-
1
-
-
0019386682
-
Sequence and specificity of two antibacterial proteins involved in insect immunity
-
Steiner, H., Hultmark, D., Engström, A., Bennich, H. & Boman, H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246-248 (1981).
-
(1981)
Nature
, vol.292
, pp. 246-248
-
-
Steiner, H.1
Hultmark, D.2
Engström, A.3
Bennich, H.4
Boman, H.G.5
-
2
-
-
0033022730
-
Antimicrobial peptides in insects; structure and function
-
Bulet, P., Hetru, C., Dimarcq, J. L. & Hoffmann, D. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329-344 (1999).
-
(1999)
Dev. Comp. Immunol
, vol.23
, pp. 329-344
-
-
Bulet, P.1
Hetru, C.2
Dimarcq, J.L.3
Hoffmann, D.4
-
3
-
-
0030595339
-
The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults
-
A seminal study that demonstrates an essential role of the Toll pathway in the antifungal host response
-
Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983 (1996). A seminal study that demonstrates an essential role of the Toll pathway in the antifungal host response.
-
(1996)
Cell
, vol.86
, pp. 973-983
-
-
Lemaitre, B.1
Nicolas, E.2
Michaut, L.3
Reichhart, J.M.4
Hoffmann, J.A.5
-
4
-
-
27644443295
-
Dorsoventral axis formation in the Drosophila embryo - shaping and transducing a morphogen gradient
-
Moussian, B. & Roth, S. Dorsoventral axis formation in the Drosophila embryo - shaping and transducing a morphogen gradient. Curr. Biol. 15, R887-R899 (2005).
-
(2005)
Curr. Biol
, vol.15
-
-
Moussian, B.1
Roth, S.2
-
5
-
-
0242581687
-
The immune response of Drosophila
-
Hoffmann, J. A. The immune response of Drosophila. Nature 426, 33-38 (2003).
-
(2003)
Nature
, vol.426
, pp. 33-38
-
-
Hoffmann, J.A.1
-
6
-
-
0022881454
-
β1,3-glucan receptor and peptidoglycan receptor are present as separate entities within insect prophenoloxidase activating system
-
Yoshida, H., Ochiai, M. & Ashida, M. β1,3-glucan receptor and peptidoglycan receptor are present as separate entities within insect prophenoloxidase activating system. Biochem. Biophys. Res. Commun. 141, 1177-1184 (1986).
-
(1986)
Biochem. Biophys. Res. Commun
, vol.141
, pp. 1177-1184
-
-
Yoshida, H.1
Ochiai, M.2
Ashida, M.3
-
7
-
-
0038664357
-
The Drosophila immune system detects bacteria through specific peptidoglycan recognition
-
Leulier, F. et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nature Immunol. 4, 478-484 (2003).
-
(2003)
Nature Immunol
, vol.4
, pp. 478-484
-
-
Leulier, F.1
-
8
-
-
2442456719
-
Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway
-
References 7 and 8 show that PGNs induce the systemic immune response
-
Kaneko, T. et al. Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20, 637-649 (2004). References 7 and 8 show that PGNs induce the systemic immune response.
-
(2004)
Immunity
, vol.20
, pp. 637-649
-
-
Kaneko, T.1
-
9
-
-
33845666959
-
Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors
-
This study shows that the fly relies both on PRRs and danger signals to detect infections
-
Gottar, M. et al. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127, 1425-1437 (2006). This study shows that the fly relies both on PRRs and danger signals to detect infections.
-
(2006)
Cell
, vol.127
, pp. 1425-1437
-
-
Gottar, M.1
-
10
-
-
0031446642
-
Drosophila host defense: Differential display of antimicrobial peptide genes after infection by various classes of microorganisms
-
Lemaitre, B., Reichhart, J. M. & Hoffmann, J. A. Drosophila host defense: differential display of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl Acad. Sci. USA 94, 14614-14619 (1997).
-
(1997)
Proc. Natl Acad. Sci. USA
, vol.94
, pp. 14614-14619
-
-
Lemaitre, B.1
Reichhart, J.M.2
Hoffmann, J.A.3
-
11
-
-
0034610370
-
A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster
-
Werner, T. et al. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 13772-13777 (2000).
-
(2000)
Proc. Natl Acad. Sci. USA
, vol.97
, pp. 13772-13777
-
-
Werner, T.1
-
12
-
-
0037470091
-
A scavenger function for a Drosophila peptidoglycan recognition protein
-
Mellroth, P., Karlsson, J. & Steiner, H. A scavenger function for a Drosophila peptidoglycan recognition protein. J. Biol. Chem. 278, 7059-7064 (2003).
-
(2003)
J. Biol. Chem
, vol.278
, pp. 7059-7064
-
-
Mellroth, P.1
Karlsson, J.2
Steiner, H.3
-
13
-
-
33750091050
-
PGRP-SB1: An N-acetylmuramoyl L-alanine amidase with antibacterial activity
-
Mellroth, P. & Steiner, H. PGRP-SB1: an N-acetylmuramoyl L-alanine amidase with antibacterial activity. Biochem. Biophys. Res. Commun. 350, 994-999 (2006).
-
(2006)
Biochem. Biophys. Res. Commun
, vol.350
, pp. 994-999
-
-
Mellroth, P.1
Steiner, H.2
-
14
-
-
0042195829
-
Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster
-
Kim, M. S., Byun, M. & Oh, B. H. Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nature Immunol. 4, 787-793 (2003).
-
(2003)
Nature Immunol
, vol.4
, pp. 787-793
-
-
Kim, M.S.1
Byun, M.2
Oh, B.H.3
-
15
-
-
0037061450
-
The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein
-
Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640-644 (2002).
-
(2002)
Nature
, vol.416
, pp. 640-644
-
-
Gottar, M.1
-
16
-
-
0037066464
-
Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila
-
Choe, K. M., Werner, T., Stoven, S., Hultmark, D. & Anderson, K. V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359-362 (2002).
-
(2002)
Science
, vol.296
, pp. 359-362
-
-
Choe, K.M.1
Werner, T.2
Stoven, S.3
Hultmark, D.4
Anderson, K.V.5
-
17
-
-
0037061482
-
Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli
-
References 15-17 report the identification of PGRP-LC as the receptor of the IMD pathway
-
Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R. A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644-648 (2002). References 15-17 report the identification of PGRP-LC as the receptor of the IMD pathway.
-
(2002)
Nature
, vol.416
, pp. 644-648
-
-
Ramet, M.1
Manfruelli, P.2
Pearson, A.3
Mathey-Prevot, B.4
Ezekowitz, R.A.5
-
18
-
-
0037108754
-
Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae
-
Takehana, A. et al. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl Acad. Sci. USA 99, 13705-13710 (2002).
-
(2002)
Proc. Natl Acad. Sci. USA
, vol.99
, pp. 13705-13710
-
-
Takehana, A.1
-
19
-
-
10644267665
-
Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity
-
Takehana, A. et al. Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J. 23, 4690-4700 (2004).
-
(2004)
EMBO J
, vol.23
, pp. 4690-4700
-
-
Takehana, A.1
-
20
-
-
33745225236
-
-
Kaneko, T. et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nature Immunol. 7, 715-723 (2006). This work documents a possible role for PGRP-LE as an intracellular receptor.
-
Kaneko, T. et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nature Immunol. 7, 715-723 (2006). This work documents a possible role for PGRP-LE as an intracellular receptor.
-
-
-
-
21
-
-
0034805375
-
Drosophila immunity: Genes on the third chromosome required for the response to bacterial infection
-
Wu, L. P., Choe, K. M., Lu, Y. & Anderson, K. V. Drosophila immunity: genes on the third chromosome required for the response to bacterial infection. Genetics 159, 189-199 (2001).
-
(2001)
Genetics
, vol.159
, pp. 189-199
-
-
Wu, L.P.1
Choe, K.M.2
Lu, Y.3
Anderson, K.V.4
-
22
-
-
10344251507
-
Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway
-
Stenbak, C. R. et al. Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. J. Immunol. 173, 7339-7348 (2004).
-
(2004)
J. Immunol
, vol.173
, pp. 7339-7348
-
-
Stenbak, C.R.1
-
23
-
-
18144401356
-
Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro
-
Mellroth, P. et al. Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro. Proc. Natl Acad. Sci. USA 102, 6455-6460 (2005).
-
(2005)
Proc. Natl Acad. Sci. USA
, vol.102
, pp. 6455-6460
-
-
Mellroth, P.1
-
24
-
-
22544477068
-
Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition
-
Chang, C. I. et al. Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc. Natl Acad. Sci. USA 102, 10279-10284 (2005).
-
(2005)
Proc. Natl Acad. Sci. USA
, vol.102
, pp. 10279-10284
-
-
Chang, C.I.1
-
25
-
-
31444438761
-
Dual strategies for peptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs)
-
Swaminathan, C. P. et al. Dual strategies for peptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs). Proc. Natl Acad. Sci. USA 103, 684-689 (2006).
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 684-689
-
-
Swaminathan, C.P.1
-
26
-
-
33646378677
-
Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins
-
Lim, J. H. et al. Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J. Biol. Chem. 281, 8286-8295 (2006).
-
(2006)
J. Biol. Chem
, vol.281
, pp. 8286-8295
-
-
Lim, J.H.1
-
27
-
-
33645236166
-
Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor
-
References 26 and 27 report the molecular basis for the discrimination between DAP-type and Lys-type PGNs by the PGRP-LC and PGRP-LE receptors
-
Chang, C. I., Chelliah, Y., Borek, D., Mengin-Lecreulx, D. & Deisenhofer, J. Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311, 1761-1764 (2006). References 26 and 27 report the molecular basis for the discrimination between DAP-type and Lys-type PGNs by the PGRP-LC and PGRP-LE receptors.
-
(2006)
Science
, vol.311
, pp. 1761-1764
-
-
Chang, C.I.1
Chelliah, Y.2
Borek, D.3
Mengin-Lecreulx, D.4
Deisenhofer, J.5
-
28
-
-
33645994799
-
The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection
-
Zaidman-Remy, A. et al. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24, 463-473 (2006).
-
(2006)
Immunity
, vol.24
, pp. 463-473
-
-
Zaidman-Remy, A.1
-
29
-
-
33645770760
-
Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2
-
Bischoff, V. et al. Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog. 2, e14 (2006).
-
(2006)
PLoS Pathog
, vol.2
-
-
Bischoff, V.1
-
30
-
-
0037013856
-
The Toll and Imd pathways are the major regulators of the immune response in Drosophila
-
De Gregorio, E., Spellman, P. T., Tzou, P., Rubin, G. M. & Lemaitre, B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21, 2568-2579 (2002).
-
(2002)
EMBO J
, vol.21
, pp. 2568-2579
-
-
De Gregorio, E.1
Spellman, P.T.2
Tzou, P.3
Rubin, G.M.4
Lemaitre, B.5
-
31
-
-
33845877453
-
Psidin is required in Drosophila blood cells for both phagocytic degradation and immune activation of the fat body
-
Brennan, C. A., Delaney, J. R., Schneider, D. S. & Anderson, K. V. Psidin is required in Drosophila blood cells for both phagocytic degradation and immune activation of the fat body. Curr. Biol. 17, 67-72 (2007).
-
(2007)
Curr. Biol
, vol.17
, pp. 67-72
-
-
Brennan, C.A.1
Delaney, J.R.2
Schneider, D.S.3
Anderson, K.V.4
-
32
-
-
0035856990
-
-
Michel, T., Reichhart, J., Hoffmann, J. A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756-759 (2001). In this study genetic evidence is provided that PGRP-SA acts as a PRR for the detection of Gram-positive bacteria.
-
Michel, T., Reichhart, J., Hoffmann, J. A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756-759 (2001). In this study genetic evidence is provided that PGRP-SA acts as a PRR for the detection of Gram-positive bacteria.
-
-
-
-
33
-
-
9244251126
-
Function of the Drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria
-
Bischoff, V. et al. Function of the Drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nature Immunol. 5, 1175-1180 (2004).
-
(2004)
Nature Immunol
, vol.5
, pp. 1175-1180
-
-
Bischoff, V.1
-
34
-
-
0345731463
-
Dual activation of the Drosophila Toll pathway by two pattern recognition receptors
-
References 34 and 38 document the role of GNBP1 in sensing Gram-positive bacterial infections
-
Gobert, V. et al. Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 302, 2126-2130 (2003). References 34 and 38 document the role of GNBP1 in sensing Gram-positive bacterial infections.
-
(2003)
Science
, vol.302
, pp. 2126-2130
-
-
Gobert, V.1
-
35
-
-
0029846206
-
Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori
-
Lee, W. J., Lee, J. D., Kravchenko, V. V., Ulevitch, R. J. & Brey, P. T. Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc. Natl Acad. Sci. USA 93, 7888-7893 (1996).
-
(1996)
Proc. Natl Acad. Sci. USA
, vol.93
, pp. 7888-7893
-
-
Lee, W.J.1
Lee, J.D.2
Kravchenko, V.V.3
Ulevitch, R.J.4
Brey, P.T.5
-
36
-
-
0034681346
-
A pattern-recognition protein for β-1,3-glucan. The binding domain and the cDNA cloning of β-1,3-glucan recognition protein from the silkworm, Bombyx mori
-
Ochiai, M. & Ashida, M. A pattern-recognition protein for β-1,3-glucan. The binding domain and the cDNA cloning of β-1,3-glucan recognition protein from the silkworm, Bombyx mori. J. Biol. Chem. 275, 4995-5002 (2000).
-
(2000)
J. Biol. Chem
, vol.275
, pp. 4995-5002
-
-
Ochiai, M.1
Ashida, M.2
-
37
-
-
19344363377
-
A Drosophila pattern recognition receptor contains a peptidoglycan docking groove and unusual l, d-carboxypeptidase activity
-
Chang, C. I. et al. A Drosophila pattern recognition receptor contains a peptidoglycan docking groove and unusual l, d-carboxypeptidase activity. PLoS Biol. 2, e277 (2004).
-
(2004)
PLoS Biol
, vol.2
-
-
Chang, C.I.1
-
38
-
-
33750218690
-
Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA
-
Wang, L. et al. Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA. EMBO J. 25, 5005-5014 (2006).
-
(2006)
EMBO J
, vol.25
, pp. 5005-5014
-
-
Wang, L.1
-
39
-
-
17644405130
-
-
Filipe, S. R., Tomasz, A. & Ligoxygakis, P. Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep. 6, 327-333 (2005).
-
Filipe, S. R., Tomasz, A. & Ligoxygakis, P. Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep. 6, 327-333 (2005).
-
-
-
-
40
-
-
0033711445
-
The Rel protein DIF mediates the antifungal, but not the antibacterial, response in Drosophila
-
Rutschmann, S. et al. The Rel protein DIF mediates the antifungal, but not the antibacterial, response in Drosophila. Immunity 12, 569-580 (2000).
-
(2000)
Immunity
, vol.12
, pp. 569-580
-
-
Rutschmann, S.1
-
41
-
-
0037025213
-
Activation of Drosophila Toll during fungal infection by a blood serine protease
-
Ligoxygakis, P., Pelte, N., Hoffmann, J. A. & Reichhart, J. M. Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297, 114-116 (2002).
-
(2002)
Science
, vol.297
, pp. 114-116
-
-
Ligoxygakis, P.1
Pelte, N.2
Hoffmann, J.A.3
Reichhart, J.M.4
-
42
-
-
33751100626
-
The plant immune system
-
Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323-329 (2006).
-
(2006)
Nature
, vol.444
, pp. 323-329
-
-
Jones, J.D.1
Dangl, J.L.2
-
43
-
-
34548459868
-
Structure and function of toll receptors and their ligands
-
Gay, N. J. & Gangloff, M. Structure and function of toll receptors and their ligands. Annu. Rev. Biochem. 76, 141-165 (2007).
-
(2007)
Annu. Rev. Biochem
, vol.76
, pp. 141-165
-
-
Gay, N.J.1
Gangloff, M.2
-
44
-
-
0041989575
-
Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling
-
Weber, A. N. et al. Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling. Nature Immunol. 4, 794-800 (2003).
-
(2003)
Nature Immunol
, vol.4
, pp. 794-800
-
-
Weber, A.N.1
-
45
-
-
3042645409
-
Multimerization and interaction of Toll and Spätzle in Drosophila
-
Hu, X., Yagi, Y., Tanji, T., Zhou, S. & Ip, Y. T. Multimerization and interaction of Toll and Spätzle in Drosophila. Proc. Natl Acad. Sci. USA 101, 9369-9374 (2004).
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 9369-9374
-
-
Hu, X.1
Yagi, Y.2
Tanji, T.3
Zhou, S.4
Ip, Y.T.5
-
46
-
-
14044272776
-
New insights into Drosophila larval haemocyte functions through genome-wide analysis
-
Irving, P. et al. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell. Microbiol. 7, 335-350 (2005).
-
(2005)
Cell. Microbiol
, vol.7
, pp. 335-350
-
-
Irving, P.1
-
47
-
-
0034641738
-
Toll-related receptors and the control of antimicrobial peptide expression in Drosophila
-
Tauszig, S., Jouanguy, E., Hoffmann, J. A. & Imler, J. L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl Acad. Sci. USA 97, 10520-10525 (2000).
-
(2000)
Proc. Natl Acad. Sci. USA
, vol.97
, pp. 10520-10525
-
-
Tauszig, S.1
Jouanguy, E.2
Hoffmann, J.A.3
Imler, J.L.4
-
48
-
-
0035479747
-
A family of proteins related to Spätzle, the toll receptor ligand, are encoded in the Drosophila genome
-
Parker, J. S., Mizuguchi, K. & Gay, N. J. A family of proteins related to Spätzle, the toll receptor ligand, are encoded in the Drosophila genome. Proteins 45, 71-80 (2001).
-
(2001)
Proteins
, vol.45
, pp. 71-80
-
-
Parker, J.S.1
Mizuguchi, K.2
Gay, N.J.3
-
49
-
-
0036952124
-
Tissue and stage-specific expression of the Tolls in Drosophila embryos
-
Kambris, Z., Hoffmann, J. A., Imler, J. L. & Capovilla, M. Tissue and stage-specific expression of the Tolls in Drosophila embryos. Gene Expr. Patterns 2, 311-317 (2002).
-
(2002)
Gene Expr. Patterns
, vol.2
, pp. 311-317
-
-
Kambris, Z.1
Hoffmann, J.A.2
Imler, J.L.3
Capovilla, M.4
-
50
-
-
33750980112
-
Genomic insights into the immune system of the sea urchin
-
Rast, J. P., Smith, L. C., Loza-Coll., M., Hibino, T. & Litman, G. W. Genomic insights into the immune system of the sea urchin. Science 314, 952-956 (2006).
-
(2006)
Science
, vol.314
, pp. 952-956
-
-
Rast, J.P.1
Smith, L.C.2
Loza-Coll, M.3
Hibino, T.4
Litman, G.W.5
-
51
-
-
0032033030
-
Proteolytic processing of the Drosophila Spätzle protein by easter generates a dimeric NGF-like molecule with ventralising activity
-
DeLotto, Y. & DeLotto, R. Proteolytic processing of the Drosophila Spätzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech. Dev. 72, 141-148 (1998).
-
(1998)
Mech. Dev
, vol.72
, pp. 141-148
-
-
DeLotto, Y.1
DeLotto, R.2
-
52
-
-
29744438644
-
A Spätzle-processing enzyme required for toll signaling activation in Drosophila innate immunity
-
This article identifies the protease that cleaves Spätzle into an active Toll ligand during the immune response
-
Jang, I. H. et al. A Spätzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev. Cell 10, 45-55 (2006). This article identifies the protease that cleaves Spätzle into an active Toll ligand during the immune response.
-
(2006)
Dev. Cell
, vol.10
, pp. 45-55
-
-
Jang, I.H.1
-
53
-
-
33646037067
-
Drosophila immunity: A large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation
-
Kambris, Z. et al. Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr. Biol. 16, 808-813 (2006).
-
(2006)
Curr. Biol
, vol.16
, pp. 808-813
-
-
Kambris, Z.1
-
54
-
-
0033118490
-
Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor
-
Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor. Genes Dev. 13, 792-797 (1999).
-
(1999)
Genes Dev
, vol.13
, pp. 792-797
-
-
Meng, X.1
Khanuja, B.S.2
Ip, Y.T.3
-
55
-
-
0036141954
-
Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections
-
Tauszig-Delamasure, S., Bilak, H., Capovilla, M., Hoffmann, J. A. & Imler, J. L. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nature Immunol. 3, 91-97 (2002).
-
(2002)
Nature Immunol
, vol.3
, pp. 91-97
-
-
Tauszig-Delamasure, S.1
Bilak, H.2
Capovilla, M.3
Hoffmann, J.A.4
Imler, J.L.5
-
56
-
-
0842307067
-
Regulated assembly of the Toll signaling complex drives Drosophila dorsoventral patterning
-
Sun, H., Towb, P., Chiem, D. N., Foster, B. A. & Wasserman, S. A. Regulated assembly of the Toll signaling complex drives Drosophila dorsoventral patterning. EMBO J. 23, 100-110 (2004).
-
(2004)
EMBO J
, vol.23
, pp. 100-110
-
-
Sun, H.1
Towb, P.2
Chiem, D.N.3
Foster, B.A.4
Wasserman, S.A.5
-
57
-
-
33744997626
-
Weckle is a zinc finger adaptor of the Toll pathway in dorsoventral patterning of the Drosophila embryo
-
Chen, L. Y. et al. Weckle is a zinc finger adaptor of the Toll pathway in dorsoventral patterning of the Drosophila embryo. Curr. Biol. 16, 1183-1193 (2006).
-
(2006)
Curr. Biol
, vol.16
, pp. 1183-1193
-
-
Chen, L.Y.1
-
58
-
-
0028916254
-
Cactus protein degradation mediates Drosophila dorsal-ventral signaling
-
Belvin, M. P., Jin, Y. & Anderson, K. V. Cactus protein degradation mediates Drosophila dorsal-ventral signaling. Genes Dev. 9, 783-793 (1995).
-
(1995)
Genes Dev
, vol.9
, pp. 783-793
-
-
Belvin, M.P.1
Jin, Y.2
Anderson, K.V.3
-
59
-
-
0034893896
-
Separable and redundant regulatory determinants in Cactus mediate its dorsal group dependent degradation
-
Fernandez, N. Q., Grosshans, J., Goltz, J. S. & Stein, D. Separable and redundant regulatory determinants in Cactus mediate its dorsal group dependent degradation. Development 128, 2963-2974 (2001).
-
(2001)
Development
, vol.128
, pp. 2963-2974
-
-
Fernandez, N.Q.1
Grosshans, J.2
Goltz, J.S.3
Stein, D.4
-
60
-
-
0035187882
-
The antibacterial arm of the Drosophila innate immune response requires an IκB kinase
-
Lu, Y., Wu, L. P. & Anderson, K. V. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev. 15, 104-110 (2001).
-
(2001)
Genes Dev
, vol.15
, pp. 104-110
-
-
Lu, Y.1
Wu, L.P.2
Anderson, K.V.3
-
61
-
-
0034303573
-
Role of Drosophila IKKγ in a Toll-independent antibacterial immune response
-
Rutschmann, S. et al. Role of Drosophila IKKγ in a Toll-independent antibacterial immune response. Nature Immunol. 1, 342-347 (2000).
-
(2000)
Nature Immunol
, vol.1
, pp. 342-347
-
-
Rutschmann, S.1
-
62
-
-
0030815382
-
An activity-dependent network of interactions links the Rel protein Dorsal with its cytoplasmic regulators
-
Edwards, D. N., Towb, P. & Wasserman, S. A. An activity-dependent network of interactions links the Rel protein Dorsal with its cytoplasmic regulators. Development 124, 3855-3864 (1997).
-
(1997)
Development
, vol.124
, pp. 3855-3864
-
-
Edwards, D.N.1
Towb, P.2
Wasserman, S.A.3
-
63
-
-
0028075756
-
Activation of the kinase Pelle by Tube in the dorsoventral signal transduction pathway of Drosophila embryo
-
Grosshans, J., Bergmann, A., Haffter, P. & Nüsslein-Volhard, C. Activation of the kinase Pelle by Tube in the dorsoventral signal transduction pathway of Drosophila embryo. Nature 372, 563-566 (1994).
-
(1994)
Nature
, vol.372
, pp. 563-566
-
-
Grosshans, J.1
Bergmann, A.2
Haffter, P.3
Nüsslein-Volhard, C.4
-
64
-
-
0031460697
-
A multimeric complex and the nuclear targeting of the Drosophila Rel protein Dorsal
-
Yang, J. & Steward, R. A multimeric complex and the nuclear targeting of the Drosophila Rel protein Dorsal. Proc. Natl Acad. Sci. USA 94, 14524-14529 (1997).
-
(1997)
Proc. Natl Acad. Sci. USA
, vol.94
, pp. 14524-14529
-
-
Yang, J.1
Steward, R.2
-
65
-
-
31344461659
-
Innate immune recognition of viral infection
-
Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nature Immunol. 7, 131-137 (2006).
-
(2006)
Nature Immunol
, vol.7
, pp. 131-137
-
-
Kawai, T.1
Akira, S.2
-
66
-
-
0033976430
-
Cactus-independent regulation of Dorsal nuclear import by the ventral signal
-
Drier, E. A., Govind, S. & Steward, R. Cactus-independent regulation of Dorsal nuclear import by the ventral signal. Curr. Biol. 10, 23-26 (2000).
-
(2000)
Curr. Biol
, vol.10
, pp. 23-26
-
-
Drier, E.A.1
Govind, S.2
Steward, R.3
-
67
-
-
24344471404
-
Drosophila WntD is a target and an inhibitor of the Dorsal/Twist/Snail network in the gastrulating embryo
-
Ganguly, A., Jiang, J. & Ip, Y. T. Drosophila WntD is a target and an inhibitor of the Dorsal/Twist/Snail network in the gastrulating embryo. Development 132, 3419-3429 (2005).
-
(2005)
Development
, vol.132
, pp. 3419-3429
-
-
Ganguly, A.1
Jiang, J.2
Ip, Y.T.3
-
68
-
-
26944485185
-
WntD is a feedback inhibitor of Dorsal/NF-κB in Drosophila development and immunity
-
Gordon, M. D., Dionne, M. S., Schneider, D. S. & Nusse, R. WntD is a feedback inhibitor of Dorsal/NF-κB in Drosophila development and immunity. Nature 437, 746-749 (2005).
-
(2005)
Nature
, vol.437
, pp. 746-749
-
-
Gordon, M.D.1
Dionne, M.S.2
Schneider, D.S.3
Nusse, R.4
-
69
-
-
0028865526
-
A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defence
-
Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defence. Proc. Natl Acad. Sci. USA 92, 9465-9469 (1995).
-
(1995)
Proc. Natl Acad. Sci. USA
, vol.92
, pp. 9465-9469
-
-
Lemaitre, B.1
-
70
-
-
18044400563
-
Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis
-
Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell 1, 503-514 (2001).
-
(2001)
Dev. Cell
, vol.1
, pp. 503-514
-
-
Georgel, P.1
-
71
-
-
12844279852
-
Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor
-
Choe, K. M., Lee, H. & Anderson, K. V. Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc. Natl Acad. Sci. USA 102, 1122-1126 (2005).
-
(2005)
Proc. Natl Acad. Sci. USA
, vol.102
, pp. 1122-1126
-
-
Choe, K.M.1
Lee, H.2
Anderson, K.V.3
-
72
-
-
0033231556
-
-
Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Molecular Cell 4, 1-20 (1999). This work identifies Relish as the NF-κB transcription factor of the IMD pathway.
-
Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Molecular Cell 4, 1-20 (1999). This work identifies Relish as the NF-κB transcription factor of the IMD pathway.
-
-
-
-
73
-
-
0034287444
-
A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity
-
Silverman, N. et al. A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev. 14, 2461-2471. (2000).
-
(2000)
Genes Dev
, vol.14
, pp. 2461-2471
-
-
Silverman, N.1
-
74
-
-
0034303480
-
-
Stöven, S., Ando, I., Kadalayil, L., Engström, Y. & Hultmark, D. Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep. 1, 347-352 (2000).
-
Stöven, S., Ando, I., Kadalayil, L., Engström, Y. & Hultmark, D. Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep. 1, 347-352 (2000).
-
-
-
-
75
-
-
0035423794
-
Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB dependent innate immune responses
-
Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB dependent innate immune responses. Genes Dev. 15, 1900-1912 (2001).
-
(2001)
Genes Dev
, vol.15
, pp. 1900-1912
-
-
Vidal, S.1
-
76
-
-
1542571463
-
Immune activation of NF-κB and JNK requires Drosophila TAK1
-
Silverman, N. et al. Immune activation of NF-κB and JNK requires Drosophila TAK1. J. Biol. Chem. 278, 48928-48934 (2003).
-
(2003)
J. Biol. Chem
, vol.278
, pp. 48928-48934
-
-
Silverman, N.1
-
77
-
-
33645127265
-
A genetic screen targeting the TNF/Eiger signaling pathway: Identification of Drosophila TAB2 as a functionally conserved component
-
Geuking, P., Narasimamurthy, R. & Basler, K. A genetic screen targeting the TNF/Eiger signaling pathway: identification of Drosophila TAB2 as a functionally conserved component. Genetics 171, 1683-1694 (2005).
-
(2005)
Genetics
, vol.171
, pp. 1683-1694
-
-
Geuking, P.1
Narasimamurthy, R.2
Basler, K.3
-
78
-
-
27344453240
-
-
Gesellchen, V., Kuttenkeuler, D., Steckel, M., Pelte, N. & Boutros, M. An RNA interference screen identifies Inhibitor of Apoptosis Protein 2 as a regulator of innate immune signalling in Drosophila. EMBO Rep. 6, 979-984 (2005).
-
Gesellchen, V., Kuttenkeuler, D., Steckel, M., Pelte, N. & Boutros, M. An RNA interference screen identifies Inhibitor of Apoptosis Protein 2 as a regulator of innate immune signalling in Drosophila. EMBO Rep. 6, 979-984 (2005).
-
-
-
-
79
-
-
27144475536
-
Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway
-
Kleino, A. et al. Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO J. 24, 3423-3434 (2005).
-
(2005)
EMBO J
, vol.24
, pp. 3423-3434
-
-
Kleino, A.1
-
80
-
-
23144449789
-
Ubiquitin signalling in the NF-κB pathway
-
Chen, Z. J. Ubiquitin signalling in the NF-κB pathway. Nature Cell Biol. 7, 758-765 (2005).
-
(2005)
Nature Cell Biol
, vol.7
, pp. 758-765
-
-
Chen, Z.J.1
-
81
-
-
26644432726
-
The role of ubiquitination in Drosophila innate immunity
-
Zhou, R. et al. The role of ubiquitination in Drosophila innate immunity. J. Biol. Chem. 280, 34048-34055 (2005).
-
(2005)
J. Biol. Chem
, vol.280
, pp. 34048-34055
-
-
Zhou, R.1
-
82
-
-
33750330952
-
The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection
-
Leulier, F., Lhocine, N., Lemaitre, B. & Meier, P. The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection. Mol. Cell Biol. 26, 7821-7831 (2006).
-
(2006)
Mol. Cell Biol
, vol.26
, pp. 7821-7831
-
-
Leulier, F.1
Lhocine, N.2
Lemaitre, B.3
Meier, P.4
-
83
-
-
33847273186
-
The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate immune response to Gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers
-
Huh, J. R. et al. The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate immune response to Gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers. J. Biol. Chem. 282, 2056-2068 (2007).
-
(2007)
J. Biol. Chem
, vol.282
, pp. 2056-2068
-
-
Huh, J.R.1
-
84
-
-
0037172656
-
Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults
-
Leulier, F., Vidal, S., Saigo, K., Ueda, R. & Lemaitre, B. Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults. Curr. Biol. 12, 996-1000 (2002).
-
(2002)
Curr. Biol
, vol.12
, pp. 996-1000
-
-
Leulier, F.1
Vidal, S.2
Saigo, K.3
Ueda, R.4
Lemaitre, B.5
-
85
-
-
0034305744
-
-
Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infections. EMBO Rep. 1, 353-358 (2000).
-
Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infections. EMBO Rep. 1, 353-358 (2000).
-
-
-
-
86
-
-
0036850985
-
The Drosophila immune defense against gram-negative infection requires the death protein dFADD
-
Naitza, S. et al. The Drosophila immune defense against gram-negative infection requires the death protein dFADD. Immunity 17, 575-581 (2002).
-
(2002)
Immunity
, vol.17
, pp. 575-581
-
-
Naitza, S.1
-
87
-
-
0038284956
-
Caspase-mediated processing of the Drosophila NF-κB factor Relish
-
Stoven, S. et al. Caspase-mediated processing of the Drosophila NF-κB factor Relish. Proc. Natl Acad. Sci. USA 100, 5991-5996 (2003).
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 5991-5996
-
-
Stoven, S.1
-
88
-
-
0036848010
-
Sequential activation of signaling pathways during innate immune responses in Drosophila
-
Boutros, M., Agaisse, H. & Perrimon, N. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell 3, 711-722 (2002).
-
(2002)
Dev. Cell
, vol.3
, pp. 711-722
-
-
Boutros, M.1
Agaisse, H.2
Perrimon, N.3
-
89
-
-
12144288602
-
Targeting of TAK1 by the NF-κB protein Relish regulates the JNK-mediated immune response in Drosophila
-
Park, J. M. et al. Targeting of TAK1 by the NF-κB protein Relish regulates the JNK-mediated immune response in Drosophila. Genes Dev. 18, 584-594 (2004).
-
(2004)
Genes Dev
, vol.18
, pp. 584-594
-
-
Park, J.M.1
-
90
-
-
0037124314
-
Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway
-
Igaki, T. et al. Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J. 21, 3009-3018 (2002).
-
(2002)
EMBO J
, vol.21
, pp. 3009-3018
-
-
Igaki, T.1
-
91
-
-
13944272315
-
Downregulation of lipopolysaccharide response in Drosophila by negative crosstalk between the AP1 and NF-κB signaling modules
-
Kim, T. et al. Downregulation of lipopolysaccharide response in Drosophila by negative crosstalk between the AP1 and NF-κB signaling modules. Nature Immunol. 6, 211-218 (2005).
-
(2005)
Nature Immunol
, vol.6
, pp. 211-218
-
-
Kim, T.1
-
92
-
-
33746319307
-
Cooperative control of Drosophila immune responses by the JNK and NF-κB signaling pathways
-
Delaney, J. R. et al. Cooperative control of Drosophila immune responses by the JNK and NF-κB signaling pathways. EMBO J. 25, 3068-3077 (2006).
-
(2006)
EMBO J
, vol.25
, pp. 3068-3077
-
-
Delaney, J.R.1
-
93
-
-
0037108474
-
A ubiquitin-proteasome pathway represses the Drosophila immune deficiency signaling cascade
-
Khush, R. S., Cornwell, W. D., Uram, J. N. & Lemaitre, B. A ubiquitin-proteasome pathway represses the Drosophila immune deficiency signaling cascade. Curr. Biol. 12, 1728-1737 (2002).
-
(2002)
Curr. Biol
, vol.12
, pp. 1728-1737
-
-
Khush, R.S.1
Cornwell, W.D.2
Uram, J.N.3
Lemaitre, B.4
-
94
-
-
33750842525
-
Caspar, a suppressor of antibacterial immunity in Drosophila
-
Kim, M., Lee, J. H., Lee, S. Y., Kim, E. & Chung, J. Caspar, a suppressor of antibacterial immunity in Drosophila. Proc. Natl Acad. Sci. USA 103, 16358-16363 (2006).
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 16358-16363
-
-
Kim, M.1
Lee, J.H.2
Lee, S.Y.3
Kim, E.4
Chung, J.5
-
95
-
-
34548071028
-
-
Busse, M. S., Arnold, C. P., Towb, P., Katrivesis, J. & Wasserman, S. A. A κB sequence code for pathway-specific innate immune responses. EMBO J. 26, 3826-3835 (2007).
-
Busse, M. S., Arnold, C. P., Towb, P., Katrivesis, J. & Wasserman, S. A. A κB sequence code for pathway-specific innate immune responses. EMBO J. 26, 3826-3835 (2007).
-
-
-
-
96
-
-
34250221179
-
Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster
-
Tanji, T., Hu, X., Weber, A. N. & Ip, Y. T. Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Mol. Cell Biol. 27, 4578-4588 (2007).
-
(2007)
Mol. Cell Biol
, vol.27
, pp. 4578-4588
-
-
Tanji, T.1
Hu, X.2
Weber, A.N.3
Ip, Y.T.4
-
97
-
-
0037133259
-
Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants
-
This study shows that AMPs are effectors of the systemic immune response against some bacterial and fungal pathogens in vivo
-
Tzou, P., Reichhart, J. M. & Lemaitre, B. Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc. Natl Acad. Sci. USA 99, 2152-2157 (2002). This study shows that AMPs are effectors of the systemic immune response against some bacterial and fungal pathogens in vivo.
-
(2002)
Proc. Natl Acad. Sci. USA
, vol.99
, pp. 2152-2157
-
-
Tzou, P.1
Reichhart, J.M.2
Lemaitre, B.3
-
98
-
-
33745712561
-
Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model
-
Liehl, P., Blight, M., Vodovar, N., Boccard, F. & Lemaitre, B. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog. 2, e56 (2006).
-
(2006)
PLoS Pathog
, vol.2
-
-
Liehl, P.1
Blight, M.2
Vodovar, N.3
Boccard, F.4
Lemaitre, B.5
-
99
-
-
33747586778
-
An essential complementary role of NF-κB pathway to microbicidal oxidants in Drosophila gut immunity
-
Ryu, J. H. et al. An essential complementary role of NF-κB pathway to microbicidal oxidants in Drosophila gut immunity. EMBO J. 25, 3693-3701 (2006).
-
(2006)
EMBO J
, vol.25
, pp. 3693-3701
-
-
Ryu, J.H.1
-
100
-
-
0036747342
-
-
Blandin, S. et al. Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep. 3, 852-856 (2002).
-
Blandin, S. et al. Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep. 3, 852-856 (2002).
-
-
-
-
101
-
-
8844231742
-
Peptidomic and proteomic analyses of the systemic immune response of Drosophila
-
Levy, F. et al. Peptidomic and proteomic analyses of the systemic immune response of Drosophila. Biochimie 86, 607-616 (2004).
-
(2004)
Biochimie
, vol.86
, pp. 607-616
-
-
Levy, F.1
-
102
-
-
0035909905
-
A genome-wide analysis of immune responses in Drosophila
-
Irving, P. et al. A genome-wide analysis of immune responses in Drosophila. Proc. Natl Acad. Sci. USA 98, 15119-15124 (2001).
-
(2001)
Proc. Natl Acad. Sci. USA
, vol.98
, pp. 15119-15124
-
-
Irving, P.1
-
103
-
-
0035940514
-
Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays
-
De Gregorio, E., Spellman, P. T., Rubin, G. M. & Lemaitre, B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl Acad. Sci. USA 98, 12590-12595 (2001).
-
(2001)
Proc. Natl Acad. Sci. USA
, vol.98
, pp. 12590-12595
-
-
De Gregorio, E.1
Spellman, P.T.2
Rubin, G.M.3
Lemaitre, B.4
-
104
-
-
5644243395
-
Proteomics of the Drosophila immune response
-
Engstrom, Y., Loseva, O. & Theopold, U. Proteomics of the Drosophila immune response. Trends Biotechnol. 22, 600-605 (2004).
-
(2004)
Trends Biotechnol
, vol.22
, pp. 600-605
-
-
Engstrom, Y.1
Loseva, O.2
Theopold, U.3
-
105
-
-
18644376155
-
An immune-responsive Serpin regulates the melanization cascade in Drosophila
-
De Gregorio, E. et al. An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev. Cell 3, 581-592 (2002).
-
(2002)
Dev. Cell
, vol.3
, pp. 581-592
-
-
De Gregorio, E.1
-
106
-
-
0037011189
-
A serpin mutant links Toll activation to melanization in the host defence of Drosophila
-
Ligoxygakis, P. et al. A serpin mutant links Toll activation to melanization in the host defence of Drosophila. EMBO J. 21, 6330-6337 (2002).
-
(2002)
EMBO J
, vol.21
, pp. 6330-6337
-
-
Ligoxygakis, P.1
-
107
-
-
11244343895
-
An antioxidant system required for host protection against gut infection in Drosophila
-
References 107 and 123 document the existence of an oxidative response to intestinal infections
-
Ha, E. M. et al. An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell 8, 125-132 (2005). References 107 and 123 document the existence of an oxidative response to intestinal infections.
-
(2005)
Dev. Cell
, vol.8
, pp. 125-132
-
-
Ha, E.M.1
-
108
-
-
14044277610
-
Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression
-
Apidianakis, Y. et al. Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc. Natl Acad. Sci. USA 102, 2573-2578 (2005).
-
(2005)
Proc. Natl Acad. Sci. USA
, vol.102
, pp. 2573-2578
-
-
Apidianakis, Y.1
-
109
-
-
23844452699
-
Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species
-
Vodovar, N. et al. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc. Natl Acad. Sci. USA 102, 11414-11419 (2005).
-
(2005)
Proc. Natl Acad. Sci. USA
, vol.102
, pp. 11414-11419
-
-
Vodovar, N.1
-
110
-
-
26844466658
-
Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila
-
Kocks, C. et al. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123, 335-346 (2005).
-
(2005)
Cell
, vol.123
, pp. 335-346
-
-
Kocks, C.1
-
111
-
-
34047166332
-
Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes
-
Kurucz, E. et al. Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr. Biol. 17, 649-654 (2007).
-
(2007)
Curr. Biol
, vol.17
, pp. 649-654
-
-
Kurucz, E.1
-
112
-
-
24944454976
-
Extensive diversity of Ig-superfamily proteins in the immune system of insects
-
Watson, F. L. et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309, 1874-1878 (2005).
-
(2005)
Science
, vol.309
, pp. 1874-1878
-
-
Watson, F.L.1
-
113
-
-
33947579399
-
A specific primed immune response in Drosophila is dependent on phagocytes
-
Pham, L. N., Dionne, M. S., Shirasu-Hiza, M. & Schneider, D. S. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 3, e26 (2007).
-
(2007)
PLoS Pathog
, vol.3
-
-
Pham, L.N.1
Dionne, M.S.2
Shirasu-Hiza, M.3
Schneider, D.S.4
-
114
-
-
1642416091
-
Genetic basis of natural variation in D. melanogaster antibacterial immunity
-
Lazzaro, B. P., Sceurman, B. K. & Clark, A. G. Genetic basis of natural variation in D. melanogaster antibacterial immunity. Science 303, 1873-1876 (2004).
-
(2004)
Science
, vol.303
, pp. 1873-1876
-
-
Lazzaro, B.P.1
Sceurman, B.K.2
Clark, A.G.3
-
115
-
-
0033953792
-
The clip-domain family of serine proteinase in Arthropods
-
Jiang, H. & Kanost, M. R. The clip-domain family of serine proteinase in Arthropods. Insect Biochem. Mol. Biol. 30, 95-105 (2000).
-
(2000)
Insect Biochem. Mol. Biol
, vol.30
, pp. 95-105
-
-
Jiang, H.1
Kanost, M.R.2
-
116
-
-
34447530305
-
A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila
-
Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151-156 (2007).
-
(2007)
Nature
, vol.448
, pp. 151-156
-
-
Dietzl, G.1
-
117
-
-
33750805449
-
Rel/NF-κB double mutants reveal that cellular immunity is central to Drosophila host defense
-
Matova, N. & Anderson, K. V. Rel/NF-κB double mutants reveal that cellular immunity is central to Drosophila host defense. Proc. Natl Acad. Sci. USA 103, 16424-16429 (2006).
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 16424-16429
-
-
Matova, N.1
Anderson, K.V.2
-
118
-
-
34250645022
-
Drosophila genome-wide RNAi screens: Are they delivering the promise?
-
Mathey-Prevot, B. & Perrimon, N. Drosophila genome-wide RNAi screens: are they delivering the promise? Cold Spring Harb. Symp. Quant. Biol. 71, 141-148 (2006).
-
(2006)
Cold Spring Harb. Symp. Quant. Biol
, vol.71
, pp. 141-148
-
-
Mathey-Prevot, B.1
Perrimon, N.2
-
119
-
-
33644859460
-
Genomic dissection of microbial pathogenesis in cultured Drosophila cells
-
Ayres, J. S. & Schneider, D. S. Genomic dissection of microbial pathogenesis in cultured Drosophila cells. Trends Microbiol. 14, 101-104 (2006).
-
(2006)
Trends Microbiol
, vol.14
, pp. 101-104
-
-
Ayres, J.S.1
Schneider, D.S.2
-
120
-
-
0032473360
-
A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway
-
Ferrandon, D. et al. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17, 1217-1227 (1998).
-
(1998)
EMBO J
, vol.17
, pp. 1217-1227
-
-
Ferrandon, D.1
-
121
-
-
0033638404
-
Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia
-
Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737-748 (2000).
-
(2000)
Immunity
, vol.13
, pp. 737-748
-
-
Tzou, P.1
-
122
-
-
0035065782
-
-
Onfelt Tingvall, T., Roos, E. & Engstrom, Y. The imd gene is required for local Cecropin expression in Drosophila barrier epithelia. EMBO Rep. 2, 239-243 (2001).
-
Onfelt Tingvall, T., Roos, E. & Engstrom, Y. The imd gene is required for local Cecropin expression in Drosophila barrier epithelia. EMBO Rep. 2, 239-243 (2001).
-
-
-
-
123
-
-
27644498442
-
A direct role for dual oxidase in Drosophila gut immunity
-
Ha, E. M., Oh, C. T., Bae, Y. S. & Lee, W. J. A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847-850 (2005).
-
(2005)
Science
, vol.310
, pp. 847-850
-
-
Ha, E.M.1
Oh, C.T.2
Bae, Y.S.3
Lee, W.J.4
-
124
-
-
35549001143
-
A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog
-
in the press
-
Nehme et al. A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog. (in the press).
-
-
-
Nehme1
|