-
1
-
-
34648828532
-
AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy
-
Hardie D.G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell. Biol. 8 (2007) 774-785
-
(2007)
Nat. Rev. Mol. Cell. Biol.
, vol.8
, pp. 774-785
-
-
Hardie, D.G.1
-
2
-
-
67349276169
-
+ metabolism and SIRT1 activity
-
+ metabolism and SIRT1 activity. Nature 458 (2009) 1056-1060
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
-
3
-
-
1542346420
-
The new life of a centenarian: signalling functions of NAD(P)
-
Berger F., et al. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem. Sci. 29 (2004) 111-118
-
(2004)
Trends Biochem. Sci.
, vol.29
, pp. 111-118
-
-
Berger, F.1
-
4
-
-
0036211013
-
Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics
-
Eberharter A., and Becker P.B. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep. 3 (2002) 224-229
-
(2002)
EMBO Rep.
, vol.3
, pp. 224-229
-
-
Eberharter, A.1
Becker, P.B.2
-
5
-
-
43049169926
-
Epigenetic control of rDNA loci in response to intracellular energy status
-
Murayama A., et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133 (2008) 627-639
-
(2008)
Cell
, vol.133
, pp. 627-639
-
-
Murayama, A.1
-
6
-
-
34547906123
-
Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1
-
Rodgers J.T., and Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 12861-12866
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 12861-12866
-
-
Rodgers, J.T.1
Puigserver, P.2
-
7
-
-
66249105703
-
ATP-citrate lyase links cellular metabolism to histone acetylation
-
Wellen K.E., et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324 (2009) 1076-1080
-
(2009)
Science
, vol.324
, pp. 1076-1080
-
-
Wellen, K.E.1
-
8
-
-
57049152851
-
Catalysis and substrate selection by histone/protein lysine acetyltransferases
-
Berndsen C.E., and Denu J.M. Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr. Opin. Struct. Biol. 18 (2008) 682-689
-
(2008)
Curr. Opin. Struct. Biol.
, vol.18
, pp. 682-689
-
-
Berndsen, C.E.1
Denu, J.M.2
-
9
-
-
50249100374
-
The meter of metabolism
-
Green C.B., et al. The meter of metabolism. Cell 134 (2008) 728-742
-
(2008)
Cell
, vol.134
, pp. 728-742
-
-
Green, C.B.1
-
10
-
-
38449103255
-
The clockwork of metabolism
-
Ramsey K.M., et al. The clockwork of metabolism. Annu. Rev. Nutr. 27 (2007) 219-240
-
(2007)
Annu. Rev. Nutr.
, vol.27
, pp. 219-240
-
-
Ramsey, K.M.1
-
11
-
-
58749109143
-
Circadian gene expression is resilient to large fluctuations in overall transcription rates
-
Dibner C., et al. Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J. 28 (2009) 123-134
-
(2009)
EMBO J.
, vol.28
, pp. 123-134
-
-
Dibner, C.1
-
12
-
-
33744515807
-
Circadian orchestration of the hepatic proteome
-
Reddy A.B., et al. Circadian orchestration of the hepatic proteome. Curr. Biol. 16 (2006) 1107-1115
-
(2006)
Curr. Biol.
, vol.16
, pp. 1107-1115
-
-
Reddy, A.B.1
-
13
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda S., et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109 (2002) 307-320
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
-
14
-
-
54449085416
-
Physiological significance of a peripheral tissue circadian clock
-
Lamia K.A., et al. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 15172-15177
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 15172-15177
-
-
Lamia, K.A.1
-
15
-
-
0035910387
-
Entrainment of the circadian clock in the liver by feeding
-
Stokkan K.A., et al. Entrainment of the circadian clock in the liver by feeding. Science 291 (2001) 490-493
-
(2001)
Science
, vol.291
, pp. 490-493
-
-
Stokkan, K.A.1
-
16
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi M., et al. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125 (2006) 497-508
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
-
17
-
-
0036682099
-
A transcription factor response element for gene expression during circadian night
-
Ueda H.R., et al. A transcription factor response element for gene expression during circadian night. Nature 418 (2002) 534-539
-
(2002)
Nature
, vol.418
, pp. 534-539
-
-
Ueda, H.R.1
-
18
-
-
0037426839
-
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
-
Etchegaray J.P., et al. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421 (2003) 177-182
-
(2003)
Nature
, vol.421
, pp. 177-182
-
-
Etchegaray, J.P.1
-
19
-
-
65549103855
-
+ biosynthesis
-
+ biosynthesis. Science 324 (2009) 651-654
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
-
20
-
-
0035919479
-
Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
-
Rutter J., et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293 (2001) 510-514
-
(2001)
Science
, vol.293
, pp. 510-514
-
-
Rutter, J.1
-
21
-
-
20844451123
-
AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism
-
Kahn B.B., et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1 (2005) 15-25
-
(2005)
Cell Metab.
, vol.1
, pp. 15-25
-
-
Kahn, B.B.1
-
22
-
-
34547127625
-
Activation of 5́-AMP-activated kinase with diabetes drug metformin induces casein kinase Iε (CKIε)-dependent degradation of clock protein mPer2
-
Um J.H., et al. Activation of 5́-AMP-activated kinase with diabetes drug metformin induces casein kinase Iε (CKIε)-dependent degradation of clock protein mPer2. J. Biol. Chem. 282 (2007) 20794-20798
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 20794-20798
-
-
Um, J.H.1
-
23
-
-
58149464684
-
High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver
-
Barnea M., et al. High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver. Endocrinology 150 (2009) 161-168
-
(2009)
Endocrinology
, vol.150
, pp. 161-168
-
-
Barnea, M.1
-
24
-
-
0036851817
-
Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase
-
Yamauchi T., et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8 (2002) 1288-1295
-
(2002)
Nat. Med.
, vol.8
, pp. 1288-1295
-
-
Yamauchi, T.1
-
25
-
-
56249100986
-
A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
-
Liu Y., et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456 (2008) 269-273
-
(2008)
Nature
, vol.456
, pp. 269-273
-
-
Liu, Y.1
-
26
-
-
33644660537
-
PGC-1 coactivators: inducible regulators of energy metabolism in health and disease
-
Finck B.N., and Kelly D.P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116 (2006) 615-622
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 615-622
-
-
Finck, B.N.1
Kelly, D.P.2
-
27
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
Herzig S., et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413 (2001) 179-183
-
(2001)
Nature
, vol.413
, pp. 179-183
-
-
Herzig, S.1
-
28
-
-
54849425547
-
Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
-
Feige J.N., et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8 (2008) 347-358
-
(2008)
Cell Metab.
, vol.8
, pp. 347-358
-
-
Feige, J.N.1
-
29
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α
-
Jager S., et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 12017-12022
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 12017-12022
-
-
Jager, S.1
-
30
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
-
Rodgers J.T., et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434 (2005) 113-118
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
-
31
-
-
34249275727
-
Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism
-
Liu C., et al. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature 447 (2007) 477-481
-
(2007)
Nature
, vol.447
, pp. 477-481
-
-
Liu, C.1
-
32
-
-
67650242167
-
Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-γ coactivator-1α expression
-
Estall J.L., et al. Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-γ coactivator-1α expression. Diabetes 58 (2009) 1499-1508
-
(2009)
Diabetes
, vol.58
, pp. 1499-1508
-
-
Estall, J.L.1
-
33
-
-
65549136655
-
Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein
-
He L., et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137 (2009) 635-646
-
(2009)
Cell
, vol.137
, pp. 635-646
-
-
He, L.1
-
34
-
-
34548831102
-
Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2
-
Dentin R., et al. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449 (2007) 366-369
-
(2007)
Nature
, vol.449
, pp. 366-369
-
-
Dentin, R.1
-
35
-
-
0038187621
-
Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction
-
Puigserver P., et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423 (2003) 550-555
-
(2003)
Nature
, vol.423
, pp. 550-555
-
-
Puigserver, P.1
-
36
-
-
33744534726
-
GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α
-
Lerin C., et al. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab. 3 (2006) 429-438
-
(2006)
Cell Metab.
, vol.3
, pp. 429-438
-
-
Lerin, C.1
-
37
-
-
55949084664
-
The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1α
-
Coste A., et al. The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1α. Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 17187-17192
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 17187-17192
-
-
Coste, A.1
-
38
-
-
33746536677
-
Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis
-
Uyeda K., and Repa J.J. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 4 (2006) 107-110
-
(2006)
Cell Metab.
, vol.4
, pp. 107-110
-
-
Uyeda, K.1
Repa, J.J.2
-
39
-
-
40549125618
-
ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver
-
Denechaud P.D., et al. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. J. Clin. Invest. 118 (2008) 956-964
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 956-964
-
-
Denechaud, P.D.1
-
40
-
-
70349321711
-
cAMP opposes the glucose-mediated induction of the L-PK gene by preventing the recruitment of a complex containing ChREBP, HNF4α, and CBP
-
Burke S.J., et al. cAMP opposes the glucose-mediated induction of the L-PK gene by preventing the recruitment of a complex containing ChREBP, HNF4α, and CBP. FASEB J. 23 (2009) 2855-2865
-
(2009)
FASEB J.
, vol.23
, pp. 2855-2865
-
-
Burke, S.J.1
-
41
-
-
67649386143
-
Interrelationship between liver X receptor α, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor γ, and small heterodimer partner in the transcriptional regulation of glucokinase gene expression in liver
-
Kim T.H., et al. Interrelationship between liver X receptor α, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor γ, and small heterodimer partner in the transcriptional regulation of glucokinase gene expression in liver. J. Biol. Chem. 284 (2009) 15071-15083
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 15071-15083
-
-
Kim, T.H.1
-
42
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
Shaw R.J., et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310 (2005) 1642-1646
-
(2005)
Science
, vol.310
, pp. 1642-1646
-
-
Shaw, R.J.1
-
43
-
-
38649116056
-
Selective versus total insulin resistance: a pathogenic paradox
-
Brown M.S., and Goldstein J.L. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 7 (2008) 95-96
-
(2008)
Cell Metab.
, vol.7
, pp. 95-96
-
-
Brown, M.S.1
Goldstein, J.L.2
-
44
-
-
77949295164
-
The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine
-
in press DOI:10.1016/j.bbagen.2009.07.017
-
Hanover, J.A. et al. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim. Biophys. Acta (in press) DOI:10.1016/j.bbagen.2009.07.017
-
Biochim. Biophys. Acta
-
-
Hanover, J.A.1
-
45
-
-
34247583996
-
Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins
-
Hart G.W., et al. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446 (2007) 1017-1022
-
(2007)
Nature
, vol.446
, pp. 1017-1022
-
-
Hart, G.W.1
-
46
-
-
40449128605
-
Hepatic glucose sensing via the CREB coactivator CRTC2
-
Dentin R., et al. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 319 (2008) 1402-1405
-
(2008)
Science
, vol.319
, pp. 1402-1405
-
-
Dentin, R.1
-
47
-
-
40449108313
-
Signal transduction. Sweet conundrum
-
Birnbaum M.J. Signal transduction. Sweet conundrum. Science 319 (2008) 1348-1349
-
(2008)
Science
, vol.319
, pp. 1348-1349
-
-
Birnbaum, M.J.1
-
48
-
-
47749149232
-
O-GlcNAc regulates FoxO activation in response to glucose
-
Housley M.P., et al. O-GlcNAc regulates FoxO activation in response to glucose. J. Biol. Chem. 283 (2008) 16283-16292
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 16283-16292
-
-
Housley, M.P.1
-
49
-
-
33645860825
-
Reactive oxygen species have a causal role in multiple forms of insulin resistance
-
Houstis N., et al. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440 (2006) 944-948
-
(2006)
Nature
, vol.440
, pp. 944-948
-
-
Houstis, N.1
-
50
-
-
5644231992
-
Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes
-
Ozcan U., et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306 (2004) 457-461
-
(2004)
Science
, vol.306
, pp. 457-461
-
-
Ozcan, U.1
-
51
-
-
0036086064
-
The unfolded protein response in nutrient sensing and differentiation
-
Kaufman R.J., et al. The unfolded protein response in nutrient sensing and differentiation. Nat. Rev. Mol. Cell. Biol. 3 (2002) 411-421
-
(2002)
Nat. Rev. Mol. Cell. Biol.
, vol.3
, pp. 411-421
-
-
Kaufman, R.J.1
-
52
-
-
51849162371
-
Redox-based endoplasmic reticulum dysfunction in neurological diseases
-
Banhegyi G., et al. Redox-based endoplasmic reticulum dysfunction in neurological diseases. J. Neurochem. 107 (2008) 20-34
-
(2008)
J. Neurochem.
, vol.107
, pp. 20-34
-
-
Banhegyi, G.1
-
53
-
-
67649304876
-
Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria
-
Nakamura S., et al. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J. Biol. Chem. 284 (2009) 14809-14818
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 14809-14818
-
-
Nakamura, S.1
-
54
-
-
0037153158
-
A central role for JNK in obesity and insulin resistance
-
Hirosumi J., et al. A central role for JNK in obesity and insulin resistance. Nature 420 (2002) 333-336
-
(2002)
Nature
, vol.420
, pp. 333-336
-
-
Hirosumi, J.1
-
55
-
-
67749135249
-
The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis
-
Wang Y., et al. The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature 460 (2009) 534-537
-
(2009)
Nature
, vol.460
, pp. 534-537
-
-
Wang, Y.1
-
56
-
-
3042750643
-
Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity
-
Daitoku H., et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 10042-10047
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 10042-10047
-
-
Daitoku, H.1
-
57
-
-
20144365700
-
Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes
-
Frescas D., et al. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem. 280 (2005) 20589-20595
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 20589-20595
-
-
Frescas, D.1
-
58
-
-
33644767028
-
Glucosamine-induced endoplasmic reticulum dysfunction is associated with accelerated atherosclerosis in a hyperglycemic mouse model
-
Werstuck G.H., et al. Glucosamine-induced endoplasmic reticulum dysfunction is associated with accelerated atherosclerosis in a hyperglycemic mouse model. Diabetes 55 (2006) 93-101
-
(2006)
Diabetes
, vol.55
, pp. 93-101
-
-
Werstuck, G.H.1
-
59
-
-
66449137379
-
GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice
-
Kammoun H.L., et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J. Clin. Invest. 119 (2009) 1201-1215
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 1201-1215
-
-
Kammoun, H.L.1
-
60
-
-
70350574819
-
Circadian Timing of Food Intake Contributes to Weight Gain
-
Arble D.M., et al. Circadian Timing of Food Intake Contributes to Weight Gain. Obesity (Silver Spring) (2009)
-
(2009)
Obesity (Silver Spring)
-
-
Arble, D.M.1
-
61
-
-
0027433708
-
Phosphorylated CREB binds specifically to the nuclear protein CBP
-
Chrivia J.C., et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365 (1993) 855-859
-
(1993)
Nature
, vol.365
, pp. 855-859
-
-
Chrivia, J.C.1
-
62
-
-
5344228270
-
The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector
-
Screaton R.A., et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119 (2004) 61-74
-
(2004)
Cell
, vol.119
, pp. 61-74
-
-
Screaton, R.A.1
-
63
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo S.H., et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437 (2005) 1109-1111
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.H.1
-
64
-
-
0038561165
-
Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver
-
Kabashima T., et al. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 5107-5112
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 5107-5112
-
-
Kabashima, T.1
-
65
-
-
2442489891
-
Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression
-
Dentin R., et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J. Biol. Chem. 279 (2004) 20314-20326
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 20314-20326
-
-
Dentin, R.1
-
66
-
-
34249721531
-
Protein kinase A suppresses sterol regulatory element-binding protein-1C expression via phosphorylation of liver X receptor in the liver
-
Yamamoto T., et al. Protein kinase A suppresses sterol regulatory element-binding protein-1C expression via phosphorylation of liver X receptor in the liver. J. Biol. Chem. 282 (2007) 11687-11695
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 11687-11695
-
-
Yamamoto, T.1
-
67
-
-
3843061127
-
Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver
-
Chen G., et al. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 11245-11250
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 11245-11250
-
-
Chen, G.1
-
68
-
-
0034669025
-
Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ
-
Repa J.J., et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev. 14 (2000) 2819-2830
-
(2000)
Genes Dev.
, vol.14
, pp. 2819-2830
-
-
Repa, J.J.1
-
69
-
-
0037965630
-
Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue
-
Laffitte B.A., et al. Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 5419-5424
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 5419-5424
-
-
Laffitte, B.A.1
-
70
-
-
0037192797
-
Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors
-
Joseph S.B., et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J. Biol. Chem. 277 (2002) 11019-11025
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 11019-11025
-
-
Joseph, S.B.1
-
71
-
-
0036792050
-
Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins
-
Yabe D., et al. Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 12753-12758
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 12753-12758
-
-
Yabe, D.1
-
72
-
-
0036251153
-
SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
-
Horton J.D., et al. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109 (2002) 1125-1131
-
(2002)
J. Clin. Invest.
, vol.109
, pp. 1125-1131
-
-
Horton, J.D.1
-
73
-
-
0033607176
-
Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes
-
Foretz M., et al. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 12737-12742
-
(1999)
Proc. Natl. Acad. Sci. U. S. A.
, vol.96
, pp. 12737-12742
-
-
Foretz, M.1
|