-
1
-
-
0028534860
-
The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype
-
Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1994;1:661-73.
-
(1994)
Immunity
, vol.1
, pp. 661-673
-
-
Morrison, S.J.1
Weissman, I.L.2
-
2
-
-
1642471831
-
PI3K/Akt and apoptosis: Size matters
-
Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene 2003;22:8983-8.
-
(2003)
Oncogene
, vol.22
, pp. 8983-8988
-
-
Franke, T.F.1
Hornik, C.P.2
Segev, L.3
Shostak, G.A.4
Sugimoto, C.5
-
3
-
-
38049185075
-
Protein kinase B (c-akt) regulates hematopoietic lineage choice decisions during myelopoiesis
-
Buitenhuis M, Verhagen LP, van Deutekom HWM, Castor A, Verploegen S, Koenderman L, et al. Protein kinase B (c-akt) regulates hematopoietic lineage choice decisions during myelopoiesis. Blood 2008;111:112-21.
-
(2008)
Blood
, vol.111
, pp. 112-121
-
-
Buitenhuis, M.1
Verhagen, L.P.2
van Deutekom, H.W.M.3
Castor, A.4
Verploegen, S.5
Koenderman, L.6
-
4
-
-
22544444889
-
Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia
-
Sujobert P, Bardet V, Cornillet-Lefebvre P, Hayflick JS, Prie N, Verdier F, et al. Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 2005;106:1063-6.
-
(2005)
Blood
, vol.106
, pp. 1063-1066
-
-
Sujobert, P.1
Bardet, V.2
Cornillet-Lefebvre, P.3
Hayflick, J.S.4
Prie, N.5
Verdier, F.6
-
5
-
-
27544450742
-
Constitutive activation of Akt by Flt3 internal tandem duplications is necessary for increased survival, proliferation, and myeloid transformation
-
Brandts CH, Sargin B, Rode M, Biermann C, Lindtner B, Schwäble J, et al. Constitutive activation of Akt by Flt3 internal tandem duplications is necessary for increased survival, proliferation, and myeloid transformation. Cancer Res 2005;65:9643-50.
-
(2005)
Cancer Res
, vol.65
, pp. 9643-9650
-
-
Brandts, C.H.1
Sargin, B.2
Rode, M.3
Biermann, C.4
Lindtner, B.5
Schwäble, J.6
-
6
-
-
31444440033
-
Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients
-
Nyåkern M, Tazzari PL, Finelli C, Bosi C, Follo MY, Grafone T, et al. Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia 2006;20:230-8.
-
(2006)
Leukemia
, vol.20
, pp. 230-238
-
-
Nyåkern, M.1
Tazzari, P.L.2
Finelli, C.3
Bosi, C.4
Follo, M.Y.5
Grafone, T.6
-
7
-
-
12344262762
-
mTOR, translational control and human disease
-
Tee AR, Blenis J. mTOR, translational control and human disease. Semin Cell Dev Biol 2005;16:29-37.
-
(2005)
Semin Cell Dev Biol
, vol.16
, pp. 29-37
-
-
Tee, A.R.1
Blenis, J.2
-
8
-
-
0033429554
-
Mammalian target of rapamycin is a direct target for protein kinase B: Identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation
-
Navé BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 1999;344:427-31.
-
(1999)
Biochem J
, vol.344
, pp. 427-431
-
-
Navé, B.T.1
Ouwens, M.2
Withers, D.J.3
Alessi, D.R.4
Shepherd, P.R.5
-
9
-
-
0036713778
-
Tsc2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki K, Li Y, Zhu T, Wu J, Guan K. Tsc2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002;4:648-57.
-
(2002)
Nat Cell Biol
, vol.4
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.5
-
10
-
-
0033607531
-
Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase a in vitro
-
Isotani S, Hara K, Tokunaga C, Inoue H, Avruch J, Yonezawa K. Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase a in vitro. J Biol Chem 1999;274:34493-8.
-
(1999)
J Biol Chem
, vol.274
, pp. 34493-34498
-
-
Isotani, S.1
Hara, K.2
Tokunaga, C.3
Inoue, H.4
Avruch, J.5
Yonezawa, K.6
-
11
-
-
0030716488
-
Regulation of eIF-4E BP1 phosphorylation by mTOR
-
Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem 1997;272:26457-63.
-
(1997)
J Biol Chem
, vol.272
, pp. 26457-26463
-
-
Hara, K.1
Yonezawa, K.2
Kozlowski, M.T.3
Sugimoto, T.4
Andrabi, K.5
Weng, Q.P.6
-
12
-
-
0035312747
-
Regulation of translation initiation by FRAP/mTOR
-
Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001;15:807-26.
-
(2001)
Genes Dev
, vol.15
, pp. 807-826
-
-
Gingras, A.C.1
Raught, B.2
Sonenberg, N.3
-
13
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002;10:457-68.
-
(2002)
Mol Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
Jacinto, E.2
Wullschleger, S.3
Lorberg, A.4
Crespo, J.L.5
Bonenfant, D.6
-
14
-
-
0029842109
-
Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP
-
Choi J, Chen J, Schreiber SL, Clardy J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996;273:239-42.
-
(1996)
Science
, vol.273
, pp. 239-242
-
-
Choi, J.1
Chen, J.2
Schreiber, S.L.3
Clardy, J.4
-
15
-
-
6344245674
-
Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development
-
Gangloff Y, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz J, et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol 2004;24:9508-16.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 9508-9516
-
-
Gangloff, Y.1
Mueller, M.2
Dann, S.G.3
Svoboda, P.4
Sticker, M.5
Spetz, J.6
-
16
-
-
0035578226
-
Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway
-
Martin PM, Sutherland AE. Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev Biol 2001;240:182-93.
-
(2001)
Dev Biol
, vol.240
, pp. 182-193
-
-
Martin, P.M.1
Sutherland, A.E.2
-
17
-
-
40549088524
-
PLD regulates myoblast differentiation through the mTOR-IGF2 pathway
-
Yoon M, Chen J. PLD regulates myoblast differentiation through the mTOR-IGF2 pathway. J Cell Sci 2008;121:282-9.
-
(2008)
J Cell Sci
, vol.121
, pp. 282-289
-
-
Yoon, M.1
Chen, J.2
-
18
-
-
40849126775
-
mTOR signaling contributes to chondrocyte differentiation
-
Phornphutkul C, Wu K, Auyeung V, Chen Q, Gruppuso PA. mTOR signaling contributes to chondrocyte differentiation. Dev Dyn 2008;237:702-12.
-
(2008)
Dev Dyn
, vol.237
, pp. 702-712
-
-
Phornphutkul, C.1
Wu, K.2
Auyeung, V.3
Chen, Q.4
Gruppuso, P.A.5
-
19
-
-
4644297339
-
Rapamycin inhibits proliferation and differentiation of human endothelial progenitor cells in vitro
-
Butzal M, Loges S, Schweizer M, Fischer U, Gehling UM, Hossfeld DK, et al. Rapamycin inhibits proliferation and differentiation of human endothelial progenitor cells in vitro. Exp Cell Res 2004;300:65-71.
-
(2004)
Exp Cell Res
, vol.300
, pp. 65-71
-
-
Butzal, M.1
Loges, S.2
Schweizer, M.3
Fischer, U.4
Gehling, U.M.5
Hossfeld, D.K.6
-
20
-
-
33749359393
-
Mammalian target of rapamycin regulates the growth of mammary epithelial cells through the inhibitor of deoxyribonucleic acid binding ID1 and their functional differentiation through ID2
-
Jankiewicz M, Groner B, Desrivières S. Mammalian target of rapamycin regulates the growth of mammary epithelial cells through the inhibitor of deoxyribonucleic acid binding ID1 and their functional differentiation through ID2. Mol Endocrinol 2006;20:2369-81.
-
(2006)
Mol Endocrinol
, vol.20
, pp. 2369-2381
-
-
Jankiewicz, M.1
Groner, B.2
Desrivières, S.3
-
21
-
-
38649110155
-
Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells
-
Singha UK, Jiang Y, Yu S, Luo M, Lu Y, Zhang J, et al. Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells. J Cell Biochem 2008;103:434-46.
-
(2008)
J Cell Biochem
, vol.103
, pp. 434-446
-
-
Singha, U.K.1
Jiang, Y.2
Yu, S.3
Luo, M.4
Lu, Y.5
Zhang, J.6
-
22
-
-
20044392290
-
Atrophy of S6K1(-/-) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control
-
Ohanna M, Sobering AK, Lapointe T, Lorenzo L, Praud C, Petroulakis E, et al. Atrophy of S6K1(-/-) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 2005;7:286-94.
-
(2005)
Nat Cell Biol
, vol.7
, pp. 286-294
-
-
Ohanna, M.1
Sobering, A.K.2
Lapointe, T.3
Lorenzo, L.4
Praud, C.5
Petroulakis, E.6
-
23
-
-
24744441713
-
Mammalian target of rapamycin (mTOR) signaling is required for a late-stage fusion process during skeletal myotube maturation
-
Park I, Chen J. Mammalian target of rapamycin (mTOR) signaling is required for a late-stage fusion process during skeletal myotube maturation. J Biol Chem 2005;280:32009-17.
-
(2005)
J Biol Chem
, vol.280
, pp. 32009-32017
-
-
Park, I.1
Chen, J.2
-
24
-
-
37249046846
-
Rapamycin promotes vascular smooth muscle cell differentiation through insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt2 feedback signaling
-
Martin KA, Merenick BL, Ding M, Fetalvero KM, Rzucidlo EM, Kozul CD, et al. Rapamycin promotes vascular smooth muscle cell differentiation through insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt2 feedback signaling. J Biol Chem 2007;282:36112-20.
-
(2007)
J Biol Chem
, vol.282
, pp. 36112-36120
-
-
Martin, K.A.1
Merenick, B.L.2
Ding, M.3
Fetalvero, K.M.4
Rzucidlo, E.M.5
Kozul, C.D.6
-
26
-
-
14844363721
-
Signaling by target of rapamycin proteins in cell growth control
-
Inoki K, Ouyang H, Li Y, Guan K. Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 2005;69:79-100.
-
(2005)
Microbiol Mol Biol Rev
, vol.69
, pp. 79-100
-
-
Inoki, K.1
Ouyang, H.2
Li, Y.3
Guan, K.4
-
27
-
-
58149328932
-
AGC kinases regulate phosphorylation and activation of eukaryotic translation initiation factor 4B
-
van Gorp AG, van der Vos KE, Brenkman AB, Bremer A, van den Broek N, Zwartkruis F, et al. AGC kinases regulate phosphorylation and activation of eukaryotic translation initiation factor 4B. Oncogene 2009;28:95-106.
-
(2009)
Oncogene
, vol.28
, pp. 95-106
-
-
van Gorp, A.G.1
van der Vos, K.E.2
Brenkman, A.B.3
Bremer, A.4
van den Broek, N.5
Zwartkruis, F.6
-
29
-
-
0037207525
-
Rapamycin-induced G1 arrest in cycling B-CLL cells is associated with reduced expression of cyclin D3, cyclin E, cyclin A, and survivin
-
Decker T, Hipp S, Ringshausen I, Bogner C, Oelsner M, Schneller F, et al. Rapamycin-induced G1 arrest in cycling B-CLL cells is associated with reduced expression of cyclin D3, cyclin E, cyclin A, and survivin. Blood 2003;101:278-85.
-
(2003)
Blood
, vol.101
, pp. 278-285
-
-
Decker, T.1
Hipp, S.2
Ringshausen, I.3
Bogner, C.4
Oelsner, M.5
Schneller, F.6
-
30
-
-
0345732640
-
mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E
-
Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 2004;24:200-16.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 200-216
-
-
Fingar, D.C.1
Richardson, C.J.2
Tee, A.R.3
Cheatham, L.4
Tsou, C.5
Blenis, J.6
-
31
-
-
0031570412
-
The regulation of p27kip1 expression following the polyclonal activation of murine G0 T cells
-
Kwon TK, Buchholz MA, Ponsalle P, Chrest FJ, Nordin AA. The regulation of p27kip1 expression following the polyclonal activation of murine G0 T cells. J Immunol 1997;158:5642-8.
-
(1997)
J Immunol
, vol.158
, pp. 5642-5648
-
-
Kwon, T.K.1
Buchholz, M.A.2
Ponsalle, P.3
Chrest, F.J.4
Nordin, A.A.5
-
32
-
-
0032146276
-
A pivotal role of cyclin D3 and cyclin-dependent kinase inhibitor p27 in the regulation of IL-2-, IL-4-, or IL-10-mediated human B cell proliferation
-
Wagner EF, Hleb M, Hanna N, Sharma S. A pivotal role of cyclin D3 and cyclin-dependent kinase inhibitor p27 in the regulation of IL-2-, IL-4-, or IL-10-mediated human B cell proliferation. J Immunol 1998;161:1123-31.
-
(1998)
J Immunol
, vol.161
, pp. 1123-1131
-
-
Wagner, E.F.1
Hleb, M.2
Hanna, N.3
Sharma, S.4
-
33
-
-
0028172867
-
Interleukin-2-mediated elimination of the p27kip1 cyclin-dependent kinase inhibitor prevented by rapamycin
-
Nourse J, Firpo E, Flanagan WM, Coats S, Polyak K, Lee MH, et al. Interleukin-2-mediated elimination of the p27kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 1994;372:570-3.
-
(1994)
Nature
, vol.372
, pp. 570-573
-
-
Nourse, J.1
Firpo, E.2
Flanagan, W.M.3
Coats, S.4
Polyak, K.5
Lee, M.H.6
-
34
-
-
0031594842
-
The upregulation of p27kip1 by rapamycin results in G1 arrest in exponentially growing T-cell lines
-
Kawamata S, Sakaida H, Hori T, Maeda M, Uchiyama T. The upregulation of p27kip1 by rapamycin results in G1 arrest in exponentially growing T-cell lines. Blood 1998;91:561-9.
-
(1998)
Blood
, vol.91
, pp. 561-569
-
-
Kawamata, S.1
Sakaida, H.2
Hori, T.3
Maeda, M.4
Uchiyama, T.5
-
35
-
-
33644769115
-
Mammalian target of rapamycin (mTOR) regulates both proliferation of megakaryocyte progenitors and late stages of megakaryocyte differentiation
-
Raslova H, Baccini V, Loussaief L, Comba B, Larghero J, Debili N, et al. Mammalian target of rapamycin (mTOR) regulates both proliferation of megakaryocyte progenitors and late stages of megakaryocyte differentiation. Blood 2006;107:2303-10.
-
(2006)
Blood
, vol.107
, pp. 2303-2310
-
-
Raslova, H.1
Baccini, V.2
Loussaief, L.3
Comba, B.4
Larghero, J.5
Debili, N.6
-
36
-
-
33645505599
-
Mammalian target of rapamycin is required for thrombopoietin-induced proliferation of megakaryocyte progenitors
-
Drayer AL, Olthof SGM, Vellenga E. Mammalian target of rapamycin is required for thrombopoietin-induced proliferation of megakaryocyte progenitors. Stem Cells 2006;24:105-14.
-
(2006)
Stem Cells
, vol.24
, pp. 105-114
-
-
Drayer, A.L.1
Olthof, S.G.M.2
Vellenga, E.3
-
37
-
-
0037097863
-
Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/EIF4E
-
Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/EIF4E. Genes Dev 2002;16:1472-87.
-
(2002)
Genes Dev
, vol.16
, pp. 1472-1487
-
-
Fingar, D.C.1
Salama, S.2
Tsou, C.3
Harlow, E.4
Blenis, J.5
-
38
-
-
2342545519
-
Target of rapamycin (mTOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression
-
Fingar DC, Blenis J. Target of rapamycin (mTOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004;23:3151-71.
-
(2004)
Oncogene
, vol.23
, pp. 3151-3171
-
-
Fingar, D.C.1
Blenis, J.2
-
39
-
-
0031919865
-
Regulation of cell size by glucose is exerted via repression of the CLN1 promoter
-
Flick K, Chapman-Shimshoni D, Stuart D, Guaderrama M, Wittenberg C. Regulation of cell size by glucose is exerted via repression of the CLN1 promoter. Mol Cell Biol 1998;18:2492-501.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 2492-2501
-
-
Flick, K.1
Chapman-Shimshoni, D.2
Stuart, D.3
Guaderrama, M.4
Wittenberg, C.5
-
41
-
-
58049196780
-
mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization
-
Gan B, Sahin E, Jiang S, Sanchez-Aguilera A, Scott KL, Chin L, et al. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc Natl Acad Sci USA 2008;105:19384-9.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 19384-19389
-
-
Gan, B.1
Sahin, E.2
Jiang, S.3
Sanchez-Aguilera, A.4
Scott, K.L.5
Chin, L.6
-
42
-
-
38049177784
-
Differential impact of mammalian target of rapamycin inhibition on CD4+ CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells
-
Zeiser R, Leveson-Gower DB, Zambricki EA, Kambham N, Beilhack A, Loh J, et al. Differential impact of mammalian target of rapamycin inhibition on CD4+ CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood 2008;111:453-62.
-
(2008)
Blood
, vol.111
, pp. 453-462
-
-
Zeiser, R.1
Leveson-Gower, D.B.2
Zambricki, E.A.3
Kambham, N.4
Beilhack, A.5
Loh, J.6
-
43
-
-
1642535431
-
Akt activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression
-
Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu J, et al. Akt activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem 2004;279:2737-46.
-
(2004)
J Biol Chem
, vol.279
, pp. 2737-2746
-
-
Gera, J.F.1
Mellinghoff, I.K.2
Shi, Y.3
Rettig, M.B.4
Tran, C.5
Hsu, J.6
-
44
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov DD, Ali SM, Sengupta S, Sheen J, Hsu PP, Bagley AF, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006;22:159-68.
-
(2006)
Mol Cell
, vol.22
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
Sheen, J.4
Hsu, P.P.5
Bagley, A.F.6
-
45
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005;307:1098-101.
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
46
-
-
0042744837
-
Survival of acute myeloid leukemia cells requires PI3 kinase activation
-
Xu Q, Simpson S, Scialla TJ, Bagg A, Carroll M. Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003;102:972-80.
-
(2003)
Blood
, vol.102
, pp. 972-980
-
-
Xu, Q.1
Simpson, S.2
Scialla, T.J.3
Bagg, A.4
Carroll, M.5
-
47
-
-
0037513474
-
Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: Its significance as a prognostic variable
-
Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK, et al. Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 2003;17:995-7.
-
(2003)
Leukemia
, vol.17
, pp. 995-997
-
-
Min, Y.H.1
Eom, J.I.2
Cheong, J.W.3
Maeng, H.O.4
Kim, J.Y.5
Jeung, H.K.6
-
48
-
-
0035793086
-
A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt
-
Aoki M, Blazek E, Vogt PK. A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc Natl Acad Sci USA 2001;98:136-41.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 136-141
-
-
Aoki, M.1
Blazek, E.2
Vogt, P.K.3
-
49
-
-
17944377486
-
Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR
-
Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 2001;98:10314-9.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 10314-10319
-
-
Neshat, M.S.1
Mellinghoff, I.K.2
Tran, C.3
Stiles, B.4
Thomas, G.5
Petersen, R.6
-
50
-
-
20144363954
-
Antileukemic activity of rapamycin in acute myeloid leukemia
-
Récher C, Beyne-Rauzy O, Demur C, Chicanne G, Dos Santos C, Mas VM, et al. Antileukemic activity of rapamycin in acute myeloid leukemia. Blood 2005;105:2527-34.
-
(2005)
Blood
, vol.105
, pp. 2527-2534
-
-
Récher, C.1
Beyne-Rauzy, O.2
Demur, C.3
Chicanne, G.4
Dos Santos, C.5
Mas, V.M.6
-
51
-
-
34147146014
-
Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML
-
Zeng Z, Sarbassov DD, Samudio IJ, Yee KWL, Munsell MF, Ellen Jackson C, et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 2007;109:3509-12.
-
(2007)
Blood
, vol.109
, pp. 3509-3512
-
-
Zeng, Z.1
Sarbassov, D.D.2
Samudio, I.J.3
Yee, K.W.L.4
Munsell, M.F.5
Ellen Jackson, C.6
-
52
-
-
38049187096
-
Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by upregulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: Rationale for therapeutic inhibition of both pathways
-
Tamburini J, Chapuis N, Bardet V, Park S, Sujobert P, Willems L, et al. Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by upregulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood 2008;111:379-82.
-
(2008)
Blood
, vol.111
, pp. 379-382
-
-
Tamburini, J.1
Chapuis, N.2
Bardet, V.3
Park, S.4
Sujobert, P.5
Willems, L.6
-
53
-
-
23844438209
-
Activation of Akt and EIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition
-
Sun S, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H, et al. Activation of Akt and EIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 2005;65:7052-8.
-
(2005)
Cancer Res
, vol.65
, pp. 7052-7058
-
-
Sun, S.1
Rosenberg, L.M.2
Wang, X.3
Zhou, Z.4
Yue, P.5
Fu, H.6
|