-
1
-
-
85081997770
-
Towards principled methods for training generative adversarial networks
-
arXiv preprint
-
M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks. In ICLR, 2017. arXiv:1701.04862.
-
(2017)
ICLR
-
-
Arjovsky, M.1
Bottou, L.2
-
2
-
-
85047016172
-
Wasserstein generative adversarial networks
-
arXiv preprint
-
M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In ICML, 2017. arXiv:1701.07875.
-
(2017)
ICML
-
-
Arjovsky, M.1
Chintala, S.2
Bottou, L.3
-
4
-
-
85048679392
-
Generalization and equilibrium in generative adversarial nets (GANs)
-
arXiv preprint
-
S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang. Generalization and equilibrium in generative adversarial nets (GANs). In ICML, 2017. arXiv:1703.00573.
-
(2017)
ICML
-
-
Arora, S.1
Ge, R.2
Liang, Y.3
Ma, T.4
Zhang, Y.5
-
5
-
-
85047010071
-
-
arXiv preprint
-
M. G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer, and R. Munos. The Cramer distance as a solution to biased Wasserstein gradients, 2017. arXiv:1705.10743.
-
(2017)
The Cramer Distance as A Solution to Biased Wasserstein Gradients
-
-
Bellemare, M.G.1
Danihelka, I.2
Dabney, W.3
Mohamed, S.4
Lakshminarayanan, B.5
Hoyer, S.6
Munos, R.7
-
6
-
-
84882266451
-
Better mixing via deep representations
-
arXiv preprint
-
Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai. Better mixing via deep representations. In ICML, 2013. arXiv:1207.4404.
-
(2013)
ICML
-
-
Bengio, Y.1
Mesnil, G.2
Dauphin, Y.3
Rifai, S.4
-
9
-
-
85018868650
-
DISCO nets: DISsimilarity COefficients networks
-
D. Bouchacourt, P. K. Mudigonda, and S. Nowozin. DISCO nets: DISsimilarity COefficients networks. In NIPS, pp. 352–360. 2016.
-
(2016)
NIPS
, pp. 352-360
-
-
Bouchacourt, D.1
Mudigonda, P.K.2
Nowozin, S.3
-
10
-
-
85083950886
-
A test of relative similarity for model selection in generative models
-
arXiv preprint
-
W. Bounliphone, E. Belilovsky, M. B. Blaschko, I. Antonoglou, and A. Gretton. A test of relative similarity for model selection in generative models. In ICLR, 2016. arXiv:1511.04581.
-
(2016)
ICLR
-
-
Bounliphone, W.1
Belilovsky, E.2
Blaschko, M.B.3
Antonoglou, I.4
Gretton, A.5
-
11
-
-
85083953568
-
Fast and accurate deep network learning by exponential linear units (ELUs)
-
arXiv preprint
-
D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by exponential linear units (ELUs). In ICLR, 2016. arXiv:1511.07289.
-
(2016)
ICLR
-
-
Clevert, D.-A.1
Unterthiner, T.2
Hochreiter, S.3
-
12
-
-
85054819258
-
-
arXiv preprint
-
I. Danihelka, B. Lakshminarayanan, B. Uria, D. Wierstra, and P. Dayan. Comparison of maximum likelihood and GAN-based training of Real NVPs, 2017. arXiv:1705.05263.
-
(2017)
Comparison of Maximum Likelihood and GAN-Based Training of Real NVPs
-
-
Danihelka, I.1
Lakshminarayanan, B.2
Uria, B.3
Wierstra, D.4
Dayan, P.5
-
13
-
-
84983185824
-
Training generative neural networks via maximum mean discrepancy optimization
-
arXiv preprint
-
G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks via maximum mean discrepancy optimization. In UAI, 2015. arXiv:1505.03906.
-
(2015)
UAI
-
-
Dziugaite, G.K.1
Roy, D.M.2
Ghahramani, Z.3
-
14
-
-
85083954393
-
Many paths to equilibrium: GANs do not need to decrease a divergence at every step
-
arXiv preprint
-
W. Fedus, M. Rosca, B. Lakshminarayanan, A. M. Dai, S. Mohamed, and I. Goodfellow. Many paths to equilibrium: GANs do not need to decrease a divergence at every step. In ICLR, 2018. arXiv:1710.08446.
-
(2018)
ICLR
-
-
Fedus, W.1
Rosca, M.2
Lakshminarayanan, B.3
Dai, A.M.4
Mohamed, S.5
Goodfellow, I.6
-
15
-
-
33947274775
-
Strictly proper scoring rules, prediction, and estimation
-
T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. JASA, 102 (477):359–378, 2007.
-
(2007)
JASA
, vol.102
, Issue.477
, pp. 359-378
-
-
Gneiting, T.1
Raftery, A.E.2
-
16
-
-
84937849144
-
Generative adversarial nets
-
arXiv preprint
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, 2014. arXiv:1406.2661.
-
(2014)
NIPS
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
17
-
-
84859477054
-
A kernel two-sample test
-
A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. J. Smola. A kernel two-sample test. JMLR, 13, 2012.
-
(2012)
JMLR
, vol.13
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Schölkopf, B.4
Smola, A.J.5
-
18
-
-
85047004943
-
Improved training of Wasserstein GANs
-
arXiv preprint
-
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved training of Wasserstein GANs. In NIPS, 2017. arXiv:1704.00028.
-
(2017)
NIPS
-
-
Gulrajani, I.1
Ahmed, F.2
Arjovsky, M.3
Dumoulin, V.4
Courville, A.5
-
19
-
-
85041020882
-
GANs trained by a two time-scale update rule converge to a Nash equilibrium
-
arXiv preprint
-
M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and S. Hochreiter. GANs trained by a two time-scale update rule converge to a Nash equilibrium. In NIPS, 2017. arXiv:1706.08500.
-
(2017)
NIPS
-
-
Heusel, M.1
Ramsauer, H.2
Unterthiner, T.3
Nessler, B.4
Klambauer, G.5
Hochreiter, S.6
-
20
-
-
85041900166
-
Beyond face rotation: Global and local perception GAN for photorealistic and identity preserving frontal view synthesis
-
arXiv preprint
-
R. Huang, S. Zhang, T. Li, and R. He. Beyond face rotation: Global and local perception GAN for photorealistic and identity preserving frontal view synthesis. In ICCV, 2017a. arXiv:1704.04086.
-
(2017)
ICCV
-
-
Huang, R.1
Zhang, S.2
Li, T.3
He, R.4
-
21
-
-
85041903901
-
Stacked generative adversarial networks
-
arXiv preprint
-
X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, and S. Belongie. Stacked generative adversarial networks. In CVPR, 2017b. arXiv:1612.04357.
-
(2017)
CVPR
-
-
Huang, X.1
Li, Y.2
Poursaeed, O.3
Hopcroft, J.4
Belongie, S.5
-
22
-
-
85046817758
-
-
arXiv preprint
-
Y. Jin, K. Zhang, M. Li, Y. Tian, H. Zhu, and Z. Fang. Towards the automatic anime characters creation with generative adversarial networks, 2017. arXiv:1708.05509.
-
(2017)
Towards the Automatic Anime Characters Creation with Generative Adversarial Networks
-
-
Jin, Y.1
Zhang, K.2
Li, M.3
Tian, Y.4
Zhu, H.5
Fang, Z.6
-
23
-
-
85083951076
-
ADaM: A method for stochastic optimization
-
arXiv preprint
-
D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015. arXiv:1412.6980.
-
(2015)
ICLR
-
-
Kingma, D.1
Ba, J.2
-
27
-
-
85052810595
-
-
arXiv preprint
-
C. Li, D. Alvarez-Melis, K. Xu, S. Jegelka, and S. Sra. Distributional adversarial networks, 2017a. arXiv:1706.09549.
-
(2017)
Distributional Adversarial Networks
-
-
Li, C.1
Alvarez-Melis, D.2
Xu, K.3
Jegelka, S.4
Sra, S.5
-
28
-
-
85046994653
-
MMD GAN: Towards deeper understanding of moment matching network
-
arXiv preprint
-
C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Póczos. MMD GAN: Towards deeper understanding of moment matching network. In NIPS, 2017b. arXiv:1705.08584.
-
(2017)
NIPS
-
-
Li, C.-L.1
Chang, W.-C.2
Cheng, Y.3
Yang, Y.4
Póczos, B.5
-
29
-
-
84970016114
-
Generative moment matching networks
-
arXiv preprint
-
Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. In ICML, 2015. arXiv:1502.02761.
-
(2015)
ICML
-
-
Li, Y.1
Swersky, K.2
Zemel, R.3
-
31
-
-
85047011019
-
Approximation and convergence properties of generative adversarial learning
-
arXiv preprint
-
S. Liu, O. Bousquet, and K. Chaudhuri. Approximation and convergence properties of generative adversarial learning. In NIPS, 2017. arXiv:1705.08991.
-
(2017)
NIPS
-
-
Liu, S.1
Bousquet, O.2
Chaudhuri, K.3
-
32
-
-
84973917446
-
Deep learning face attributes in the wild
-
Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In ICCV, 2015.
-
(2015)
ICCV
-
-
Liu, Z.1
Luo, P.2
Wang, X.3
Tang, X.4
-
33
-
-
85063956288
-
Revisiting classifier two-sample tests
-
arXiv preprint
-
D. Lopez-Paz and M. Oquab. Revisiting classifier two-sample tests. In ICLR, 2017. arXiv:1610.06545.
-
(2017)
ICLR
-
-
Lopez-Paz, D.1
Oquab, M.2
-
34
-
-
84885042324
-
Distance covariance in metric spaces
-
R. Lyons. Distance covariance in metric spaces. The Annals of Probability, 41(5):3051–3696, 2013.
-
(2013)
The Annals of Probability
, vol.41
, Issue.5
, pp. 3051-3696
-
-
Lyons, R.1
-
36
-
-
85047002574
-
Fisher GAN
-
arXiv preprint
-
Y. Mroueh and T. Sercu. Fisher GAN. In NIPS, 2017. arXiv:1705.09675.
-
(2017)
NIPS
-
-
Mroueh, Y.1
Sercu, T.2
-
37
-
-
85047002488
-
McGan: Mean and covariance feature matching GAN
-
arXiv preprint
-
Y. Mroueh, T. Sercu, and V. Goel. McGan: Mean and covariance feature matching GAN. In ICML, 2017. arXiv:1702.08398.
-
(2017)
ICML
-
-
Mroueh, Y.1
Sercu, T.2
Goel, V.3
-
38
-
-
0010487372
-
Integral probability metrics and their generating classes of functions
-
A. Müller. Integral probability metrics and their generating classes of functions. Advances in Applied Probability, 29(2):429–443, 1997.
-
(1997)
Advances in Applied Probability
, vol.29
, Issue.2
, pp. 429-443
-
-
Müller, A.1
-
39
-
-
85018914753
-
F-GaN: Training generative neural samplers using variational divergence minimization
-
arXiv preprint
-
S. Nowozin, B. Cseke, and R. Tomioka. f-GAN: Training generative neural samplers using variational divergence minimization. In NIPS, 2016. arXiv:1606.00709.
-
(2016)
NIPS
-
-
Nowozin, S.1
Cseke, B.2
Tomioka, R.3
-
40
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. JMLR, 12:2825–2830, 2011.
-
(2011)
JMLR
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Pretten-Hofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
41
-
-
84915895670
-
The set of nondifferentiability of a continuous function
-
G. Piranian. The Set of Nondifferentiability of a Continuous Function. The American Mathematical Monthly, 73(4):57–61, 1966.
-
(1966)
The American Mathematical Monthly
, vol.73
, Issue.4
, pp. 57-61
-
-
Piranian, G.1
-
42
-
-
85083950271
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
arXiv preprint
-
A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016. arXiv:1511.06434.
-
(2016)
ICLR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
44
-
-
0008781953
-
Moments of a truncated bivariate normal distribution
-
S. Rosenbaum. Moments of a truncated bivariate normal distribution. JRSS B, 23:405–408, 1961.
-
(1961)
JRSS B
, vol.23
, pp. 405-408
-
-
Rosenbaum, S.1
-
45
-
-
85018875486
-
Improved techniques for training GANs
-
arXiv preprint
-
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training GANs. In NIPS, 2016. arXiv:1606.03498.
-
(2016)
NIPS
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
46
-
-
84888856531
-
Equivalence of distance-based and RKHS-based statistics in hypothesis testing
-
D. Sejdinovic, B. K. Sriperumbudur, A. Gretton, and K. Fukumizu. Equivalence of distance-based and RKHS-based statistics in hypothesis testing. The Annals of Stastistics, 41(5):2263–2291, 2013. arXiv:1207.6076.
-
(2013)
The Annals of Stastistics
, vol.41
, Issue.5
, pp. 2263-2291
-
-
Sejdinovic, D.1
Sriperumbudur, B.K.2
Gretton, A.3
Fukumizu, K.4
-
47
-
-
77951951390
-
Kernel choice and classifiability for RKHS embeddings of probability distributions
-
arXiv preprint
-
B. K. Sriperumbudur, K. Fukumizu, A. Gretton, G. R. G. Lanckriet, and B. Schölkopf. Kernel choice and classifiability for RKHS embeddings of probability distributions. In NIPS, 2009a.
-
(2009)
NIPS
-
-
Sriperumbudur, B.K.1
Fukumizu, K.2
Gretton, A.3
Lanckriet, G.R.G.4
Schölkopf, B.5
-
48
-
-
77951962690
-
-
arXiv preprint
-
B. K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf, and G. R. G. Lanckriet. On integral probability metrics, phi-divergences and binary classification, 2009b. arXiv:0901.2698.
-
(2009)
On Integral Probability Metrics, Phi-Divergences and Binary Classification
-
-
Sriperumbudur, B.K.1
Fukumizu, K.2
Gretton, A.3
Schölkopf, B.4
Lanckriet, G.R.G.5
-
49
-
-
77951953755
-
Hilbert space embeddings and metrics on probability measures
-
B. K. Sriperumbudur, A. Gretton, K. Fukumizu, G. R. G. Lanckriet, and B. Schölkopf. Hilbert space embeddings and metrics on probability measures. JMLR, 11:1517–1561, 2010. arXiv:0907.5309.
-
(2010)
JMLR
, vol.11
, pp. 1517-1561
-
-
Sriperumbudur, B.K.1
Gretton, A.2
Fukumizu, K.3
Lanckriet, G.R.G.4
Schölkopf, B.5
-
50
-
-
80052235767
-
Universality, characteristic kernels and RKHS embedding of measures
-
B. K. Sriperumbudur, K. Fukumizu, and G. R. G. Lanckriet. Universality, characteristic kernels and RKHS embedding of measures. JMLR, 12:2389–2410, 2011. arXiv:1003.0887.
-
(2011)
JMLR
, vol.12
, pp. 2389-2410
-
-
Sriperumbudur, B.K.1
Fukumizu, K.2
Lanckriet, G.R.G.3
-
51
-
-
84875150887
-
On the empirical estimation of integral probability metrics
-
B. K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf, and G. R. G. Lanckriet. On the empirical estimation of integral probability metrics. Electronic Journal of Statistics, 6:1550–1599, 2012.
-
(2012)
Electronic Journal of Statistics
, vol.6
, pp. 1550-1599
-
-
Sriperumbudur, B.K.1
Fukumizu, K.2
Gretton, A.3
Schölkopf, B.4
Lanckriet, G.R.G.5
-
53
-
-
85071182578
-
What are the mean and variance of a 0-censored multivariate normal?
-
D. J. Sutherland. What are the mean and variance of a 0-censored multivariate normal? Cross Validated answer, 2018. URL https://stats.stackexchange.com/q/326347.
-
(2018)
Cross Validated Answer
-
-
Sutherland, D.J.1
-
54
-
-
85088227458
-
Generative models and model criticism via optimized maximum mean discrepancy
-
arXiv preprint
-
D. J. Sutherland, H.-Y. Tung, H. Strathmann, S. De, A. Ramdas, A. Smola, and A. Gretton. Generative models and model criticism via optimized maximum mean discrepancy. In International Conference on Learning Representations, 2017. arXiv:1611.04488.
-
(2017)
International Conference on Learning Representations
-
-
Sutherland, D.J.1
Tung, H.-Y.2
Strathmann, H.3
De, S.4
Ramdas, A.5
Smola, A.6
Gretton, A.7
-
55
-
-
85083953343
-
Intriguing properties of neural networks
-
arXiv preprint
-
C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties of neural networks. In ICLR, 2014. arXiv:1312.6199.
-
(2014)
ICLR
-
-
Szegedy, C.1
Zaremba, W.2
Sutskever, I.3
Bruna, J.4
Erhan, D.5
Goodfellow, I.6
Fergus, R.7
-
56
-
-
84986296808
-
Rethinking the Inception architecture for computer vision
-
arXiv preprint
-
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception architecture for computer vision. In CVPR, 2016. arXiv:1512.00567.
-
(2016)
CVPR
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
57
-
-
33947635264
-
Testing for equal distributions in high dimension
-
G. Székely and M. Rizzo. Testing for equal distributions in high dimension. InterStat, 5, 2004.
-
(2004)
InterStat
, vol.5
-
-
Székely, G.1
Rizzo, M.2
-
58
-
-
85083950260
-
A note on the evaluation of generative models
-
arXiv preprint
-
L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models. In ICLR, 2016. arXiv:1511.01844.
-
(2016)
ICLR
-
-
Theis, L.1
Van Den Oord, A.2
Bethge, M.3
-
59
-
-
84979976120
-
-
arXiv preprint
-
F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao. LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop, 2015. arXiv:1506.03365.
-
(2015)
LSUN: Construction of A Large-Scale Image Dataset Using Deep Learning with Humans in the Loop
-
-
Yu, F.1
Zhang, Y.2
Song, S.3
Seff, A.4
Xiao, J.5
-
60
-
-
0013303603
-
Sur l’ensemble des points de non-dérivabilité d’une fonction continue
-
Z. Zahorski. Sur l’ensemble des points de non-dérivabilité d’une fonction continue. Bulletin de la Société mathématique de France, 2:147–178, 1946.
-
(1946)
Bulletin De La Société Mathématique De France
, vol.2
, pp. 147-178
-
-
Zahorski, Z.1
-
61
-
-
84899011784
-
B-tests: Low variance kernel two-sample tests
-
arXiv preprint
-
W. Zaremba, A. Gretton, and M. B. Blaschko. B-tests: Low variance kernel two-sample tests. In NIPS, 2013. arXiv:1307.1954.
-
(2013)
NIPS
-
-
Zaremba, W.1
Gretton, A.2
Blaschko, M.B.3
-
62
-
-
85041892358
-
Unpaired image-to-image translation using cycle-consistent adversarial networks
-
arXiv preprint
-
J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In ICCV, 2017. arXiv:1703.10593.
-
(2017)
ICCV
-
-
Zhu, J.-Y.1
Park, T.2
Isola, P.3
Efros, A.A.4
|