메뉴 건너뛰기




Volumn 510, Issue 1-2, 2002, Pages 107-120

The nonmutagenic repair of broken replication forks via recombination

Author keywords

Recombination; Repair; Replication

Indexed keywords

BACTERIAL ENZYME; BACTERIAL PROTEIN; CELL ENZYME; DNA POLYMERASE;

EID: 0037196076     PISSN: 00275107     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0027-5107(02)00256-7     Document Type: Review
Times cited : (98)

References (121)
  • 1
    • 0033166871 scopus 로고    scopus 로고
    • DNA repair: Polymerases for passing lesions
    • Bridges B.A. DNA repair: polymerases for passing lesions. Curr. Biol. 9:1999;R475-R477.
    • (1999) Curr. Biol. , vol.9
    • Bridges, B.A.1
  • 3
    • 0033200360 scopus 로고    scopus 로고
    • A plethora of lesion-replicating DNA polymerases
    • Woodgate R. A plethora of lesion-replicating DNA polymerases. Genes Dev. 13:1999;2191-2195.
    • (1999) Genes Dev. , vol.13 , pp. 2191-2195
    • Woodgate, R.1
  • 4
    • 0037205001 scopus 로고    scopus 로고
    • Specialized DNA polymerases, cellular survival, and the genesis of mutations
    • Friedberg E.C., Wagner R., Radman M. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science. 296:2002;1627-1630.
    • (2002) Science , vol.296 , pp. 1627-1630
    • Friedberg, E.C.1    Wagner, R.2    Radman, M.3
  • 6
    • 0035679232 scopus 로고    scopus 로고
    • Recombinational DNA repair of damaged replication forks in Escherichia coli: Questions
    • Cox M.M. Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Ann. Rev. Genet. 35:2001;53-82.
    • (2001) Ann. Rev. Genet. , vol.35 , pp. 53-82
    • Cox, M.M.1
  • 7
    • 0035902587 scopus 로고    scopus 로고
    • Historical overview: Searching for replication help in all of the rec places
    • Cox M.M. Historical overview: searching for replication help in all of the rec places. Proc. Natl. Acad. Sci. U.S.A. 98:2001;8173-8180.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 8173-8180
    • Cox, M.M.1
  • 9
    • 0032715175 scopus 로고    scopus 로고
    • Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda
    • Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol. Mol. Biol. Rev. 63:1999;751-813.
    • (1999) Microbiol. Mol. Biol. Rev. , vol.63 , pp. 751-813
    • Kuzminov, A.1
  • 10
    • 0035902579 scopus 로고    scopus 로고
    • DNA replication meets genetic exchange: Chromosomal damage and its repair by homologous recombination
    • Kuzminov A. DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination. Proc. Natl. Acad. Sci. U.S.A. 98:2001;8461-8468.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 8461-8468
    • Kuzminov, A.1
  • 11
    • 0035997347 scopus 로고    scopus 로고
    • The bacterial RecA protein and the recombinational DNA repair of stalled replication forks
    • Lusetti S.L., Cox M.M. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Ann. Rev. Biochem. 71:2002;71-100.
    • (2002) Ann. Rev. Biochem. , vol.71 , pp. 71-100
    • Lusetti, S.L.1    Cox, M.M.2
  • 12
    • 0034177963 scopus 로고    scopus 로고
    • PriA-directed replication fork restart in Escherichia coli
    • Marians K.J. PriA-directed replication fork restart in Escherichia coli. Trends Biochem. Sci. 25:2000;185-189.
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 185-189
    • Marians, K.J.1
  • 13
    • 0034026997 scopus 로고    scopus 로고
    • Replication and recombination intersect
    • Marians K.J. Replication and recombination intersect. Curr. Opin. Genet. Dev. 10:2000;151-156.
    • (2000) Curr. Opin. Genet. Dev. , vol.10 , pp. 151-156
    • Marians, K.J.1
  • 15
    • 0021697048 scopus 로고
    • Types of recombination: Common problems and common strategies
    • Campbell A. Types of recombination: common problems and common strategies. Cold Spring Harb. Symp. Quant. Biol. 49:1984;839-844.
    • (1984) Cold Spring Harb. Symp. Quant. Biol. , vol.49 , pp. 839-844
    • Campbell, A.1
  • 16
    • 0013858652 scopus 로고
    • The UV sensitivity of bacteria: Its relation to the DNA replication cycle
    • Hanawalt P.C. The UV sensitivity of bacteria: its relation to the DNA replication cycle. Photochem. Photobiol. 5:1966;1-12.
    • (1966) Photochem. Photobiol. , vol.5 , pp. 1-12
    • Hanawalt, P.C.1
  • 17
    • 0002050661 scopus 로고
    • A replicator's view of recombination (and repair)
    • R.F. Grell (Ed.), Plenum Press, New York, NY
    • A. Skalka, A replicator's view of recombination (and repair), in: R.F. Grell (Ed.), Mechanisms in Recombination, Plenum Press, New York, NY, 1974, pp. 421-432.
    • (1974) Mechanisms in Recombination , pp. 421-432
    • Skalka, A.1
  • 18
    • 0015498545 scopus 로고
    • Evidence for a further dark repair process in bacteria
    • Bridges B.A. Evidence for a further dark repair process in bacteria. Nat. New Biol. 240:1972;52-53.
    • (1972) Nat. New Biol. , vol.240 , pp. 52-53
    • Bridges, B.A.1
  • 19
    • 0030737725 scopus 로고    scopus 로고
    • Stable DNA replication: Interplay between DNA replication, homologous recombination, and transcription
    • Kogoma T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol. Mol. Biol. Rev. 61:1997;212-238.
    • (1997) Microbiol. Mol. Biol. Rev. , vol.61 , pp. 212-238
    • Kogoma, T.1
  • 20
    • 0020541955 scopus 로고
    • The double-strand-break repair model for recombination
    • Szostak J.W., Orr W.T.L., Rothstein R.J., Stahl F.W. The double-strand-break repair model for recombination. Cell. 33:1983;25-35.
    • (1983) Cell , vol.33 , pp. 25-35
    • Szostak, J.W.1    Orr, W.T.L.2    Rothstein, R.J.3    Stahl, F.W.4
  • 21
    • 0035695023 scopus 로고    scopus 로고
    • Recombination at double-strand breaks and DNA ends: Conserved mechanisms from phage to humans
    • Cromie G.A., Connelly J.C., Leach D.R.F. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol. Cell. 8:2001;1163-1174.
    • (2001) Mol. Cell , vol.8 , pp. 1163-1174
    • Cromie, G.A.1    Connelly, J.C.2    Leach, D.R.F.3
  • 22
    • 0001302945 scopus 로고
    • Chromosome breakage accompanying genetic recombination in bacteriophage
    • Meselson M., Weigle J.J. Chromosome breakage accompanying genetic recombination in bacteriophage. Proc. Natl. Acad. Sci. U.S.A. 47:1961;857-868.
    • (1961) Proc. Natl. Acad. Sci. U.S.A. , vol.47 , pp. 857-868
    • Meselson, M.1    Weigle, J.J.2
  • 23
    • 0034176951 scopus 로고    scopus 로고
    • Recombination-dependent DNA replication in phage T4
    • Kreuzer K.N. Recombination-dependent DNA replication in phage T4. Trends Biochem. Sci. 25:2000;165-173.
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 165-173
    • Kreuzer, K.N.1
  • 24
    • 0033168376 scopus 로고    scopus 로고
    • DNA recombination: The replication connection
    • Haber J.E. DNA recombination: the replication connection. Trends Biochem. Sci. 24:1999;271-275.
    • (1999) Trends Biochem. Sci. , vol.24 , pp. 271-275
    • Haber, J.E.1
  • 25
    • 0035902459 scopus 로고    scopus 로고
    • Break-induced replication: A review and an example in budding yeast
    • Kraus E., Leung W.Y., Haber J.E. Break-induced replication: a review and an example in budding yeast. Proc. Natl. Acad. Sci. U.S.A. 98:2001;8255-8262.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 8255-8262
    • Kraus, E.1    Leung, W.Y.2    Haber, J.E.3
  • 26
    • 0015872091 scopus 로고
    • Molecular mechanisms in genetic recombination
    • Radding C.M. Molecular mechanisms in genetic recombination. Ann. Rev. Genet. 7:1973;87-111.
    • (1973) Ann. Rev. Genet. , vol.7 , pp. 87-111
    • Radding, C.M.1
  • 27
    • 0014965555 scopus 로고
    • A physical study by electron microscopy of the terminally repetitious, circularly permuted DNA from the coliphage particles of Escherichia coli 15
    • Lee C.S., Davis R.W., Davidson N. A physical study by electron microscopy of the terminally repetitious, circularly permuted DNA from the coliphage particles of Escherichia coli 15. J. Mol. Biol. 48:1970;1-22.
    • (1970) J. Mol. Biol. , vol.48 , pp. 1-22
    • Lee, C.S.1    Davis, R.W.2    Davidson, N.3
  • 28
    • 0017298802 scopus 로고
    • A model for replication repair in mammalian cells
    • Higgins N.P., Kato K., Strauss B. A model for replication repair in mammalian cells. J. Mol. Biol. 101:1976;417-425.
    • (1976) J. Mol. Biol. , vol.101 , pp. 417-425
    • Higgins, N.P.1    Kato, K.2    Strauss, B.3
  • 30
    • 0030671162 scopus 로고    scopus 로고
    • Recombinational crossroads - Eukaryotic enzymes and the limits of bacterial precedents
    • Cox M.M. Recombinational crossroads - eukaryotic enzymes and the limits of bacterial precedents. Proc. Natl. Acad. Sci. U.S.A. 94:1997;11764-11766.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 11764-11766
    • Cox, M.M.1
  • 31
    • 0031829701 scopus 로고    scopus 로고
    • A broadening view of recombinational DNA repair in bacteria
    • Cox M.M. A broadening view of recombinational DNA repair in bacteria. Genes Cells. 3:1998;65-78.
    • (1998) Genes Cells , vol.3 , pp. 65-78
    • Cox, M.M.1
  • 32
    • 0032605682 scopus 로고    scopus 로고
    • Recombinational DNA repair in bacteria and the RecA protein
    • Cox M.M. Recombinational DNA repair in bacteria and the RecA protein. Prog. Nucleic Acids Res. Mol. Biol. 63:1999;310-366.
    • (1999) Prog. Nucleic Acids Res. Mol. Biol. , vol.63 , pp. 310-366
    • Cox, M.M.1
  • 33
    • 0033909543 scopus 로고    scopus 로고
    • Resolution of Holliday junctions by RuvABC prevents dimer formation in rep mutants and UV-irradiated cells
    • Michel B., Recchia G.D., Penel-Colin M., Ehrlich S.D., Sherratt D.J. Resolution of Holliday junctions by RuvABC prevents dimer formation in rep mutants and UV-irradiated cells. Mol. Microbiol. 37:2000;180-191.
    • (2000) Mol. Microbiol. , vol.37 , pp. 180-191
    • Michel, B.1    Recchia, G.D.2    Penel-Colin, M.3    Ehrlich, S.D.4    Sherratt, D.J.5
  • 34
    • 0033636814 scopus 로고    scopus 로고
    • FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation
    • Barre F.X., Aroyo M., Colloms S.D., Helfrich A., Cornet F., Sherratt D.J. FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation. Genes Dev. 14:2000;2976-2988.
    • (2000) Genes Dev. , vol.14 , pp. 2976-2988
    • Barre, F.X.1    Aroyo, M.2    Colloms, S.D.3    Helfrich, A.4    Cornet, F.5    Sherratt, D.J.6
  • 35
    • 0031756520 scopus 로고    scopus 로고
    • Sister chromatid exchange frequencies in Escherichia coli analyzed by recombination at the dif resolvase site
    • Steiner W.W., Kuempel P.L. Sister chromatid exchange frequencies in Escherichia coli analyzed by recombination at the dif resolvase site. J. Bacteriol. 180:1998;6269-6275.
    • (1998) J. Bacteriol. , vol.180 , pp. 6269-6275
    • Steiner, W.W.1    Kuempel, P.L.2
  • 37
    • 0021751199 scopus 로고
    • Replication initiated at the origin (oriC) of the E. coli chromosome reconstituted with purified enzymes
    • Kaguni J.M., Kornberg A. Replication initiated at the origin (oriC) of the E. coli chromosome reconstituted with purified enzymes. Cell. 38:1984;183-190.
    • (1984) Cell , vol.38 , pp. 183-190
    • Kaguni, J.M.1    Kornberg, A.2
  • 38
    • 0348157469 scopus 로고
    • Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: Primase as the sole priming enzyme
    • van der Ende A., Baker T.A., Ogawa T., Kornberg A. Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: primase as the sole priming enzyme. Proc. Natl. Acad. Sci. U.S.A. 82:1985;3954-3958.
    • (1985) Proc. Natl. Acad. Sci. U.S.A. , vol.82 , pp. 3954-3958
    • Van der Ende, A.1    Baker, T.A.2    Ogawa, T.3    Kornberg, A.4
  • 39
    • 0026356063 scopus 로고
    • Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n′ protein
    • Lee E.H., Kornberg A. Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n′ protein. Proc. Natl. Acad. Sci. U.S.A. 88:1991;3029-3032.
    • (1991) Proc. Natl. Acad. Sci. U.S.A. , vol.88 , pp. 3029-3032
    • Lee, E.H.1    Kornberg, A.2
  • 40
    • 0025836589 scopus 로고
    • Inactivation of the Escherichia coli PriA DNA replication protein induces the SOS response
    • Nurse P., Zavitz K.H., Marians K.J. Inactivation of the Escherichia coli PriA DNA replication protein induces the SOS response. J. Bacteriol. 173:1991;6686-6693.
    • (1991) J. Bacteriol. , vol.173 , pp. 6686-6693
    • Nurse, P.1    Zavitz, K.H.2    Marians, K.J.3
  • 41
    • 0026320399 scopus 로고
    • Dissecting the functional role of PriA protein-catalysed primosome assembly in Escherichia coli DNA replication
    • Zavitz K.H., Marians K.J. Dissecting the functional role of PriA protein-catalysed primosome assembly in Escherichia coli DNA replication. Mol. Microbiol. 5:1991;2869-2873.
    • (1991) Mol. Microbiol. , vol.5 , pp. 2869-2873
    • Zavitz, K.H.1    Marians, K.J.2
  • 42
    • 0025361131 scopus 로고
    • Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication
    • Sassanfar M., Roberts J.W. Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J. Mol. Biol. 212:1990;79-96.
    • (1990) J. Mol. Biol. , vol.212 , pp. 79-96
    • Sassanfar, M.1    Roberts, J.W.2
  • 43
    • 0023008476 scopus 로고
    • Initiation of Escherichia coli minichromosome replication at oriC and at protein n′ recognition sites. Two modes for initiating DNA synthesis in vitro
    • Seufert W., Messer W. Initiation of Escherichia coli minichromosome replication at oriC and at protein n′ recognition sites. Two modes for initiating DNA synthesis in vitro. EMBO J. 5:1986;3401-3406.
    • (1986) EMBO J. , vol.5 , pp. 3401-3406
    • Seufert, W.1    Messer, W.2
  • 44
    • 0026777126 scopus 로고
    • Prokaryotic DNA replication
    • Marians K.J. Prokaryotic DNA replication. Ann. Rev. Biochem. 61:1992;673-719.
    • (1992) Ann. Rev. Biochem. , vol.61 , pp. 673-719
    • Marians, K.J.1
  • 45
    • 0033988501 scopus 로고    scopus 로고
    • Role of PriA in replication fork reactivation in Escherichia coli
    • Sandler S.J., Marians K.J. Role of PriA in replication fork reactivation in Escherichia coli. J. Bacteriol. 182:2000;9-13.
    • (2000) J. Bacteriol. , vol.182 , pp. 9-13
    • Sandler, S.J.1    Marians, K.J.2
  • 46
    • 0034177771 scopus 로고    scopus 로고
    • Coping with replication train wrecks in Escherichia coli using Pol V, Pol II, and RecA proteins
    • Goodman M.F. Coping with replication train wrecks in Escherichia coli using Pol V, Pol II, and RecA proteins. Trends Biochem. Sci. 25:2000;189-195.
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 189-195
    • Goodman, M.F.1
  • 47
    • 0034720286 scopus 로고    scopus 로고
    • Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis
    • Tang M., Pham P., Shen X., Taylor J.S., O'Donnell M., Woodgate R., Goodman M.F. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature. 404:2000;1014-1018.
    • (2000) Nature , vol.404 , pp. 1014-1018
    • Tang, M.1    Pham, P.2    Shen, X.3    Taylor, J.S.4    O'Donnell, M.5    Woodgate, R.6    Goodman, M.F.7
  • 48
    • 0035902462 scopus 로고    scopus 로고
    • Stationary-phase mutation in the bacterial chromosome: Recombination protein and DNA polymerase IV dependence
    • Bull H.J., Lombardo M.J., Rosenberg S.M. Stationary-phase mutation in the bacterial chromosome: recombination protein and DNA polymerase IV dependence. Proc. Natl. Acad. Sci. U.S.A. 98:2001;8334-8341.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 8334-8341
    • Bull, H.J.1    Lombardo, M.J.2    Rosenberg, S.M.3
  • 49
    • 0031025093 scopus 로고    scopus 로고
    • DNA double-strand breaks caused by replication arrest
    • Michel B., Ehrlich S.D., Uzest M. DNA double-strand breaks caused by replication arrest. EMBO J. 16:1997;430-438.
    • (1997) EMBO J. , vol.16 , pp. 430-438
    • Michel, B.1    Ehrlich, S.D.2    Uzest, M.3
  • 50
    • 0033603630 scopus 로고    scopus 로고
    • Analysis of DNA replication forks encountering a pyrimidine dimer in the template to the leading strand
    • Cordeiro-Stone M., Makhov A.M., Zaritskaya L.S., Griffith J.D. Analysis of DNA replication forks encountering a pyrimidine dimer in the template to the leading strand. J. Mol. Biol. 289:1999;1207-1218.
    • (1999) J. Mol. Biol. , vol.289 , pp. 1207-1218
    • Cordeiro-Stone, M.1    Makhov, A.M.2    Zaritskaya, L.S.3    Griffith, J.D.4
  • 51
    • 0036205495 scopus 로고    scopus 로고
    • Replication, recombination, and repair: Going for the gold
    • Klein H.L., Kreuzer K.N. Replication, recombination, and repair: going for the gold. Mol. Cell. 9:2002;471-480.
    • (2002) Mol. Cell , vol.9 , pp. 471-480
    • Klein, H.L.1    Kreuzer, K.N.2
  • 53
    • 0033710452 scopus 로고    scopus 로고
    • RuvABC-dependent double-strand breaks in dnaBts mutants require RecA
    • Seigneur M., Ehrlich S.D., Michel B. RuvABC-dependent double-strand breaks in dnaBts mutants require RecA. Mol. Microbiol. 38:2000;565-574.
    • (2000) Mol. Microbiol. , vol.38 , pp. 565-574
    • Seigneur, M.1    Ehrlich, S.D.2    Michel, B.3
  • 54
    • 0036015646 scopus 로고    scopus 로고
    • Replication fork reversal in DNA polymerase III mutants of Escherichia coli: A role for the beta clamp
    • Grompone G., Seigneur M., Ehrlich S.D., Michel B. Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role for the beta clamp. Mol. Microbiol. 44:2002;1331-1339.
    • (2002) Mol. Microbiol. , vol.44 , pp. 1331-1339
    • Grompone, G.1    Seigneur, M.2    Ehrlich, S.D.3    Michel, B.4
  • 55
    • 0033954246 scopus 로고    scopus 로고
    • Replication fork pausing and recombination or "gimme a break"
    • Rothstein R., Michel B., Gangloff S. Replication fork pausing and recombination or "gimme a break" Genes Dev. 14:2000;1-10.
    • (2000) Genes Dev. , vol.14 , pp. 1-10
    • Rothstein, R.1    Michel, B.2    Gangloff, S.3
  • 56
    • 0035902453 scopus 로고    scopus 로고
    • RecA protein promotes the regression of stalled replication forks in vitro
    • Robu M.E., Inman R.B., Cox M.M. RecA protein promotes the regression of stalled replication forks in vitro. Proc. Natl. Acad. Sci. U.S.A. 98:2001;8211-8218.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 8211-8218
    • Robu, M.E.1    Inman, R.B.2    Cox, M.M.3
  • 57
    • 0035902591 scopus 로고    scopus 로고
    • Rescue of stalled replication forks by RecG: Simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation
    • McGlynn P., Lloyd R.G. Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation. Proc. Natl. Acad. Sci. U.S.A. 98:2001;8227-8234.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 8227-8234
    • McGlynn, P.1    Lloyd, R.G.2
  • 58
    • 0036184234 scopus 로고    scopus 로고
    • Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities
    • Gregg A.V., McGlynn P., Jaktaji R.P., Lloyd R.G. Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities. Mol. Cell. 9:2002;241-251.
    • (2002) Mol. Cell , vol.9 , pp. 241-251
    • Gregg, A.V.1    McGlynn, P.2    Jaktaji, R.P.3    Lloyd, R.G.4
  • 59
    • 0037126613 scopus 로고    scopus 로고
    • The RecOR proteins modulate RecA protein function at 5′ ends of single-stranded DNA
    • Bork J.M., Cox M.M., Inman R.B. The RecOR proteins modulate RecA protein function at 5′ ends of single-stranded DNA. EMBO J. 20:2001;7313-7322.
    • (2001) EMBO J. , vol.20 , pp. 7313-7322
    • Bork, J.M.1    Cox, M.M.2    Inman, R.B.3
  • 60
    • 0031556955 scopus 로고    scopus 로고
    • RecA protein filaments: End-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins
    • Shan Q., Bork J.M., Webb B.L., Inman R.B., Cox M.M. RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J. Mol. Biol. 265:1997;519-540.
    • (1997) J. Mol. Biol. , vol.265 , pp. 519-540
    • Shan, Q.1    Bork, J.M.2    Webb, B.L.3    Inman, R.B.4    Cox, M.M.5
  • 61
    • 0028034452 scopus 로고
    • Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein
    • Umezu K., Kolodner R.D. Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J. Biol. Chem. 269:1994;30005-30013.
    • (1994) J. Biol. Chem. , vol.269 , pp. 30005-30013
    • Umezu, K.1    Kolodner, R.D.2
  • 62
    • 0030700498 scopus 로고    scopus 로고
    • Recombinational DNA repair - The RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps
    • Webb B.L., Cox M.M., Inman R.B. Recombinational DNA repair - the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell. 91:1997;347-356.
    • (1997) Cell , vol.91 , pp. 347-356
    • Webb, B.L.1    Cox, M.M.2    Inman, R.B.3
  • 63
    • 0028292327 scopus 로고
    • Homologous genetic recombination: The pieces begin to fall into place
    • Clark A.J., Sandler S.J. Homologous genetic recombination: the pieces begin to fall into place. Crit. Rev. Microbiol. 20:1994;125-142.
    • (1994) Crit. Rev. Microbiol. , vol.20 , pp. 125-142
    • Clark, A.J.1    Sandler, S.J.2
  • 64
    • 0033119260 scopus 로고    scopus 로고
    • The RecBC enzyme loads RecA protein onto ssDNA asymmetrically and independently of chi, resulting in constitutive recombination activation
    • Churchill J.J., Anderson D.G., Kowalczykowski S.C. The RecBC enzyme loads RecA protein onto ssDNA asymmetrically and independently of chi, resulting in constitutive recombination activation. Genes Dev. 13:1999;901-911.
    • (1999) Genes Dev. , vol.13 , pp. 901-911
    • Churchill, J.J.1    Anderson, D.G.2    Kowalczykowski, S.C.3
  • 65
    • 0034697325 scopus 로고    scopus 로고
    • Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme
    • Arnold D.A., Kowalczykowski S.C. Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme. J. Biol. Chem. 275:2000;12261-12265.
    • (2000) J. Biol. Chem. , vol.275 , pp. 12261-12265
    • Arnold, D.A.1    Kowalczykowski, S.C.2
  • 66
    • 0034737310 scopus 로고    scopus 로고
    • Identification of the RecA protein-loading domain of RecBCD enzyme
    • Churchill J.J., Kowalczykowski S.C. Identification of the RecA protein-loading domain of RecBCD enzyme. J. Mol. Biol. 297:2000;537-542.
    • (2000) J. Mol. Biol. , vol.297 , pp. 537-542
    • Churchill, J.J.1    Kowalczykowski, S.C.2
  • 68
    • 0028176499 scopus 로고
    • Chi sites in combination with RecA protein increase the survival of linear DNA in Escherichia coli by inactivating exoV activity of RecBCD nuclease
    • Kuzminov A., Schabtach E., Stahl F.W. Chi sites in combination with RecA protein increase the survival of linear DNA in Escherichia coli by inactivating exoV activity of RecBCD nuclease. EMBO J. 13:1994;2764-2776.
    • (1994) EMBO J. , vol.13 , pp. 2764-2776
    • Kuzminov, A.1    Schabtach, E.2    Stahl, F.W.3
  • 69
    • 0037134454 scopus 로고    scopus 로고
    • A dynamic RecA filament permits DNA polymerase-catalyzed extension of the invading strand in recombination intermediates
    • Xu L.W., Marians K.J. A dynamic RecA filament permits DNA polymerase-catalyzed extension of the invading strand in recombination intermediates. J. Biol. Chem. 277:2002;14321-14328.
    • (2002) J. Biol. Chem. , vol.277 , pp. 14321-14328
    • Xu, L.W.1    Marians, K.J.2
  • 70
    • 0032553470 scopus 로고    scopus 로고
    • Localization of bacterial DNA polymerase: Evidence for a factory model of replication
    • Lemon K.P., Grossman A.D. Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science. 282:1998;1516-1519.
    • (1998) Science , vol.282 , pp. 1516-1519
    • Lemon, K.P.1    Grossman, A.D.2
  • 71
    • 0034509678 scopus 로고    scopus 로고
    • Movement of replicating DNA through a stationary replisome
    • Lemon K.P., Grossman A.D. Movement of replicating DNA through a stationary replisome. Mol. Cell. 6:2000;1321-1330.
    • (2000) Mol. Cell , vol.6 , pp. 1321-1330
    • Lemon, K.P.1    Grossman, A.D.2
  • 72
    • 0032493294 scopus 로고    scopus 로고
    • The SbcCD nuclease of Escherichia coli is a structural maintenance of chromosomes (SMC) family protein that cleaves hairpin DNA
    • Connelly J.C., Kirkham L.A., Leach D.R.F. The SbcCD nuclease of Escherichia coli is a structural maintenance of chromosomes (SMC) family protein that cleaves hairpin DNA. Proc. Natl. Acad. Sci. U.S.A. 95:1998;7969-7974.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 7969-7974
    • Connelly, J.C.1    Kirkham, L.A.2    Leach, D.R.F.3
  • 73
    • 0034786987 scopus 로고    scopus 로고
    • The replication-recombination connection: Insights from genomics
    • Gruss A., Michel B. The replication-recombination connection: insights from genomics. Curr. Opin. Microbiol. 4:2001;595-601.
    • (2001) Curr. Opin. Microbiol. , vol.4 , pp. 595-601
    • Gruss, A.1    Michel, B.2
  • 74
    • 0037079680 scopus 로고    scopus 로고
    • A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis
    • Makarova K.S., Aravind L., Grishin N.V., Rogozin I.B., Koonin E.V. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nuc. Acids Res. 30:2002;482-496.
    • (2002) Nuc. Acids Res. , vol.30 , pp. 482-496
    • Makarova, K.S.1    Aravind, L.2    Grishin, N.V.3    Rogozin, I.B.4    Koonin, E.V.5
  • 75
    • 0037007015 scopus 로고    scopus 로고
    • Identification of a protein essential for a major pathway used by human cells to avoid UV-induced DNA damage
    • Li Z.Q., Xiao W., McCormick J.J., Maher V.M. Identification of a protein essential for a major pathway used by human cells to avoid UV-induced DNA damage. Proc. Natl. Acad. Sci. U.S.A. 99:2002;4459-4464.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 4459-4464
    • Li, Z.Q.1    Xiao, W.2    McCormick, J.J.3    Maher, V.M.4
  • 76
    • 0030760609 scopus 로고    scopus 로고
    • "Break copy" duplication: A model for chromosome fragment formation in Saccharomyces cerevisiae
    • Morrow D.M., Connelly C., Hieter P. "Break copy" duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics. 147:1997;371-382.
    • (1997) Genetics , vol.147 , pp. 371-382
    • Morrow, D.M.1    Connelly, C.2    Hieter, P.3
  • 77
    • 0025630657 scopus 로고
    • Gene conversion tracts stimulated by HOT1-promoted transcription are long and continuous
    • Voelkel-Meiman K., Roeder G.S. Gene conversion tracts stimulated by HOT1-promoted transcription are long and continuous. Genetics. 126:1990;851-867.
    • (1990) Genetics , vol.126 , pp. 851-867
    • Voelkel-Meiman, K.1    Roeder, G.S.2
  • 78
    • 0021257193 scopus 로고
    • Coincident gene conversion during mitosis in Saccharomyces
    • Golin J.E., Esposito M.S. Coincident gene conversion during mitosis in Saccharomyces. Genetics. 107:1984;355-365.
    • (1984) Genetics , vol.107 , pp. 355-365
    • Golin, J.E.1    Esposito, M.S.2
  • 79
    • 0009461504 scopus 로고
    • Evidence that spontaneous mitotic recombination occurs at the two-strand stage
    • Esposito M.S. Evidence that spontaneous mitotic recombination occurs at the two-strand stage. Proc. Natl. Acad. Sci. U.S.A. 75:1978;4436-4440.
    • (1978) Proc. Natl. Acad. Sci. U.S.A. , vol.75 , pp. 4436-4440
    • Esposito, M.S.1
  • 80
    • 0031737723 scopus 로고    scopus 로고
    • Chromosome break-induced DNA replication leads to non-reciprocal translocations and telomere capture
    • Bosco G., Haber J.E. Chromosome break-induced DNA replication leads to non-reciprocal translocations and telomere capture. Genetics. 150:1998;1037-1047.
    • (1998) Genetics , vol.150 , pp. 1037-1047
    • Bosco, G.1    Haber, J.E.2
  • 81
    • 0021715715 scopus 로고
    • Transfer of yeast telomeres to linear plasmids by recombination
    • Dunn B., Szauter P., Pardue M.L., Szostak J.W. Transfer of yeast telomeres to linear plasmids by recombination. Cell. 39:1984;191-201.
    • (1984) Cell , vol.39 , pp. 191-201
    • Dunn, B.1    Szauter, P.2    Pardue, M.L.3    Szostak, J.W.4
  • 83
    • 0034177830 scopus 로고    scopus 로고
    • The spindle checkpoint: Two transitions, two pathways
    • Gardner R.D., Burke D.J. The spindle checkpoint: two transitions, two pathways. Trends Cell Biol. 10:2000;154-158.
    • (2000) Trends Cell Biol. , vol.10 , pp. 154-158
    • Gardner, R.D.1    Burke, D.J.2
  • 84
    • 0023712476 scopus 로고
    • The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae
    • Weinert T.A., Hartwell L.H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science. 241:1988;317-322.
    • (1988) Science , vol.241 , pp. 317-322
    • Weinert, T.A.1    Hartwell, L.H.2
  • 85
    • 0037178722 scopus 로고    scopus 로고
    • Maintenance of genome stability in Saccharomyces cerevisiae
    • Kolodner R.D., Putnam C.D., Myung K. Maintenance of genome stability in Saccharomyces cerevisiae. Science. 297:2002;552-557.
    • (2002) Science , vol.297 , pp. 552-557
    • Kolodner, R.D.1    Putnam, C.D.2    Myung, K.3
  • 86
    • 0035830498 scopus 로고    scopus 로고
    • Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae
    • Myung K.J., Datta A., Kolodner R.D. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell. 104:2001;397-408.
    • (2001) Cell , vol.104 , pp. 397-408
    • Myung, K.J.1    Datta, A.2    Kolodner, R.D.3
  • 87
    • 0037007074 scopus 로고    scopus 로고
    • Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae
    • Myung K., Kolodner R.D. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 99:2002;4500-4507.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 4500-4507
    • Myung, K.1    Kolodner, R.D.2
  • 88
    • 0033568196 scopus 로고    scopus 로고
    • Activation of dormant origins of DNA replication in budding yeast
    • Santocanale C., Sharma K., Diffley J.F.X. Activation of dormant origins of DNA replication in budding yeast. Genes Dev. 13:1999;2360-2364.
    • (1999) Genes Dev. , vol.13 , pp. 2360-2364
    • Santocanale, C.1    Sharma, K.2    Diffley, J.F.X.3
  • 89
    • 0032558590 scopus 로고    scopus 로고
    • Replication control - Choreographing replication origins
    • Diffley J.F.X. Replication control - choreographing replication origins. Curr. Biol. 8:1998;R 771-R 773.
    • (1998) Curr. Biol. , vol.8
    • Diffley, J.F.X.1
  • 90
    • 0032497529 scopus 로고    scopus 로고
    • A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication
    • Santocanale C., Diffley J.F.X. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature. 395:1998;615-618.
    • (1998) Nature , vol.395 , pp. 615-618
    • Santocanale, C.1    Diffley, J.F.X.2
  • 94
    • 0029085781 scopus 로고
    • A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage
    • Paulovich A.G., Hartwell L.H. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell. 82:1995;841-847.
    • (1995) Cell , vol.82 , pp. 841-847
    • Paulovich, A.G.1    Hartwell, L.H.2
  • 96
    • 0035797444 scopus 로고    scopus 로고
    • Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint
    • Tercero J.A., Diffley J.F.X. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature. 412:2001;553-557.
    • (2001) Nature , vol.412 , pp. 553-557
    • Tercero, J.A.1    Diffley, J.F.X.2
  • 97
    • 0037178723 scopus 로고    scopus 로고
    • ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones
    • Cha R.S., Kleckner N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science. 297:2002;602-606.
    • (2002) Science , vol.297 , pp. 602-606
    • Cha, R.S.1    Kleckner, N.2
  • 99
    • 0037178740 scopus 로고    scopus 로고
    • Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects
    • Sogo J.M., Lopes M., Foiani M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science. 297:2002;599-602.
    • (2002) Science , vol.297 , pp. 599-602
    • Sogo, J.M.1    Lopes, M.2    Foiani, M.3
  • 100
    • 0021185614 scopus 로고
    • Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: Identification of a new mutation (recQ1) that blocks the RecF recombination pathway
    • Nakayama H., Nakayama K., Nakayama R., Irino N., Nakayama Y., Hanawalt P.C. Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: identification of a new mutation (recQ1) that blocks the RecF recombination pathway. Mol. Gen. Genet. 195:1984;474-480.
    • (1984) Mol. Gen. Genet. , vol.195 , pp. 474-480
    • Nakayama, H.1    Nakayama, K.2    Nakayama, R.3    Irino, N.4    Nakayama, Y.5    Hanawalt, P.C.6
  • 101
    • 0030994386 scopus 로고    scopus 로고
    • +, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest
    • +, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest. EMBO J. 16:1997;2682-2692.
    • (1997) EMBO J. , vol.16 , pp. 2682-2692
    • Stewart, E.1    Chapman, C.R.2    Al-Khodairy, F.3    Carr, A.M.4    Enoch, T.5
  • 102
    • 0031848284 scopus 로고    scopus 로고
    • Replication focus-forming activity 1 and the Werner syndrome gene product
    • Yan H., Chen C.Y., Kobayashi R., Newport J. Replication focus-forming activity 1 and the Werner syndrome gene product. Nat. Genet. 19:1998;375-378.
    • (1998) Nat. Genet. , vol.19 , pp. 375-378
    • Yan, H.1    Chen, C.Y.2    Kobayashi, R.3    Newport, J.4
  • 105
    • 0032526583 scopus 로고    scopus 로고
    • Characterization of Werner syndrome protein DNA helicase activity: Directionality, substrate dependence and stimulation by replication protein A
    • Shen J.C., Gray M.D., Oshima J., Loeb L.A. Characterization of Werner syndrome protein DNA helicase activity: directionality, substrate dependence and stimulation by replication protein A. Nucleic Acids Res. 26:1998;2879-2885.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 2879-2885
    • Shen, J.C.1    Gray, M.D.2    Oshima, J.3    Loeb, L.A.4
  • 107
    • 0035169035 scopus 로고    scopus 로고
    • Werner's syndrome protein is required for correct recovery after replication arrest and DNA damage induced in S-phase of cell cycle
    • Pichierri P., Franchitto A., Mosesso P., Palitti F. Werner's syndrome protein is required for correct recovery after replication arrest and DNA damage induced in S-phase of cell cycle. Mol. Biol. Cell. 12:2001;2412-2421.
    • (2001) Mol. Biol. Cell , vol.12 , pp. 2412-2421
    • Pichierri, P.1    Franchitto, A.2    Mosesso, P.3    Palitti, F.4
  • 108
    • 0029002965 scopus 로고
    • Sgs1: A eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation
    • Watt P.M., Louis E.J., Borts R.H., Hickson I.D. Sgs1: a eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation. Cell. 81:1995;253-260.
    • (1995) Cell , vol.81 , pp. 253-260
    • Watt, P.M.1    Louis, E.J.2    Borts, R.H.3    Hickson, I.D.4
  • 109
    • 0028033989 scopus 로고
    • The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: A potential eukaryotic reverse gyrase
    • Gangloff S., McDonald J.P., Bendixen C., Arthur L., Rothstein R. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14:1994;8391-8398.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 8391-8398
    • Gangloff, S.1    McDonald, J.P.2    Bendixen, C.3    Arthur, L.4    Rothstein, R.5
  • 110
    • 0033957793 scopus 로고    scopus 로고
    • The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci
    • Frei C., Gasser S.M. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev. 14:2000;81-96.
    • (2000) Genes Dev. , vol.14 , pp. 81-96
    • Frei, C.1    Gasser, S.M.2
  • 111
    • 0032555220 scopus 로고    scopus 로고
    • Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: Implication for genomic instability in human diseases
    • Yamagata K., Kato J., Shimamoto A., Goto M., Furuichi Y., Ikeda H. Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc. Natl. Acad. Sci. U.S.A. 95:1998;8733-8738.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 8733-8738
    • Yamagata, K.1    Kato, J.2    Shimamoto, A.3    Goto, M.4    Furuichi, Y.5    Ikeda, H.6
  • 113
    • 0035158640 scopus 로고    scopus 로고
    • SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination
    • Myung K., Datta A., Chen C., Kolodner R.D. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat. Genet. 27:2001;113-116.
    • (2001) Nat. Genet. , vol.27 , pp. 113-116
    • Myung, K.1    Datta, A.2    Chen, C.3    Kolodner, R.D.4
  • 114
    • 0029347083 scopus 로고
    • Instability of inhibited replication forks in E. coli
    • Kuzminov A. Instability of inhibited replication forks in E. coli. BioEssays. 17:1995;733-741.
    • (1995) BioEssays , vol.17 , pp. 733-741
    • Kuzminov, A.1
  • 115
    • 0033119701 scopus 로고    scopus 로고
    • Defending genome integrity during DNA replication: A proposed role for RecQ family helicases
    • Chakraverty R.K., Hickson I.D. Defending genome integrity during DNA replication: a proposed role for RecQ family helicases. BioEssays. 21:1999;286-294.
    • (1999) BioEssays , vol.21 , pp. 286-294
    • Chakraverty, R.K.1    Hickson, I.D.2
  • 116
    • 0034176967 scopus 로고    scopus 로고
    • Replication fork arrest and DNA recombination
    • Michel B. Replication fork arrest and DNA recombination. Trends Biochem. Sci. 25:2000;173-178.
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 173-178
    • Michel, B.1
  • 117
    • 0034192020 scopus 로고    scopus 로고
    • The Werner syndrome gene: The molecular basis of RecQ helicase-deficiency diseases
    • Shen J.C., Loeb L.A. The Werner syndrome gene: the molecular basis of RecQ helicase-deficiency diseases. Trends Genet. 16:2000;213-220.
    • (2000) Trends Genet. , vol.16 , pp. 213-220
    • Shen, J.C.1    Loeb, L.A.2
  • 118
    • 0038799991 scopus 로고    scopus 로고
    • Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae
    • Paques F., Haber J.E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. (Washington, DC). 63:1999;349-404.
    • (1999) Microbiol. Mol. Biol. Rev. (Washington, DC) , vol.63 , pp. 349-404
    • Paques, F.1    Haber, J.E.2
  • 119
    • 0033358610 scopus 로고    scopus 로고
    • The mammalian Mre11-Rad50-Mbs1 protein complex: Integration of functions in the cellular DNA-damage response
    • Petrini J.H.J. The mammalian Mre11-Rad50-Mbs1 protein complex: integration of functions in the cellular DNA-damage response. Am. J. Hum. Genet. 64:1999;1264-1269.
    • (1999) Am. J. Hum. Genet. , vol.64 , pp. 1264-1269
    • Petrini, J.H.J.1
  • 120
    • 0034020464 scopus 로고    scopus 로고
    • The Mre11 complex and ATM: Collaborating to navigate S phase
    • Petrini J.H.J. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol. 12:2000;293-296.
    • (2000) Curr. Opin. Cell Biol. , vol.12 , pp. 293-296
    • Petrini, J.H.J.1
  • 121
    • 0035803488 scopus 로고    scopus 로고
    • Fission yeast Rad50 stimulates sister chromatid recombination and links cohesion with repair
    • Hartsuiker E., Vaessen E., Carr A.M., Kohli J. Fission yeast Rad50 stimulates sister chromatid recombination and links cohesion with repair. EMBO J. 20:2001;6660-6671.
    • (2001) EMBO J. , vol.20 , pp. 6660-6671
    • Hartsuiker, E.1    Vaessen, E.2    Carr, A.M.3    Kohli, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.