메뉴 건너뛰기




Volumn 7, Issue 11, 2007, Pages 862-874

The Drosophila systemic immune response: Sensing and signalling during bacterial and fungal infections

Author keywords

[No Author keywords available]

Indexed keywords

TOLL LIKE RECEPTOR;

EID: 35549006674     PISSN: 14741733     EISSN: None     Source Type: Journal    
DOI: 10.1038/nri2194     Document Type: Review
Times cited : (704)

References (124)
  • 1
    • 0019386682 scopus 로고
    • Sequence and specificity of two antibacterial proteins involved in insect immunity
    • Steiner, H., Hultmark, D., Engström, A., Bennich, H. & Boman, H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246-248 (1981).
    • (1981) Nature , vol.292 , pp. 246-248
    • Steiner, H.1    Hultmark, D.2    Engström, A.3    Bennich, H.4    Boman, H.G.5
  • 2
    • 0033022730 scopus 로고    scopus 로고
    • Antimicrobial peptides in insects; structure and function
    • Bulet, P., Hetru, C., Dimarcq, J. L. & Hoffmann, D. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329-344 (1999).
    • (1999) Dev. Comp. Immunol , vol.23 , pp. 329-344
    • Bulet, P.1    Hetru, C.2    Dimarcq, J.L.3    Hoffmann, D.4
  • 3
    • 0030595339 scopus 로고    scopus 로고
    • The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults
    • A seminal study that demonstrates an essential role of the Toll pathway in the antifungal host response
    • Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983 (1996). A seminal study that demonstrates an essential role of the Toll pathway in the antifungal host response.
    • (1996) Cell , vol.86 , pp. 973-983
    • Lemaitre, B.1    Nicolas, E.2    Michaut, L.3    Reichhart, J.M.4    Hoffmann, J.A.5
  • 4
    • 27644443295 scopus 로고    scopus 로고
    • Dorsoventral axis formation in the Drosophila embryo - shaping and transducing a morphogen gradient
    • Moussian, B. & Roth, S. Dorsoventral axis formation in the Drosophila embryo - shaping and transducing a morphogen gradient. Curr. Biol. 15, R887-R899 (2005).
    • (2005) Curr. Biol , vol.15
    • Moussian, B.1    Roth, S.2
  • 5
    • 0242581687 scopus 로고    scopus 로고
    • The immune response of Drosophila
    • Hoffmann, J. A. The immune response of Drosophila. Nature 426, 33-38 (2003).
    • (2003) Nature , vol.426 , pp. 33-38
    • Hoffmann, J.A.1
  • 6
    • 0022881454 scopus 로고
    • β1,3-glucan receptor and peptidoglycan receptor are present as separate entities within insect prophenoloxidase activating system
    • Yoshida, H., Ochiai, M. & Ashida, M. β1,3-glucan receptor and peptidoglycan receptor are present as separate entities within insect prophenoloxidase activating system. Biochem. Biophys. Res. Commun. 141, 1177-1184 (1986).
    • (1986) Biochem. Biophys. Res. Commun , vol.141 , pp. 1177-1184
    • Yoshida, H.1    Ochiai, M.2    Ashida, M.3
  • 7
    • 0038664357 scopus 로고    scopus 로고
    • The Drosophila immune system detects bacteria through specific peptidoglycan recognition
    • Leulier, F. et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nature Immunol. 4, 478-484 (2003).
    • (2003) Nature Immunol , vol.4 , pp. 478-484
    • Leulier, F.1
  • 8
    • 2442456719 scopus 로고    scopus 로고
    • Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway
    • References 7 and 8 show that PGNs induce the systemic immune response
    • Kaneko, T. et al. Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20, 637-649 (2004). References 7 and 8 show that PGNs induce the systemic immune response.
    • (2004) Immunity , vol.20 , pp. 637-649
    • Kaneko, T.1
  • 9
    • 33845666959 scopus 로고    scopus 로고
    • Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors
    • This study shows that the fly relies both on PRRs and danger signals to detect infections
    • Gottar, M. et al. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127, 1425-1437 (2006). This study shows that the fly relies both on PRRs and danger signals to detect infections.
    • (2006) Cell , vol.127 , pp. 1425-1437
    • Gottar, M.1
  • 10
    • 0031446642 scopus 로고    scopus 로고
    • Drosophila host defense: Differential display of antimicrobial peptide genes after infection by various classes of microorganisms
    • Lemaitre, B., Reichhart, J. M. & Hoffmann, J. A. Drosophila host defense: differential display of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl Acad. Sci. USA 94, 14614-14619 (1997).
    • (1997) Proc. Natl Acad. Sci. USA , vol.94 , pp. 14614-14619
    • Lemaitre, B.1    Reichhart, J.M.2    Hoffmann, J.A.3
  • 11
    • 0034610370 scopus 로고    scopus 로고
    • A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster
    • Werner, T. et al. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 13772-13777 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 13772-13777
    • Werner, T.1
  • 12
    • 0037470091 scopus 로고    scopus 로고
    • A scavenger function for a Drosophila peptidoglycan recognition protein
    • Mellroth, P., Karlsson, J. & Steiner, H. A scavenger function for a Drosophila peptidoglycan recognition protein. J. Biol. Chem. 278, 7059-7064 (2003).
    • (2003) J. Biol. Chem , vol.278 , pp. 7059-7064
    • Mellroth, P.1    Karlsson, J.2    Steiner, H.3
  • 13
    • 33750091050 scopus 로고    scopus 로고
    • PGRP-SB1: An N-acetylmuramoyl L-alanine amidase with antibacterial activity
    • Mellroth, P. & Steiner, H. PGRP-SB1: an N-acetylmuramoyl L-alanine amidase with antibacterial activity. Biochem. Biophys. Res. Commun. 350, 994-999 (2006).
    • (2006) Biochem. Biophys. Res. Commun , vol.350 , pp. 994-999
    • Mellroth, P.1    Steiner, H.2
  • 14
    • 0042195829 scopus 로고    scopus 로고
    • Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster
    • Kim, M. S., Byun, M. & Oh, B. H. Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nature Immunol. 4, 787-793 (2003).
    • (2003) Nature Immunol , vol.4 , pp. 787-793
    • Kim, M.S.1    Byun, M.2    Oh, B.H.3
  • 15
    • 0037061450 scopus 로고    scopus 로고
    • The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein
    • Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640-644 (2002).
    • (2002) Nature , vol.416 , pp. 640-644
    • Gottar, M.1
  • 16
    • 0037066464 scopus 로고    scopus 로고
    • Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila
    • Choe, K. M., Werner, T., Stoven, S., Hultmark, D. & Anderson, K. V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359-362 (2002).
    • (2002) Science , vol.296 , pp. 359-362
    • Choe, K.M.1    Werner, T.2    Stoven, S.3    Hultmark, D.4    Anderson, K.V.5
  • 17
    • 0037061482 scopus 로고    scopus 로고
    • Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli
    • References 15-17 report the identification of PGRP-LC as the receptor of the IMD pathway
    • Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R. A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644-648 (2002). References 15-17 report the identification of PGRP-LC as the receptor of the IMD pathway.
    • (2002) Nature , vol.416 , pp. 644-648
    • Ramet, M.1    Manfruelli, P.2    Pearson, A.3    Mathey-Prevot, B.4    Ezekowitz, R.A.5
  • 18
    • 0037108754 scopus 로고    scopus 로고
    • Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae
    • Takehana, A. et al. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl Acad. Sci. USA 99, 13705-13710 (2002).
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 13705-13710
    • Takehana, A.1
  • 19
    • 10644267665 scopus 로고    scopus 로고
    • Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity
    • Takehana, A. et al. Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J. 23, 4690-4700 (2004).
    • (2004) EMBO J , vol.23 , pp. 4690-4700
    • Takehana, A.1
  • 20
    • 33745225236 scopus 로고    scopus 로고
    • Kaneko, T. et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nature Immunol. 7, 715-723 (2006). This work documents a possible role for PGRP-LE as an intracellular receptor.
    • Kaneko, T. et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nature Immunol. 7, 715-723 (2006). This work documents a possible role for PGRP-LE as an intracellular receptor.
  • 21
    • 0034805375 scopus 로고    scopus 로고
    • Drosophila immunity: Genes on the third chromosome required for the response to bacterial infection
    • Wu, L. P., Choe, K. M., Lu, Y. & Anderson, K. V. Drosophila immunity: genes on the third chromosome required for the response to bacterial infection. Genetics 159, 189-199 (2001).
    • (2001) Genetics , vol.159 , pp. 189-199
    • Wu, L.P.1    Choe, K.M.2    Lu, Y.3    Anderson, K.V.4
  • 22
    • 10344251507 scopus 로고    scopus 로고
    • Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway
    • Stenbak, C. R. et al. Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. J. Immunol. 173, 7339-7348 (2004).
    • (2004) J. Immunol , vol.173 , pp. 7339-7348
    • Stenbak, C.R.1
  • 23
    • 18144401356 scopus 로고    scopus 로고
    • Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro
    • Mellroth, P. et al. Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro. Proc. Natl Acad. Sci. USA 102, 6455-6460 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 6455-6460
    • Mellroth, P.1
  • 24
    • 22544477068 scopus 로고    scopus 로고
    • Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition
    • Chang, C. I. et al. Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc. Natl Acad. Sci. USA 102, 10279-10284 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 10279-10284
    • Chang, C.I.1
  • 25
    • 31444438761 scopus 로고    scopus 로고
    • Dual strategies for peptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs)
    • Swaminathan, C. P. et al. Dual strategies for peptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs). Proc. Natl Acad. Sci. USA 103, 684-689 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 684-689
    • Swaminathan, C.P.1
  • 26
    • 33646378677 scopus 로고    scopus 로고
    • Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins
    • Lim, J. H. et al. Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J. Biol. Chem. 281, 8286-8295 (2006).
    • (2006) J. Biol. Chem , vol.281 , pp. 8286-8295
    • Lim, J.H.1
  • 27
    • 33645236166 scopus 로고    scopus 로고
    • Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor
    • References 26 and 27 report the molecular basis for the discrimination between DAP-type and Lys-type PGNs by the PGRP-LC and PGRP-LE receptors
    • Chang, C. I., Chelliah, Y., Borek, D., Mengin-Lecreulx, D. & Deisenhofer, J. Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311, 1761-1764 (2006). References 26 and 27 report the molecular basis for the discrimination between DAP-type and Lys-type PGNs by the PGRP-LC and PGRP-LE receptors.
    • (2006) Science , vol.311 , pp. 1761-1764
    • Chang, C.I.1    Chelliah, Y.2    Borek, D.3    Mengin-Lecreulx, D.4    Deisenhofer, J.5
  • 28
    • 33645994799 scopus 로고    scopus 로고
    • The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection
    • Zaidman-Remy, A. et al. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24, 463-473 (2006).
    • (2006) Immunity , vol.24 , pp. 463-473
    • Zaidman-Remy, A.1
  • 29
    • 33645770760 scopus 로고    scopus 로고
    • Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2
    • Bischoff, V. et al. Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog. 2, e14 (2006).
    • (2006) PLoS Pathog , vol.2
    • Bischoff, V.1
  • 30
    • 0037013856 scopus 로고    scopus 로고
    • The Toll and Imd pathways are the major regulators of the immune response in Drosophila
    • De Gregorio, E., Spellman, P. T., Tzou, P., Rubin, G. M. & Lemaitre, B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21, 2568-2579 (2002).
    • (2002) EMBO J , vol.21 , pp. 2568-2579
    • De Gregorio, E.1    Spellman, P.T.2    Tzou, P.3    Rubin, G.M.4    Lemaitre, B.5
  • 31
    • 33845877453 scopus 로고    scopus 로고
    • Psidin is required in Drosophila blood cells for both phagocytic degradation and immune activation of the fat body
    • Brennan, C. A., Delaney, J. R., Schneider, D. S. & Anderson, K. V. Psidin is required in Drosophila blood cells for both phagocytic degradation and immune activation of the fat body. Curr. Biol. 17, 67-72 (2007).
    • (2007) Curr. Biol , vol.17 , pp. 67-72
    • Brennan, C.A.1    Delaney, J.R.2    Schneider, D.S.3    Anderson, K.V.4
  • 32
    • 0035856990 scopus 로고    scopus 로고
    • Michel, T., Reichhart, J., Hoffmann, J. A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756-759 (2001). In this study genetic evidence is provided that PGRP-SA acts as a PRR for the detection of Gram-positive bacteria.
    • Michel, T., Reichhart, J., Hoffmann, J. A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756-759 (2001). In this study genetic evidence is provided that PGRP-SA acts as a PRR for the detection of Gram-positive bacteria.
  • 33
    • 9244251126 scopus 로고    scopus 로고
    • Function of the Drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria
    • Bischoff, V. et al. Function of the Drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nature Immunol. 5, 1175-1180 (2004).
    • (2004) Nature Immunol , vol.5 , pp. 1175-1180
    • Bischoff, V.1
  • 34
    • 0345731463 scopus 로고    scopus 로고
    • Dual activation of the Drosophila Toll pathway by two pattern recognition receptors
    • References 34 and 38 document the role of GNBP1 in sensing Gram-positive bacterial infections
    • Gobert, V. et al. Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 302, 2126-2130 (2003). References 34 and 38 document the role of GNBP1 in sensing Gram-positive bacterial infections.
    • (2003) Science , vol.302 , pp. 2126-2130
    • Gobert, V.1
  • 35
    • 0029846206 scopus 로고    scopus 로고
    • Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori
    • Lee, W. J., Lee, J. D., Kravchenko, V. V., Ulevitch, R. J. & Brey, P. T. Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc. Natl Acad. Sci. USA 93, 7888-7893 (1996).
    • (1996) Proc. Natl Acad. Sci. USA , vol.93 , pp. 7888-7893
    • Lee, W.J.1    Lee, J.D.2    Kravchenko, V.V.3    Ulevitch, R.J.4    Brey, P.T.5
  • 36
    • 0034681346 scopus 로고    scopus 로고
    • A pattern-recognition protein for β-1,3-glucan. The binding domain and the cDNA cloning of β-1,3-glucan recognition protein from the silkworm, Bombyx mori
    • Ochiai, M. & Ashida, M. A pattern-recognition protein for β-1,3-glucan. The binding domain and the cDNA cloning of β-1,3-glucan recognition protein from the silkworm, Bombyx mori. J. Biol. Chem. 275, 4995-5002 (2000).
    • (2000) J. Biol. Chem , vol.275 , pp. 4995-5002
    • Ochiai, M.1    Ashida, M.2
  • 37
    • 19344363377 scopus 로고    scopus 로고
    • A Drosophila pattern recognition receptor contains a peptidoglycan docking groove and unusual l, d-carboxypeptidase activity
    • Chang, C. I. et al. A Drosophila pattern recognition receptor contains a peptidoglycan docking groove and unusual l, d-carboxypeptidase activity. PLoS Biol. 2, e277 (2004).
    • (2004) PLoS Biol , vol.2
    • Chang, C.I.1
  • 38
    • 33750218690 scopus 로고    scopus 로고
    • Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA
    • Wang, L. et al. Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA. EMBO J. 25, 5005-5014 (2006).
    • (2006) EMBO J , vol.25 , pp. 5005-5014
    • Wang, L.1
  • 39
    • 17644405130 scopus 로고    scopus 로고
    • Filipe, S. R., Tomasz, A. & Ligoxygakis, P. Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep. 6, 327-333 (2005).
    • Filipe, S. R., Tomasz, A. & Ligoxygakis, P. Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep. 6, 327-333 (2005).
  • 40
    • 0033711445 scopus 로고    scopus 로고
    • The Rel protein DIF mediates the antifungal, but not the antibacterial, response in Drosophila
    • Rutschmann, S. et al. The Rel protein DIF mediates the antifungal, but not the antibacterial, response in Drosophila. Immunity 12, 569-580 (2000).
    • (2000) Immunity , vol.12 , pp. 569-580
    • Rutschmann, S.1
  • 41
    • 0037025213 scopus 로고    scopus 로고
    • Activation of Drosophila Toll during fungal infection by a blood serine protease
    • Ligoxygakis, P., Pelte, N., Hoffmann, J. A. & Reichhart, J. M. Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297, 114-116 (2002).
    • (2002) Science , vol.297 , pp. 114-116
    • Ligoxygakis, P.1    Pelte, N.2    Hoffmann, J.A.3    Reichhart, J.M.4
  • 42
    • 33751100626 scopus 로고    scopus 로고
    • The plant immune system
    • Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323-329 (2006).
    • (2006) Nature , vol.444 , pp. 323-329
    • Jones, J.D.1    Dangl, J.L.2
  • 43
    • 34548459868 scopus 로고    scopus 로고
    • Structure and function of toll receptors and their ligands
    • Gay, N. J. & Gangloff, M. Structure and function of toll receptors and their ligands. Annu. Rev. Biochem. 76, 141-165 (2007).
    • (2007) Annu. Rev. Biochem , vol.76 , pp. 141-165
    • Gay, N.J.1    Gangloff, M.2
  • 44
    • 0041989575 scopus 로고    scopus 로고
    • Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling
    • Weber, A. N. et al. Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling. Nature Immunol. 4, 794-800 (2003).
    • (2003) Nature Immunol , vol.4 , pp. 794-800
    • Weber, A.N.1
  • 45
    • 3042645409 scopus 로고    scopus 로고
    • Multimerization and interaction of Toll and Spätzle in Drosophila
    • Hu, X., Yagi, Y., Tanji, T., Zhou, S. & Ip, Y. T. Multimerization and interaction of Toll and Spätzle in Drosophila. Proc. Natl Acad. Sci. USA 101, 9369-9374 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 9369-9374
    • Hu, X.1    Yagi, Y.2    Tanji, T.3    Zhou, S.4    Ip, Y.T.5
  • 46
    • 14044272776 scopus 로고    scopus 로고
    • New insights into Drosophila larval haemocyte functions through genome-wide analysis
    • Irving, P. et al. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell. Microbiol. 7, 335-350 (2005).
    • (2005) Cell. Microbiol , vol.7 , pp. 335-350
    • Irving, P.1
  • 47
    • 0034641738 scopus 로고    scopus 로고
    • Toll-related receptors and the control of antimicrobial peptide expression in Drosophila
    • Tauszig, S., Jouanguy, E., Hoffmann, J. A. & Imler, J. L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl Acad. Sci. USA 97, 10520-10525 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 10520-10525
    • Tauszig, S.1    Jouanguy, E.2    Hoffmann, J.A.3    Imler, J.L.4
  • 48
    • 0035479747 scopus 로고    scopus 로고
    • A family of proteins related to Spätzle, the toll receptor ligand, are encoded in the Drosophila genome
    • Parker, J. S., Mizuguchi, K. & Gay, N. J. A family of proteins related to Spätzle, the toll receptor ligand, are encoded in the Drosophila genome. Proteins 45, 71-80 (2001).
    • (2001) Proteins , vol.45 , pp. 71-80
    • Parker, J.S.1    Mizuguchi, K.2    Gay, N.J.3
  • 49
    • 0036952124 scopus 로고    scopus 로고
    • Tissue and stage-specific expression of the Tolls in Drosophila embryos
    • Kambris, Z., Hoffmann, J. A., Imler, J. L. & Capovilla, M. Tissue and stage-specific expression of the Tolls in Drosophila embryos. Gene Expr. Patterns 2, 311-317 (2002).
    • (2002) Gene Expr. Patterns , vol.2 , pp. 311-317
    • Kambris, Z.1    Hoffmann, J.A.2    Imler, J.L.3    Capovilla, M.4
  • 50
    • 33750980112 scopus 로고    scopus 로고
    • Genomic insights into the immune system of the sea urchin
    • Rast, J. P., Smith, L. C., Loza-Coll., M., Hibino, T. & Litman, G. W. Genomic insights into the immune system of the sea urchin. Science 314, 952-956 (2006).
    • (2006) Science , vol.314 , pp. 952-956
    • Rast, J.P.1    Smith, L.C.2    Loza-Coll, M.3    Hibino, T.4    Litman, G.W.5
  • 51
    • 0032033030 scopus 로고    scopus 로고
    • Proteolytic processing of the Drosophila Spätzle protein by easter generates a dimeric NGF-like molecule with ventralising activity
    • DeLotto, Y. & DeLotto, R. Proteolytic processing of the Drosophila Spätzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech. Dev. 72, 141-148 (1998).
    • (1998) Mech. Dev , vol.72 , pp. 141-148
    • DeLotto, Y.1    DeLotto, R.2
  • 52
    • 29744438644 scopus 로고    scopus 로고
    • A Spätzle-processing enzyme required for toll signaling activation in Drosophila innate immunity
    • This article identifies the protease that cleaves Spätzle into an active Toll ligand during the immune response
    • Jang, I. H. et al. A Spätzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev. Cell 10, 45-55 (2006). This article identifies the protease that cleaves Spätzle into an active Toll ligand during the immune response.
    • (2006) Dev. Cell , vol.10 , pp. 45-55
    • Jang, I.H.1
  • 53
    • 33646037067 scopus 로고    scopus 로고
    • Drosophila immunity: A large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation
    • Kambris, Z. et al. Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr. Biol. 16, 808-813 (2006).
    • (2006) Curr. Biol , vol.16 , pp. 808-813
    • Kambris, Z.1
  • 54
    • 0033118490 scopus 로고    scopus 로고
    • Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor
    • Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor. Genes Dev. 13, 792-797 (1999).
    • (1999) Genes Dev , vol.13 , pp. 792-797
    • Meng, X.1    Khanuja, B.S.2    Ip, Y.T.3
  • 55
    • 0036141954 scopus 로고    scopus 로고
    • Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections
    • Tauszig-Delamasure, S., Bilak, H., Capovilla, M., Hoffmann, J. A. & Imler, J. L. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nature Immunol. 3, 91-97 (2002).
    • (2002) Nature Immunol , vol.3 , pp. 91-97
    • Tauszig-Delamasure, S.1    Bilak, H.2    Capovilla, M.3    Hoffmann, J.A.4    Imler, J.L.5
  • 56
    • 0842307067 scopus 로고    scopus 로고
    • Regulated assembly of the Toll signaling complex drives Drosophila dorsoventral patterning
    • Sun, H., Towb, P., Chiem, D. N., Foster, B. A. & Wasserman, S. A. Regulated assembly of the Toll signaling complex drives Drosophila dorsoventral patterning. EMBO J. 23, 100-110 (2004).
    • (2004) EMBO J , vol.23 , pp. 100-110
    • Sun, H.1    Towb, P.2    Chiem, D.N.3    Foster, B.A.4    Wasserman, S.A.5
  • 57
    • 33744997626 scopus 로고    scopus 로고
    • Weckle is a zinc finger adaptor of the Toll pathway in dorsoventral patterning of the Drosophila embryo
    • Chen, L. Y. et al. Weckle is a zinc finger adaptor of the Toll pathway in dorsoventral patterning of the Drosophila embryo. Curr. Biol. 16, 1183-1193 (2006).
    • (2006) Curr. Biol , vol.16 , pp. 1183-1193
    • Chen, L.Y.1
  • 58
    • 0028916254 scopus 로고
    • Cactus protein degradation mediates Drosophila dorsal-ventral signaling
    • Belvin, M. P., Jin, Y. & Anderson, K. V. Cactus protein degradation mediates Drosophila dorsal-ventral signaling. Genes Dev. 9, 783-793 (1995).
    • (1995) Genes Dev , vol.9 , pp. 783-793
    • Belvin, M.P.1    Jin, Y.2    Anderson, K.V.3
  • 59
    • 0034893896 scopus 로고    scopus 로고
    • Separable and redundant regulatory determinants in Cactus mediate its dorsal group dependent degradation
    • Fernandez, N. Q., Grosshans, J., Goltz, J. S. & Stein, D. Separable and redundant regulatory determinants in Cactus mediate its dorsal group dependent degradation. Development 128, 2963-2974 (2001).
    • (2001) Development , vol.128 , pp. 2963-2974
    • Fernandez, N.Q.1    Grosshans, J.2    Goltz, J.S.3    Stein, D.4
  • 60
    • 0035187882 scopus 로고    scopus 로고
    • The antibacterial arm of the Drosophila innate immune response requires an IκB kinase
    • Lu, Y., Wu, L. P. & Anderson, K. V. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev. 15, 104-110 (2001).
    • (2001) Genes Dev , vol.15 , pp. 104-110
    • Lu, Y.1    Wu, L.P.2    Anderson, K.V.3
  • 61
    • 0034303573 scopus 로고    scopus 로고
    • Role of Drosophila IKKγ in a Toll-independent antibacterial immune response
    • Rutschmann, S. et al. Role of Drosophila IKKγ in a Toll-independent antibacterial immune response. Nature Immunol. 1, 342-347 (2000).
    • (2000) Nature Immunol , vol.1 , pp. 342-347
    • Rutschmann, S.1
  • 62
    • 0030815382 scopus 로고    scopus 로고
    • An activity-dependent network of interactions links the Rel protein Dorsal with its cytoplasmic regulators
    • Edwards, D. N., Towb, P. & Wasserman, S. A. An activity-dependent network of interactions links the Rel protein Dorsal with its cytoplasmic regulators. Development 124, 3855-3864 (1997).
    • (1997) Development , vol.124 , pp. 3855-3864
    • Edwards, D.N.1    Towb, P.2    Wasserman, S.A.3
  • 63
    • 0028075756 scopus 로고
    • Activation of the kinase Pelle by Tube in the dorsoventral signal transduction pathway of Drosophila embryo
    • Grosshans, J., Bergmann, A., Haffter, P. & Nüsslein-Volhard, C. Activation of the kinase Pelle by Tube in the dorsoventral signal transduction pathway of Drosophila embryo. Nature 372, 563-566 (1994).
    • (1994) Nature , vol.372 , pp. 563-566
    • Grosshans, J.1    Bergmann, A.2    Haffter, P.3    Nüsslein-Volhard, C.4
  • 64
    • 0031460697 scopus 로고    scopus 로고
    • A multimeric complex and the nuclear targeting of the Drosophila Rel protein Dorsal
    • Yang, J. & Steward, R. A multimeric complex and the nuclear targeting of the Drosophila Rel protein Dorsal. Proc. Natl Acad. Sci. USA 94, 14524-14529 (1997).
    • (1997) Proc. Natl Acad. Sci. USA , vol.94 , pp. 14524-14529
    • Yang, J.1    Steward, R.2
  • 65
    • 31344461659 scopus 로고    scopus 로고
    • Innate immune recognition of viral infection
    • Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nature Immunol. 7, 131-137 (2006).
    • (2006) Nature Immunol , vol.7 , pp. 131-137
    • Kawai, T.1    Akira, S.2
  • 66
    • 0033976430 scopus 로고    scopus 로고
    • Cactus-independent regulation of Dorsal nuclear import by the ventral signal
    • Drier, E. A., Govind, S. & Steward, R. Cactus-independent regulation of Dorsal nuclear import by the ventral signal. Curr. Biol. 10, 23-26 (2000).
    • (2000) Curr. Biol , vol.10 , pp. 23-26
    • Drier, E.A.1    Govind, S.2    Steward, R.3
  • 67
    • 24344471404 scopus 로고    scopus 로고
    • Drosophila WntD is a target and an inhibitor of the Dorsal/Twist/Snail network in the gastrulating embryo
    • Ganguly, A., Jiang, J. & Ip, Y. T. Drosophila WntD is a target and an inhibitor of the Dorsal/Twist/Snail network in the gastrulating embryo. Development 132, 3419-3429 (2005).
    • (2005) Development , vol.132 , pp. 3419-3429
    • Ganguly, A.1    Jiang, J.2    Ip, Y.T.3
  • 68
    • 26944485185 scopus 로고    scopus 로고
    • WntD is a feedback inhibitor of Dorsal/NF-κB in Drosophila development and immunity
    • Gordon, M. D., Dionne, M. S., Schneider, D. S. & Nusse, R. WntD is a feedback inhibitor of Dorsal/NF-κB in Drosophila development and immunity. Nature 437, 746-749 (2005).
    • (2005) Nature , vol.437 , pp. 746-749
    • Gordon, M.D.1    Dionne, M.S.2    Schneider, D.S.3    Nusse, R.4
  • 69
    • 0028865526 scopus 로고
    • A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defence
    • Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defence. Proc. Natl Acad. Sci. USA 92, 9465-9469 (1995).
    • (1995) Proc. Natl Acad. Sci. USA , vol.92 , pp. 9465-9469
    • Lemaitre, B.1
  • 70
    • 18044400563 scopus 로고    scopus 로고
    • Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis
    • Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell 1, 503-514 (2001).
    • (2001) Dev. Cell , vol.1 , pp. 503-514
    • Georgel, P.1
  • 71
    • 12844279852 scopus 로고    scopus 로고
    • Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor
    • Choe, K. M., Lee, H. & Anderson, K. V. Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc. Natl Acad. Sci. USA 102, 1122-1126 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 1122-1126
    • Choe, K.M.1    Lee, H.2    Anderson, K.V.3
  • 72
    • 0033231556 scopus 로고    scopus 로고
    • Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Molecular Cell 4, 1-20 (1999). This work identifies Relish as the NF-κB transcription factor of the IMD pathway.
    • Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Molecular Cell 4, 1-20 (1999). This work identifies Relish as the NF-κB transcription factor of the IMD pathway.
  • 73
    • 0034287444 scopus 로고    scopus 로고
    • A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity
    • Silverman, N. et al. A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev. 14, 2461-2471. (2000).
    • (2000) Genes Dev , vol.14 , pp. 2461-2471
    • Silverman, N.1
  • 74
    • 0034303480 scopus 로고    scopus 로고
    • Stöven, S., Ando, I., Kadalayil, L., Engström, Y. & Hultmark, D. Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep. 1, 347-352 (2000).
    • Stöven, S., Ando, I., Kadalayil, L., Engström, Y. & Hultmark, D. Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep. 1, 347-352 (2000).
  • 75
    • 0035423794 scopus 로고    scopus 로고
    • Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB dependent innate immune responses
    • Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB dependent innate immune responses. Genes Dev. 15, 1900-1912 (2001).
    • (2001) Genes Dev , vol.15 , pp. 1900-1912
    • Vidal, S.1
  • 76
    • 1542571463 scopus 로고    scopus 로고
    • Immune activation of NF-κB and JNK requires Drosophila TAK1
    • Silverman, N. et al. Immune activation of NF-κB and JNK requires Drosophila TAK1. J. Biol. Chem. 278, 48928-48934 (2003).
    • (2003) J. Biol. Chem , vol.278 , pp. 48928-48934
    • Silverman, N.1
  • 77
    • 33645127265 scopus 로고    scopus 로고
    • A genetic screen targeting the TNF/Eiger signaling pathway: Identification of Drosophila TAB2 as a functionally conserved component
    • Geuking, P., Narasimamurthy, R. & Basler, K. A genetic screen targeting the TNF/Eiger signaling pathway: identification of Drosophila TAB2 as a functionally conserved component. Genetics 171, 1683-1694 (2005).
    • (2005) Genetics , vol.171 , pp. 1683-1694
    • Geuking, P.1    Narasimamurthy, R.2    Basler, K.3
  • 78
    • 27344453240 scopus 로고    scopus 로고
    • Gesellchen, V., Kuttenkeuler, D., Steckel, M., Pelte, N. & Boutros, M. An RNA interference screen identifies Inhibitor of Apoptosis Protein 2 as a regulator of innate immune signalling in Drosophila. EMBO Rep. 6, 979-984 (2005).
    • Gesellchen, V., Kuttenkeuler, D., Steckel, M., Pelte, N. & Boutros, M. An RNA interference screen identifies Inhibitor of Apoptosis Protein 2 as a regulator of innate immune signalling in Drosophila. EMBO Rep. 6, 979-984 (2005).
  • 79
    • 27144475536 scopus 로고    scopus 로고
    • Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway
    • Kleino, A. et al. Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO J. 24, 3423-3434 (2005).
    • (2005) EMBO J , vol.24 , pp. 3423-3434
    • Kleino, A.1
  • 80
    • 23144449789 scopus 로고    scopus 로고
    • Ubiquitin signalling in the NF-κB pathway
    • Chen, Z. J. Ubiquitin signalling in the NF-κB pathway. Nature Cell Biol. 7, 758-765 (2005).
    • (2005) Nature Cell Biol , vol.7 , pp. 758-765
    • Chen, Z.J.1
  • 81
    • 26644432726 scopus 로고    scopus 로고
    • The role of ubiquitination in Drosophila innate immunity
    • Zhou, R. et al. The role of ubiquitination in Drosophila innate immunity. J. Biol. Chem. 280, 34048-34055 (2005).
    • (2005) J. Biol. Chem , vol.280 , pp. 34048-34055
    • Zhou, R.1
  • 82
    • 33750330952 scopus 로고    scopus 로고
    • The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection
    • Leulier, F., Lhocine, N., Lemaitre, B. & Meier, P. The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection. Mol. Cell Biol. 26, 7821-7831 (2006).
    • (2006) Mol. Cell Biol , vol.26 , pp. 7821-7831
    • Leulier, F.1    Lhocine, N.2    Lemaitre, B.3    Meier, P.4
  • 83
    • 33847273186 scopus 로고    scopus 로고
    • The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate immune response to Gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers
    • Huh, J. R. et al. The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate immune response to Gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers. J. Biol. Chem. 282, 2056-2068 (2007).
    • (2007) J. Biol. Chem , vol.282 , pp. 2056-2068
    • Huh, J.R.1
  • 84
    • 0037172656 scopus 로고    scopus 로고
    • Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults
    • Leulier, F., Vidal, S., Saigo, K., Ueda, R. & Lemaitre, B. Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults. Curr. Biol. 12, 996-1000 (2002).
    • (2002) Curr. Biol , vol.12 , pp. 996-1000
    • Leulier, F.1    Vidal, S.2    Saigo, K.3    Ueda, R.4    Lemaitre, B.5
  • 85
    • 0034305744 scopus 로고    scopus 로고
    • Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infections. EMBO Rep. 1, 353-358 (2000).
    • Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infections. EMBO Rep. 1, 353-358 (2000).
  • 86
    • 0036850985 scopus 로고    scopus 로고
    • The Drosophila immune defense against gram-negative infection requires the death protein dFADD
    • Naitza, S. et al. The Drosophila immune defense against gram-negative infection requires the death protein dFADD. Immunity 17, 575-581 (2002).
    • (2002) Immunity , vol.17 , pp. 575-581
    • Naitza, S.1
  • 87
    • 0038284956 scopus 로고    scopus 로고
    • Caspase-mediated processing of the Drosophila NF-κB factor Relish
    • Stoven, S. et al. Caspase-mediated processing of the Drosophila NF-κB factor Relish. Proc. Natl Acad. Sci. USA 100, 5991-5996 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 5991-5996
    • Stoven, S.1
  • 88
    • 0036848010 scopus 로고    scopus 로고
    • Sequential activation of signaling pathways during innate immune responses in Drosophila
    • Boutros, M., Agaisse, H. & Perrimon, N. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell 3, 711-722 (2002).
    • (2002) Dev. Cell , vol.3 , pp. 711-722
    • Boutros, M.1    Agaisse, H.2    Perrimon, N.3
  • 89
    • 12144288602 scopus 로고    scopus 로고
    • Targeting of TAK1 by the NF-κB protein Relish regulates the JNK-mediated immune response in Drosophila
    • Park, J. M. et al. Targeting of TAK1 by the NF-κB protein Relish regulates the JNK-mediated immune response in Drosophila. Genes Dev. 18, 584-594 (2004).
    • (2004) Genes Dev , vol.18 , pp. 584-594
    • Park, J.M.1
  • 90
    • 0037124314 scopus 로고    scopus 로고
    • Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway
    • Igaki, T. et al. Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J. 21, 3009-3018 (2002).
    • (2002) EMBO J , vol.21 , pp. 3009-3018
    • Igaki, T.1
  • 91
    • 13944272315 scopus 로고    scopus 로고
    • Downregulation of lipopolysaccharide response in Drosophila by negative crosstalk between the AP1 and NF-κB signaling modules
    • Kim, T. et al. Downregulation of lipopolysaccharide response in Drosophila by negative crosstalk between the AP1 and NF-κB signaling modules. Nature Immunol. 6, 211-218 (2005).
    • (2005) Nature Immunol , vol.6 , pp. 211-218
    • Kim, T.1
  • 92
    • 33746319307 scopus 로고    scopus 로고
    • Cooperative control of Drosophila immune responses by the JNK and NF-κB signaling pathways
    • Delaney, J. R. et al. Cooperative control of Drosophila immune responses by the JNK and NF-κB signaling pathways. EMBO J. 25, 3068-3077 (2006).
    • (2006) EMBO J , vol.25 , pp. 3068-3077
    • Delaney, J.R.1
  • 93
    • 0037108474 scopus 로고    scopus 로고
    • A ubiquitin-proteasome pathway represses the Drosophila immune deficiency signaling cascade
    • Khush, R. S., Cornwell, W. D., Uram, J. N. & Lemaitre, B. A ubiquitin-proteasome pathway represses the Drosophila immune deficiency signaling cascade. Curr. Biol. 12, 1728-1737 (2002).
    • (2002) Curr. Biol , vol.12 , pp. 1728-1737
    • Khush, R.S.1    Cornwell, W.D.2    Uram, J.N.3    Lemaitre, B.4
  • 94
    • 33750842525 scopus 로고    scopus 로고
    • Caspar, a suppressor of antibacterial immunity in Drosophila
    • Kim, M., Lee, J. H., Lee, S. Y., Kim, E. & Chung, J. Caspar, a suppressor of antibacterial immunity in Drosophila. Proc. Natl Acad. Sci. USA 103, 16358-16363 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 16358-16363
    • Kim, M.1    Lee, J.H.2    Lee, S.Y.3    Kim, E.4    Chung, J.5
  • 95
    • 34548071028 scopus 로고    scopus 로고
    • Busse, M. S., Arnold, C. P., Towb, P., Katrivesis, J. & Wasserman, S. A. A κB sequence code for pathway-specific innate immune responses. EMBO J. 26, 3826-3835 (2007).
    • Busse, M. S., Arnold, C. P., Towb, P., Katrivesis, J. & Wasserman, S. A. A κB sequence code for pathway-specific innate immune responses. EMBO J. 26, 3826-3835 (2007).
  • 96
    • 34250221179 scopus 로고    scopus 로고
    • Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster
    • Tanji, T., Hu, X., Weber, A. N. & Ip, Y. T. Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Mol. Cell Biol. 27, 4578-4588 (2007).
    • (2007) Mol. Cell Biol , vol.27 , pp. 4578-4588
    • Tanji, T.1    Hu, X.2    Weber, A.N.3    Ip, Y.T.4
  • 97
    • 0037133259 scopus 로고    scopus 로고
    • Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants
    • This study shows that AMPs are effectors of the systemic immune response against some bacterial and fungal pathogens in vivo
    • Tzou, P., Reichhart, J. M. & Lemaitre, B. Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc. Natl Acad. Sci. USA 99, 2152-2157 (2002). This study shows that AMPs are effectors of the systemic immune response against some bacterial and fungal pathogens in vivo.
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 2152-2157
    • Tzou, P.1    Reichhart, J.M.2    Lemaitre, B.3
  • 98
    • 33745712561 scopus 로고    scopus 로고
    • Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model
    • Liehl, P., Blight, M., Vodovar, N., Boccard, F. & Lemaitre, B. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog. 2, e56 (2006).
    • (2006) PLoS Pathog , vol.2
    • Liehl, P.1    Blight, M.2    Vodovar, N.3    Boccard, F.4    Lemaitre, B.5
  • 99
    • 33747586778 scopus 로고    scopus 로고
    • An essential complementary role of NF-κB pathway to microbicidal oxidants in Drosophila gut immunity
    • Ryu, J. H. et al. An essential complementary role of NF-κB pathway to microbicidal oxidants in Drosophila gut immunity. EMBO J. 25, 3693-3701 (2006).
    • (2006) EMBO J , vol.25 , pp. 3693-3701
    • Ryu, J.H.1
  • 100
    • 0036747342 scopus 로고    scopus 로고
    • Blandin, S. et al. Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep. 3, 852-856 (2002).
    • Blandin, S. et al. Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep. 3, 852-856 (2002).
  • 101
    • 8844231742 scopus 로고    scopus 로고
    • Peptidomic and proteomic analyses of the systemic immune response of Drosophila
    • Levy, F. et al. Peptidomic and proteomic analyses of the systemic immune response of Drosophila. Biochimie 86, 607-616 (2004).
    • (2004) Biochimie , vol.86 , pp. 607-616
    • Levy, F.1
  • 102
    • 0035909905 scopus 로고    scopus 로고
    • A genome-wide analysis of immune responses in Drosophila
    • Irving, P. et al. A genome-wide analysis of immune responses in Drosophila. Proc. Natl Acad. Sci. USA 98, 15119-15124 (2001).
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 15119-15124
    • Irving, P.1
  • 103
    • 0035940514 scopus 로고    scopus 로고
    • Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays
    • De Gregorio, E., Spellman, P. T., Rubin, G. M. & Lemaitre, B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl Acad. Sci. USA 98, 12590-12595 (2001).
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 12590-12595
    • De Gregorio, E.1    Spellman, P.T.2    Rubin, G.M.3    Lemaitre, B.4
  • 104
    • 5644243395 scopus 로고    scopus 로고
    • Proteomics of the Drosophila immune response
    • Engstrom, Y., Loseva, O. & Theopold, U. Proteomics of the Drosophila immune response. Trends Biotechnol. 22, 600-605 (2004).
    • (2004) Trends Biotechnol , vol.22 , pp. 600-605
    • Engstrom, Y.1    Loseva, O.2    Theopold, U.3
  • 105
    • 18644376155 scopus 로고    scopus 로고
    • An immune-responsive Serpin regulates the melanization cascade in Drosophila
    • De Gregorio, E. et al. An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev. Cell 3, 581-592 (2002).
    • (2002) Dev. Cell , vol.3 , pp. 581-592
    • De Gregorio, E.1
  • 106
    • 0037011189 scopus 로고    scopus 로고
    • A serpin mutant links Toll activation to melanization in the host defence of Drosophila
    • Ligoxygakis, P. et al. A serpin mutant links Toll activation to melanization in the host defence of Drosophila. EMBO J. 21, 6330-6337 (2002).
    • (2002) EMBO J , vol.21 , pp. 6330-6337
    • Ligoxygakis, P.1
  • 107
    • 11244343895 scopus 로고    scopus 로고
    • An antioxidant system required for host protection against gut infection in Drosophila
    • References 107 and 123 document the existence of an oxidative response to intestinal infections
    • Ha, E. M. et al. An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell 8, 125-132 (2005). References 107 and 123 document the existence of an oxidative response to intestinal infections.
    • (2005) Dev. Cell , vol.8 , pp. 125-132
    • Ha, E.M.1
  • 108
    • 14044277610 scopus 로고    scopus 로고
    • Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression
    • Apidianakis, Y. et al. Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc. Natl Acad. Sci. USA 102, 2573-2578 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 2573-2578
    • Apidianakis, Y.1
  • 109
    • 23844452699 scopus 로고    scopus 로고
    • Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species
    • Vodovar, N. et al. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc. Natl Acad. Sci. USA 102, 11414-11419 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 11414-11419
    • Vodovar, N.1
  • 110
    • 26844466658 scopus 로고    scopus 로고
    • Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila
    • Kocks, C. et al. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123, 335-346 (2005).
    • (2005) Cell , vol.123 , pp. 335-346
    • Kocks, C.1
  • 111
    • 34047166332 scopus 로고    scopus 로고
    • Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes
    • Kurucz, E. et al. Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr. Biol. 17, 649-654 (2007).
    • (2007) Curr. Biol , vol.17 , pp. 649-654
    • Kurucz, E.1
  • 112
    • 24944454976 scopus 로고    scopus 로고
    • Extensive diversity of Ig-superfamily proteins in the immune system of insects
    • Watson, F. L. et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309, 1874-1878 (2005).
    • (2005) Science , vol.309 , pp. 1874-1878
    • Watson, F.L.1
  • 113
    • 33947579399 scopus 로고    scopus 로고
    • A specific primed immune response in Drosophila is dependent on phagocytes
    • Pham, L. N., Dionne, M. S., Shirasu-Hiza, M. & Schneider, D. S. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 3, e26 (2007).
    • (2007) PLoS Pathog , vol.3
    • Pham, L.N.1    Dionne, M.S.2    Shirasu-Hiza, M.3    Schneider, D.S.4
  • 114
    • 1642416091 scopus 로고    scopus 로고
    • Genetic basis of natural variation in D. melanogaster antibacterial immunity
    • Lazzaro, B. P., Sceurman, B. K. & Clark, A. G. Genetic basis of natural variation in D. melanogaster antibacterial immunity. Science 303, 1873-1876 (2004).
    • (2004) Science , vol.303 , pp. 1873-1876
    • Lazzaro, B.P.1    Sceurman, B.K.2    Clark, A.G.3
  • 115
    • 0033953792 scopus 로고    scopus 로고
    • The clip-domain family of serine proteinase in Arthropods
    • Jiang, H. & Kanost, M. R. The clip-domain family of serine proteinase in Arthropods. Insect Biochem. Mol. Biol. 30, 95-105 (2000).
    • (2000) Insect Biochem. Mol. Biol , vol.30 , pp. 95-105
    • Jiang, H.1    Kanost, M.R.2
  • 116
    • 34447530305 scopus 로고    scopus 로고
    • A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila
    • Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151-156 (2007).
    • (2007) Nature , vol.448 , pp. 151-156
    • Dietzl, G.1
  • 117
    • 33750805449 scopus 로고    scopus 로고
    • Rel/NF-κB double mutants reveal that cellular immunity is central to Drosophila host defense
    • Matova, N. & Anderson, K. V. Rel/NF-κB double mutants reveal that cellular immunity is central to Drosophila host defense. Proc. Natl Acad. Sci. USA 103, 16424-16429 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 16424-16429
    • Matova, N.1    Anderson, K.V.2
  • 118
    • 34250645022 scopus 로고    scopus 로고
    • Drosophila genome-wide RNAi screens: Are they delivering the promise?
    • Mathey-Prevot, B. & Perrimon, N. Drosophila genome-wide RNAi screens: are they delivering the promise? Cold Spring Harb. Symp. Quant. Biol. 71, 141-148 (2006).
    • (2006) Cold Spring Harb. Symp. Quant. Biol , vol.71 , pp. 141-148
    • Mathey-Prevot, B.1    Perrimon, N.2
  • 119
    • 33644859460 scopus 로고    scopus 로고
    • Genomic dissection of microbial pathogenesis in cultured Drosophila cells
    • Ayres, J. S. & Schneider, D. S. Genomic dissection of microbial pathogenesis in cultured Drosophila cells. Trends Microbiol. 14, 101-104 (2006).
    • (2006) Trends Microbiol , vol.14 , pp. 101-104
    • Ayres, J.S.1    Schneider, D.S.2
  • 120
    • 0032473360 scopus 로고    scopus 로고
    • A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway
    • Ferrandon, D. et al. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17, 1217-1227 (1998).
    • (1998) EMBO J , vol.17 , pp. 1217-1227
    • Ferrandon, D.1
  • 121
    • 0033638404 scopus 로고    scopus 로고
    • Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia
    • Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737-748 (2000).
    • (2000) Immunity , vol.13 , pp. 737-748
    • Tzou, P.1
  • 122
    • 0035065782 scopus 로고    scopus 로고
    • Onfelt Tingvall, T., Roos, E. & Engstrom, Y. The imd gene is required for local Cecropin expression in Drosophila barrier epithelia. EMBO Rep. 2, 239-243 (2001).
    • Onfelt Tingvall, T., Roos, E. & Engstrom, Y. The imd gene is required for local Cecropin expression in Drosophila barrier epithelia. EMBO Rep. 2, 239-243 (2001).
  • 123
    • 27644498442 scopus 로고    scopus 로고
    • A direct role for dual oxidase in Drosophila gut immunity
    • Ha, E. M., Oh, C. T., Bae, Y. S. & Lee, W. J. A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847-850 (2005).
    • (2005) Science , vol.310 , pp. 847-850
    • Ha, E.M.1    Oh, C.T.2    Bae, Y.S.3    Lee, W.J.4
  • 124
    • 35549001143 scopus 로고    scopus 로고
    • A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog
    • in the press
    • Nehme et al. A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog. (in the press).
    • Nehme1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.