1067.
    • (2003) Science , vol.299 , pp. 1064-1067
    • Courcelle, J.1    Donaldson, J.R.2    Chow, K.H.3    Courcelle, C.T.4
  • 83
    • 44349176520 scopus 로고    scopus 로고
    • Regression supports two mechanisms of fork processing in phage T4
    • Long DT, Kreuzer KN. Regression supports two mechanisms of fork processing in phage T4. Proc Natl Acad Sci USA 2008;105: 6852-6857.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 6852-6857
    • Long, D.T.1    Kreuzer, K.N.2
  • 84
    • 59649119505 scopus 로고    scopus 로고
    • Srs2 and Sgs1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination
    • In press
    • Kerrest A, Anand R, Sundararajan R, et al. Srs2 and Sgs1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nat Struct Mol Biol 2009; (in press).
    • (2009) Nat Struct Mol Biol
    • Kerrest, A.1    Anand, R.2    Sundararajan, R.3
  • 85
    • 0034017208 scopus 로고    scopus 로고
    • CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae
    • Balakumaran BS, Freudenreich CH, Zakian VA. CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae. Hum Mol Genet 2000;9: 93-100.
    • (2000) Hum Mol Genet , vol.9 , pp. 93-100
    • Balakumaran, B.S.1    Freudenreich, C.H.2    Zakian, V.A.3
  • 86
    • 55549095970 scopus 로고    scopus 로고
    • Chromosome fragility at gAa tracts in yeast depends on repeat orientation and requires mismatch repair
    • Kim H, Narayanan V, Mieczkowski P, et al. Chromosome fragility at gAa tracts in yeast depends on repeat orientation and requires mismatch repair. EMBO J 2008;27: 2896-2906.
    • (2008) EMBO J , vol.27 , pp. 2896-2906
    • Kim, H.1    Narayanan, V.2    Mieczkowski, P.3
  • 87
  • 88
    • 13444253858 scopus 로고    scopus 로고
    • Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: Implications for trinucleotide repeat expansion diseases
    • Freudenreich CH, Lahiri M. Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: Implications for trinucleotide repeat expansion diseases. Cell Cycle 2004;3: 1370-1374.
    • (2004) Cell Cycle , vol.3 , pp. 1370-1374
    • Freudenreich, C.H.1    Lahiri, M.2
  • 89
    • 14844286404 scopus 로고    scopus 로고
    • Chromosomal translocations in yeast induced by low levels of DNA polymerasea model for chromosome fragile sites
    • Lemoine FJ, Degtyareva NP, Lobachev K, PetesTD. Chromosomal translocations in yeast induced by low levels of DNA polymerasea model for chromosome fragile sites. Cell 2005;120: 587-598.
    • (2005) Cell , vol.120 , pp. 587-598
    • Lemoine, F.J.1    Degtyareva, N.P.2    Lobachev, K.3    Petes, T.D.4
  • 90
    • 0037169325 scopus 로고    scopus 로고
    • The Mre11 complex is required for repair of hairpin-capped double- strand breaks and prevention of chromosome rearrangements
    • Lobachev KS, Gordenin DA, Resnick MA. The Mre11 complex is required for repair of hairpin-capped double- strand breaks and prevention of chromosome rearrangements. Cell 2002;108: 183-193.
    • (2002) Cell , vol.108 , pp. 183-193
    • Lobachev, K.S.1    Gordenin, D.A.2    Resnick, M.A.3
  • 92
    • 40649114958 scopus 로고    scopus 로고
    • Mrc1,Tof1 and Csm3 inhibit CAG.CTG repeat instability by at least two mechanisms
    • Razidlo DF, Lahue RS. Mrc1,Tof1 and Csm3 inhibit CAG.CTG repeat instability by at least two mechanisms. DNA Repair (Amst) 2008;7: 633-640.
    • (2008) DNA Repair (Amst) , vol.7 , pp. 633-640
    • Razidlo, D.F.1    Lahue, R.S.2
  • 93
    • 39549086548 scopus 로고    scopus 로고
    • ATR protects the genome against CGG.CCG-repeat expansion in Fragile X premutation mice
    • Entezam A, Usdin K. ATR protects the genome against CGG.CCG-repeat expansion in Fragile X premutation mice. Nucleic Acids Res 2008;36: 1050-1056.
    • (2008) Nucleic Acids Res , vol.36 , pp. 1050-1056
    • Entezam, A.1    Usdin, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.