메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 2458-2467

Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; DEEP LEARNING; IMAGE PROCESSING; LEARNING SYSTEMS;

EID: 85041900166     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.267     Document Type: Conference Paper
Times cited : (580)

References (42)
  • 1
    • 85075670920 scopus 로고    scopus 로고
    • Tensorflow: A system for large-scale machine learning
    • M. Abadi et al. Tensorflow: A system for large-scale machine learning. In OSDI, pages 265-283, 2016.
    • (2016) OSDI , pp. 265-283
    • Abadi, M.1
  • 2
    • 33947167478 scopus 로고    scopus 로고
    • Face description with local binary patterns: Application to face recognition
    • T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary patterns: Application to face recognition. TPAMI, 2006.
    • (2006) TPAMI
    • Ahonen, T.1    Hadid, A.2    Pietikainen, M.3
  • 4
    • 84887396870 scopus 로고    scopus 로고
    • Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification
    • D. Chen, X. Cao, F. Wen, and J. Sun. Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification. In CVPR, 2013.
    • (2013) CVPR
    • Chen, D.1    Cao, X.2    Wen, F.3    Sun, J.4
  • 5
    • 0022098435 scopus 로고
    • Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by twodimensional visual cortical filters
    • J. G. Daugman. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by twodimensional visual cortical filters. JOSA, 1985.
    • (1985) JOSA
    • Daugman, J.G.1
  • 6
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • E. L. Denton, S. Chintala, R. Fergus, et al. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, 2015.
    • (2015) NIPS
    • Denton, E.L.1    Chintala, S.2    Fergus, R.3
  • 7
    • 85028267353 scopus 로고    scopus 로고
    • Pose-invariant face recognition with homography-based normalization
    • C. Ding and D. Tao. Pose-invariant face recognition with homography-based normalization. Pattern Recognition, 66:144-152, 2017.
    • (2017) Pattern Recognition , vol.66 , pp. 144-152
    • Ding, C.1    Tao, D.2
  • 8
    • 85046994319 scopus 로고    scopus 로고
    • Towards automatic image editing: Learning to see another you
    • A. Ghodrati, X. Jia, M. Pedersoli, and T. Tuytelaars. Towards automatic image editing: Learning to see another you. In BMVC, 2016.
    • (2016) BMVC
    • Ghodrati, A.1    Jia, X.2    Pedersoli, M.3    Tuytelaars, T.4
  • 11
    • 84994569942 scopus 로고    scopus 로고
    • Ms-celeb-1m: A dataset and benchmark for large-scale face recognition
    • Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In ECCV, 2016.
    • (2016) ECCV
    • Guo, Y.1    Zhang, L.2    Hu, Y.3    He, X.4    Gao, J.5
  • 12
    • 84942466590 scopus 로고    scopus 로고
    • Effective face frontalization in unconstrained images
    • T. Hassner, S. Harel, E. Paz, and R. Enbar. Effective face frontalization in unconstrained images. In CVPR, 2015.
    • (2015) CVPR
    • Hassner, T.1    Harel, S.2    Paz, E.3    Enbar, R.4
  • 14
    • 85019245160 scopus 로고    scopus 로고
    • Perceptual losses for real-time style transfer and super-resolution
    • J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016.
    • (2016) ECCV
    • Johnson, J.1    Alahi, A.2    Fei-Fei, L.3
  • 15
    • 84911383347 scopus 로고    scopus 로고
    • Stacked progressive auto-encoders (spae) for face recognition across poses
    • M. Kan, S. Shan, H. Chang, and X. Chen. Stacked progressive auto-encoders (spae) for face recognition across poses. In CVPR, 2014.
    • (2014) CVPR
    • Kan, M.1    Shan, S.2    Chang, H.3    Chen, X.4
  • 16
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 17
    • 85035231525 scopus 로고    scopus 로고
    • Photo-realistic single image super-resolution using a generative adversarial network
    • C. Ledig et al. Photo-realistic single image super-resolution using a generative adversarial network. In CVPR, 2017.
    • (2017) CVPR
    • Ledig, C.1
  • 18
    • 84986290423 scopus 로고    scopus 로고
    • Combining markov random fields and convolutional neural networks for image synthesis
    • C. Li and M. Wand. Combining markov random fields and convolutional neural networks for image synthesis. In CVPR, 2016.
    • (2016) CVPR
    • Li, C.1    Wand, M.2
  • 20
    • 70349661684 scopus 로고    scopus 로고
    • Visio-lization: Generating novel facial images
    • U. Mohammed, S. J. Prince, and J. Kautz. Visio-lization: generating novel facial images. In TOG, 2009.
    • (2009) TOG
    • Mohammed, U.1    Prince, S.J.2    Kautz, J.3
  • 22
    • 84919832734 scopus 로고    scopus 로고
    • Learning to disentangle factors of variation with manifold interaction
    • S. Reed, K. Sohn, Y. Zhang, and H. Lee. Learning to disentangle factors of variation with manifold interaction. In ICML, 2014.
    • (2014) ICML
    • Reed, S.1    Sohn, K.2    Zhang, Y.3    Lee, H.4
  • 23
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
    • (2014) ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 25
    • 84946751287 scopus 로고    scopus 로고
    • Facenet: A unified embedding for face recognition and clustering
    • F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In CVPR, 2015.
    • (2015) CVPR
    • Schroff, F.1    Kalenichenko, D.2    Philbin, J.3
  • 26
    • 85041901163 scopus 로고    scopus 로고
    • Learning residual images for face attribute manipulation
    • W. Shen and R. Liu. Learning residual images for face attribute manipulation. In CVPR, 2017.
    • (2017) CVPR
    • Shen, W.1    Liu, R.2
  • 27
  • 28
    • 84911126535 scopus 로고    scopus 로고
    • Deep learning face representation from predicting 10, 000 classes
    • Y. Sun, X. Wang, and X. Tang. Deep learning face representation from predicting 10, 000 classes. In CVPR, 2014.
    • (2014) CVPR
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 29
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: Closing the gap to human-level performance in face verification
    • Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR, 2014.
    • (2014) CVPR
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 30
    • 85041925714 scopus 로고    scopus 로고
    • Disentangled representation learning gan for pose-invariant face recognition
    • L. Tran, X. Yin, and X. Liu. Disentangled representation learning gan for pose-invariant face recognition. In CVPR, 2017.
    • (2017) CVPR
    • Tran, L.1    Yin, X.2    Liu, X.3
  • 31
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing highdimensional data using t-sne
    • L. van der Maaten and G. E. Hinton. Visualizing highdimensional data using t-sne. JMLR, 2008.
    • (2008) JMLR
    • Maaten Der Van, L.1    Hinton, G.E.2
  • 32
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR, 2001.
    • (2001) CVPR
    • Viola, P.1    Jones, M.2
  • 33
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. JMLR, 2009.
    • (2009) JMLR
    • Weinberger, K.Q.1    Saul, L.K.2
  • 36
    • 84973926813 scopus 로고    scopus 로고
    • Conditional convolutional neural network for modality-aware face recognition
    • C. Xiong, X. Zhao, D. Tang, K. Jayashree, S. Yan, and T. K. Kim. Conditional convolutional neural network for modality-aware face recognition. In ICCV, 2015.
    • (2015) ICCV
    • Xiong, C.1    Zhao, X.2    Tang, D.3    Jayashree, K.4    Yan, S.5    Kim, T.K.6
  • 37
    • 84965161391 scopus 로고    scopus 로고
    • Weaklysupervised disentangling with recurrent transformations for 3d view synthesis
    • J. Yang, S. E. Reed, M.-H. Yang, and H. Lee. Weaklysupervised disentangling with recurrent transformations for 3d view synthesis. In NIPS, 2015.
    • (2015) NIPS
    • Yang, J.1    Reed, S.E.2    Yang, M.-H.3    Lee, H.4
  • 38
    • 84959231848 scopus 로고    scopus 로고
    • Rotating your face using multi-task deep neural network
    • J. Yim, H. Jung, B. Yoo, C. Choi, D. Park, and J. Kim. Rotating your face using multi-task deep neural network. In CVPR, 2015.
    • (2015) CVPR
    • Yim, J.1    Jung, H.2    Yoo, B.3    Choi, C.4    Park, D.5    Kim, J.6
  • 40
    • 84949740059 scopus 로고    scopus 로고
    • High-fidelity pose and expression normalization for face recognition in the wild
    • X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li. High-fidelity pose and expression normalization for face recognition in the wild. In CVPR, 2015.
    • (2015) CVPR
    • Zhu, X.1    Lei, Z.2    Yan, J.3    Yi, D.4    Li, S.Z.5
  • 41
    • 84898819011 scopus 로고    scopus 로고
    • Deep learning identity-preserving face space
    • Z. Zhu, P. Luo, X. Wang, and X. Tang. Deep learning identity-preserving face space. In ICCV, 2013.
    • (2013) ICCV
    • Zhu, Z.1    Luo, P.2    Wang, X.3    Tang, X.4
  • 42
    • 84937885357 scopus 로고    scopus 로고
    • Multi-view perceptron: A deep model for learning face identity and view representations
    • Z. Zhu, P. Luo, X. Wang, and X. Tang. Multi-view perceptron: a deep model for learning face identity and view representations. In NIPS, 2014.
    • (2014) NIPS
    • Zhu, Z.1    Luo, P.2    Wang, X.3    Tang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.