메뉴 건너뛰기




Volumn , Issue , 2018, Pages

Demystifying MMD GANs

Author keywords

[No Author keywords available]

Indexed keywords

ADVERSARIAL NETWORKS; CRITIC NETWORK; GENERATOR PARAMETERS; GRADIENT ESTIMATOR; LEARNING RATES; MATCHING PERFORMANCE; TRAINING ALGORITHMS; TRAINING STRATEGY;

EID: 85083954445     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (838)

References (62)
  • 1
    • 85081997770 scopus 로고    scopus 로고
    • Towards principled methods for training generative adversarial networks
    • arXiv preprint
    • M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks. In ICLR, 2017. arXiv:1701.04862.
    • (2017) ICLR
    • Arjovsky, M.1    Bottou, L.2
  • 2
    • 85047016172 scopus 로고    scopus 로고
    • Wasserstein generative adversarial networks
    • arXiv preprint
    • M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In ICML, 2017. arXiv:1701.07875.
    • (2017) ICML
    • Arjovsky, M.1    Chintala, S.2    Bottou, L.3
  • 4
    • 85048679392 scopus 로고    scopus 로고
    • Generalization and equilibrium in generative adversarial nets (GANs)
    • arXiv preprint
    • S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang. Generalization and equilibrium in generative adversarial nets (GANs). In ICML, 2017. arXiv:1703.00573.
    • (2017) ICML
    • Arora, S.1    Ge, R.2    Liang, Y.3    Ma, T.4    Zhang, Y.5
  • 6
    • 84882266451 scopus 로고    scopus 로고
    • Better mixing via deep representations
    • arXiv preprint
    • Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai. Better mixing via deep representations. In ICML, 2013. arXiv:1207.4404.
    • (2013) ICML
    • Bengio, Y.1    Mesnil, G.2    Dauphin, Y.3    Rifai, S.4
  • 9
    • 85018868650 scopus 로고    scopus 로고
    • DISCO nets: DISsimilarity COefficients networks
    • D. Bouchacourt, P. K. Mudigonda, and S. Nowozin. DISCO nets: DISsimilarity COefficients networks. In NIPS, pp. 352–360. 2016.
    • (2016) NIPS , pp. 352-360
    • Bouchacourt, D.1    Mudigonda, P.K.2    Nowozin, S.3
  • 10
    • 85083950886 scopus 로고    scopus 로고
    • A test of relative similarity for model selection in generative models
    • arXiv preprint
    • W. Bounliphone, E. Belilovsky, M. B. Blaschko, I. Antonoglou, and A. Gretton. A test of relative similarity for model selection in generative models. In ICLR, 2016. arXiv:1511.04581.
    • (2016) ICLR
    • Bounliphone, W.1    Belilovsky, E.2    Blaschko, M.B.3    Antonoglou, I.4    Gretton, A.5
  • 11
    • 85083953568 scopus 로고    scopus 로고
    • Fast and accurate deep network learning by exponential linear units (ELUs)
    • arXiv preprint
    • D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by exponential linear units (ELUs). In ICLR, 2016. arXiv:1511.07289.
    • (2016) ICLR
    • Clevert, D.-A.1    Unterthiner, T.2    Hochreiter, S.3
  • 13
    • 84983185824 scopus 로고    scopus 로고
    • Training generative neural networks via maximum mean discrepancy optimization
    • arXiv preprint
    • G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks via maximum mean discrepancy optimization. In UAI, 2015. arXiv:1505.03906.
    • (2015) UAI
    • Dziugaite, G.K.1    Roy, D.M.2    Ghahramani, Z.3
  • 14
    • 85083954393 scopus 로고    scopus 로고
    • Many paths to equilibrium: GANs do not need to decrease a divergence at every step
    • arXiv preprint
    • W. Fedus, M. Rosca, B. Lakshminarayanan, A. M. Dai, S. Mohamed, and I. Goodfellow. Many paths to equilibrium: GANs do not need to decrease a divergence at every step. In ICLR, 2018. arXiv:1710.08446.
    • (2018) ICLR
    • Fedus, W.1    Rosca, M.2    Lakshminarayanan, B.3    Dai, A.M.4    Mohamed, S.5    Goodfellow, I.6
  • 15
    • 33947274775 scopus 로고    scopus 로고
    • Strictly proper scoring rules, prediction, and estimation
    • T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. JASA, 102 (477):359–378, 2007.
    • (2007) JASA , vol.102 , Issue.477 , pp. 359-378
    • Gneiting, T.1    Raftery, A.E.2
  • 20
    • 85041900166 scopus 로고    scopus 로고
    • Beyond face rotation: Global and local perception GAN for photorealistic and identity preserving frontal view synthesis
    • arXiv preprint
    • R. Huang, S. Zhang, T. Li, and R. He. Beyond face rotation: Global and local perception GAN for photorealistic and identity preserving frontal view synthesis. In ICCV, 2017a. arXiv:1704.04086.
    • (2017) ICCV
    • Huang, R.1    Zhang, S.2    Li, T.3    He, R.4
  • 23
    • 85083951076 scopus 로고    scopus 로고
    • ADaM: A method for stochastic optimization
    • arXiv preprint
    • D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015. arXiv:1412.6980.
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 28
    • 85046994653 scopus 로고    scopus 로고
    • MMD GAN: Towards deeper understanding of moment matching network
    • arXiv preprint
    • C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Póczos. MMD GAN: Towards deeper understanding of moment matching network. In NIPS, 2017b. arXiv:1705.08584.
    • (2017) NIPS
    • Li, C.-L.1    Chang, W.-C.2    Cheng, Y.3    Yang, Y.4    Póczos, B.5
  • 29
    • 84970016114 scopus 로고    scopus 로고
    • Generative moment matching networks
    • arXiv preprint
    • Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. In ICML, 2015. arXiv:1502.02761.
    • (2015) ICML
    • Li, Y.1    Swersky, K.2    Zemel, R.3
  • 31
    • 85047011019 scopus 로고    scopus 로고
    • Approximation and convergence properties of generative adversarial learning
    • arXiv preprint
    • S. Liu, O. Bousquet, and K. Chaudhuri. Approximation and convergence properties of generative adversarial learning. In NIPS, 2017. arXiv:1705.08991.
    • (2017) NIPS
    • Liu, S.1    Bousquet, O.2    Chaudhuri, K.3
  • 32
    • 84973917446 scopus 로고    scopus 로고
    • Deep learning face attributes in the wild
    • Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In ICCV, 2015.
    • (2015) ICCV
    • Liu, Z.1    Luo, P.2    Wang, X.3    Tang, X.4
  • 33
    • 85063956288 scopus 로고    scopus 로고
    • Revisiting classifier two-sample tests
    • arXiv preprint
    • D. Lopez-Paz and M. Oquab. Revisiting classifier two-sample tests. In ICLR, 2017. arXiv:1610.06545.
    • (2017) ICLR
    • Lopez-Paz, D.1    Oquab, M.2
  • 34
    • 84885042324 scopus 로고    scopus 로고
    • Distance covariance in metric spaces
    • R. Lyons. Distance covariance in metric spaces. The Annals of Probability, 41(5):3051–3696, 2013.
    • (2013) The Annals of Probability , vol.41 , Issue.5 , pp. 3051-3696
    • Lyons, R.1
  • 36
    • 85047002574 scopus 로고    scopus 로고
    • Fisher GAN
    • arXiv preprint
    • Y. Mroueh and T. Sercu. Fisher GAN. In NIPS, 2017. arXiv:1705.09675.
    • (2017) NIPS
    • Mroueh, Y.1    Sercu, T.2
  • 37
    • 85047002488 scopus 로고    scopus 로고
    • McGan: Mean and covariance feature matching GAN
    • arXiv preprint
    • Y. Mroueh, T. Sercu, and V. Goel. McGan: Mean and covariance feature matching GAN. In ICML, 2017. arXiv:1702.08398.
    • (2017) ICML
    • Mroueh, Y.1    Sercu, T.2    Goel, V.3
  • 38
    • 0010487372 scopus 로고    scopus 로고
    • Integral probability metrics and their generating classes of functions
    • A. Müller. Integral probability metrics and their generating classes of functions. Advances in Applied Probability, 29(2):429–443, 1997.
    • (1997) Advances in Applied Probability , vol.29 , Issue.2 , pp. 429-443
    • Müller, A.1
  • 39
    • 85018914753 scopus 로고    scopus 로고
    • F-GaN: Training generative neural samplers using variational divergence minimization
    • arXiv preprint
    • S. Nowozin, B. Cseke, and R. Tomioka. f-GAN: Training generative neural samplers using variational divergence minimization. In NIPS, 2016. arXiv:1606.00709.
    • (2016) NIPS
    • Nowozin, S.1    Cseke, B.2    Tomioka, R.3
  • 41
    • 84915895670 scopus 로고
    • The set of nondifferentiability of a continuous function
    • G. Piranian. The Set of Nondifferentiability of a Continuous Function. The American Mathematical Monthly, 73(4):57–61, 1966.
    • (1966) The American Mathematical Monthly , vol.73 , Issue.4 , pp. 57-61
    • Piranian, G.1
  • 42
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • arXiv preprint
    • A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016. arXiv:1511.06434.
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 44
    • 0008781953 scopus 로고
    • Moments of a truncated bivariate normal distribution
    • S. Rosenbaum. Moments of a truncated bivariate normal distribution. JRSS B, 23:405–408, 1961.
    • (1961) JRSS B , vol.23 , pp. 405-408
    • Rosenbaum, S.1
  • 46
    • 84888856531 scopus 로고    scopus 로고
    • Equivalence of distance-based and RKHS-based statistics in hypothesis testing
    • D. Sejdinovic, B. K. Sriperumbudur, A. Gretton, and K. Fukumizu. Equivalence of distance-based and RKHS-based statistics in hypothesis testing. The Annals of Stastistics, 41(5):2263–2291, 2013. arXiv:1207.6076.
    • (2013) The Annals of Stastistics , vol.41 , Issue.5 , pp. 2263-2291
    • Sejdinovic, D.1    Sriperumbudur, B.K.2    Gretton, A.3    Fukumizu, K.4
  • 47
  • 50
    • 80052235767 scopus 로고    scopus 로고
    • Universality, characteristic kernels and RKHS embedding of measures
    • B. K. Sriperumbudur, K. Fukumizu, and G. R. G. Lanckriet. Universality, characteristic kernels and RKHS embedding of measures. JMLR, 12:2389–2410, 2011. arXiv:1003.0887.
    • (2011) JMLR , vol.12 , pp. 2389-2410
    • Sriperumbudur, B.K.1    Fukumizu, K.2    Lanckriet, G.R.G.3
  • 53
    • 85071182578 scopus 로고    scopus 로고
    • What are the mean and variance of a 0-censored multivariate normal?
    • D. J. Sutherland. What are the mean and variance of a 0-censored multivariate normal? Cross Validated answer, 2018. URL https://stats.stackexchange.com/q/326347.
    • (2018) Cross Validated Answer
    • Sutherland, D.J.1
  • 56
    • 84986296808 scopus 로고    scopus 로고
    • Rethinking the Inception architecture for computer vision
    • arXiv preprint
    • C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception architecture for computer vision. In CVPR, 2016. arXiv:1512.00567.
    • (2016) CVPR
    • Szegedy, C.1    Vanhoucke, V.2    Ioffe, S.3    Shlens, J.4    Wojna, Z.5
  • 57
    • 33947635264 scopus 로고    scopus 로고
    • Testing for equal distributions in high dimension
    • G. Székely and M. Rizzo. Testing for equal distributions in high dimension. InterStat, 5, 2004.
    • (2004) InterStat , vol.5
    • Székely, G.1    Rizzo, M.2
  • 58
    • 85083950260 scopus 로고    scopus 로고
    • A note on the evaluation of generative models
    • arXiv preprint
    • L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models. In ICLR, 2016. arXiv:1511.01844.
    • (2016) ICLR
    • Theis, L.1    Van Den Oord, A.2    Bethge, M.3
  • 60
    • 0013303603 scopus 로고
    • Sur l’ensemble des points de non-dérivabilité d’une fonction continue
    • Z. Zahorski. Sur l’ensemble des points de non-dérivabilité d’une fonction continue. Bulletin de la Société mathématique de France, 2:147–178, 1946.
    • (1946) Bulletin De La Société Mathématique De France , vol.2 , pp. 147-178
    • Zahorski, Z.1
  • 61
    • 84899011784 scopus 로고    scopus 로고
    • B-tests: Low variance kernel two-sample tests
    • arXiv preprint
    • W. Zaremba, A. Gretton, and M. B. Blaschko. B-tests: Low variance kernel two-sample tests. In NIPS, 2013. arXiv:1307.1954.
    • (2013) NIPS
    • Zaremba, W.1    Gretton, A.2    Blaschko, M.B.3
  • 62
    • 85041892358 scopus 로고    scopus 로고
    • Unpaired image-to-image translation using cycle-consistent adversarial networks
    • arXiv preprint
    • J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In ICCV, 2017. arXiv:1703.10593.
    • (2017) ICCV
    • Zhu, J.-Y.1    Park, T.2    Isola, P.3    Efros, A.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.