-
1
-
-
84965143571
-
Deep generative image models using a laplacian pyramid of adversarial networks
-
E.L. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image models using a Laplacian pyramid of adversarial networks. In NIPS. 2015.
-
(2015)
NIPS
-
-
Denton, E.L.1
Chintala, S.2
Szlam, A.3
Fergus, R.4
-
2
-
-
84983185824
-
Training generative neural networks via maximum mean discrepancy optimization
-
G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks via maximum mean discrepancy optimization. In UAI, 2015.
-
(2015)
UAI
-
-
Dziugaite, G.K.1
Roy, D.M.2
Ghahramani, Z.3
-
3
-
-
84893460360
-
Kernel bayes' rule: Bayesian inference with positive definite kernels
-
K. Fukumizu, L. Song, and A. Gretton. Kernel Bayes' rule: Bayesian inference with positive definite kernels. JMLR, 2013.
-
(2013)
JMLR
-
-
Fukumizu, K.1
Song, L.2
Gretton, A.3
-
6
-
-
48349105056
-
Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds
-
Tilmann Gneiting, Larissa I. Stanberry, Eric P. Grimit, Leonhard Held, and Nicholas A. Johnson. Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds. TEST, 2008.
-
(2008)
TEST
-
-
Gneiting, T.1
Stanberry, L.I.2
Grimit, E.P.3
Held, L.4
Johnson, N.A.5
-
7
-
-
84937849144
-
Generative adversarial nets
-
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, Bing Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS. 2014.
-
(2014)
NIPS
-
-
Goodfellow, I.J.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
8
-
-
84864063983
-
A kernel method for the two-sample problem
-
A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Scholkopf, and A. J. Smola. A kernel method for the two-sample problem. In NIPS, 2007.
-
(2007)
NIPS
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Scholkopf, B.4
Smola, A.J.5
-
9
-
-
84859477054
-
A kernel two-sample test
-
A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Scholkopf, and A. J. Smola. A kernel two-sample test. In JMLR, 2012.
-
(2012)
JMLR
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Scholkopf, B.4
Smola, A.J.5
-
10
-
-
85083952489
-
Auto-encoding variational bayes
-
D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
11
-
-
84867122674
-
Modeling latent variable uncertainty for loss-based learning
-
M. P. Kumar, B. Packer, and D. Koller. Modeling latent variable uncertainty for loss-based learning. In ICML, 2012.
-
(2012)
ICML
-
-
Kumar, M.P.1
Packer, B.2
Koller, D.3
-
14
-
-
84970016114
-
Generative moment matching networks
-
Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. In ICML, 2015.
-
(2015)
ICML
-
-
Li, Y.1
Swersky, K.2
Zemel, R.3
-
18
-
-
84973889951
-
Training a feedback loop for hand pose estimation
-
M. Oberweger, P. Wohlhart, and V. Lepetit. Training a Feedback Loop for Hand Pose Estimation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Oberweger, M.1
Wohlhart, P.2
Lepetit, V.3
-
21
-
-
84911413891
-
Empirical minimum bayes risk prediction: How to extract an extra few% performance from vision models with just three more parameters
-
V. Premachandran, D. Tarlow, and D. Batra. Empirical minimum Bayes risk prediction: How to extract an extra few% performance from vision models with just three more parameters. In CVPR, 2014.
-
(2014)
CVPR
-
-
Premachandran, V.1
Tarlow, D.2
Batra, D.3
-
22
-
-
84978298377
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2015.
-
(2015)
ICLR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
23
-
-
0003143622
-
Diversity and dissimilarity coefficients: A unified approach
-
C.R. Rao. Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, pages Vol. 21, No. 1, pp 24-43, 1982.
-
(1982)
Theoretical Population Biology, Pages
, vol.21
, Issue.1
, pp. 24-43
-
-
Rao, C.R.1
-
24
-
-
84998636515
-
Generative adversarial text to image synthesis
-
S. Reed, Z. Akata, X. Yan, L. Logeswaran, H. Lee, and B. Schiele. Generative adversarial text to image synthesis. In ICML, 2016.
-
(2016)
ICML
-
-
Reed, S.1
Akata, Z.2
Yan, X.3
Logeswaran, L.4
Lee, H.5
Schiele, B.6
-
25
-
-
85039155903
-
Unsupervised and semi-supervised learning with categorical generative adversarial networks
-
J. T. Springenberg. Unsupervised and semi-supervised learning with categorical generative adversarial networks. ICLR, 2016.
-
(2016)
ICLR
-
-
Springenberg, J.T.1
-
26
-
-
84866688051
-
The vitruvian manifold: Inferring dense correspondences for oneshot human pose estimation
-
J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitruvian Manifold: Inferring dense correspondences for oneshot human pose estimation. In CVPR, 2012.
-
(2012)
CVPR
-
-
Taylor, J.1
Shotton, J.2
Sharp, T.3
Fitzgibbon, A.4
|