-
6
-
-
84937849144
-
Generative adversarial nets
-
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672-2680, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
7
-
-
84859477054
-
A kernel two-sample test
-
Mar.
-
Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723-773, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 723-773
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Schölkopf, B.4
Smola, A.5
-
8
-
-
85041903901
-
Stacked generative adversarial networks
-
Xun Huang, Yixuan Li, Omid Poursaeed, John Hopcroft, and Serge Belongie. Stacked generative adversarial networks. In Computer Vision and Patter Recognition, 2017.
-
(2017)
Computer Vision and Patter Recognition
-
-
Huang, X.1
Li, Y.2
Poursaeed, O.3
Hopcroft, J.4
Belongie, S.5
-
11
-
-
0008815681
-
Exponentiated gradient versus gradient descent for linear predictors
-
Jyrki Kivinen and Manfred K Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1):1-63, 1997.
-
(1997)
Information and Computation
, vol.132
, Issue.1
, pp. 1-63
-
-
Kivinen, J.1
Warmuth, M.K.2
-
15
-
-
84973917446
-
Deep learning face attributes in the wild
-
Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference on Computer Vision, pages 3730-3738, 2015.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 3730-3738
-
-
Liu, Z.1
Luo, P.2
Wang, X.3
Tang, X.4
-
16
-
-
0010487372
-
Integral probability metrics and their generating classes of functions
-
Alfred Müller. Integral probability metrics and their generating classes of functions. Advances in Applied Probability, 29(02):429-443, 1997.
-
(1997)
Advances in Applied Probability
, vol.29
, Issue.2
, pp. 429-443
-
-
Müller, A.1
-
19
-
-
85018875486
-
Improved techniques for training gans
-
Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training gans. In Advances in Neural Information Processing Systems, 2016.
-
(2016)
Advances in Neural Information Processing Systems
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
20
-
-
85041920690
-
-
Ilya Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, and Bernhard Schölkopf. Adagau: Boosting generative models. arXiv preprint arXiv. 1101.02386, 2017.
-
(2017)
Adagau: Boosting Generative Models
-
-
Tolstikhin, I.1
Gelly, S.2
Bousquet, O.3
Simon-Gabriel, C.4
Schölkopf, B.5
-
21
-
-
70350646988
-
Regularity, boosting, and efficiently simulating every high-entropy distribution
-
IEEE
-
Luca Trevisan, Madhur Tulsiani, and Salil Vadhan. Regularity, boosting, and efficiently simulating every high-entropy distribution. In Computational Complexity, 2009. CCC'09. 24th Annual IEEE Conference on, pages 126-136. IEEE, 2009.
-
(2009)
Computational Complexity, 2009. CCC'09. 24th Annual IEEE Conference on
, pp. 126-136
-
-
Trevisan, L.1
Tulsiani, M.2
Vadhan, S.3
-
22
-
-
21244466146
-
Zur théorie der gesellschaftsspiele
-
J v. Neumann. Zur théorie der gesellschaftsspiele. Mathematische annalen, 100(1):295-320, 1928.
-
(1928)
Mathematische Annalen
, vol.100
, Issue.1
, pp. 295-320
-
-
Neumann, J.1
|