메뉴 건너뛰기




Volumn , Issue , 2016, Pages 352-360

DISCO nets: DISsimilarity COefficient Networks

Author keywords

[No Author keywords available]

Indexed keywords

DEEP NEURAL NETWORKS;

EID: 85018868650     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (74)

References (29)
  • 1
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • E.L. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image models using a Laplacian pyramid of adversarial networks. In NIPS. 2015.
    • (2015) NIPS
    • Denton, E.L.1    Chintala, S.2    Szlam, A.3    Fergus, R.4
  • 2
    • 84983185824 scopus 로고    scopus 로고
    • Training generative neural networks via maximum mean discrepancy optimization
    • G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks via maximum mean discrepancy optimization. In UAI, 2015.
    • (2015) UAI
    • Dziugaite, G.K.1    Roy, D.M.2    Ghahramani, Z.3
  • 3
    • 84893460360 scopus 로고    scopus 로고
    • Kernel bayes' rule: Bayesian inference with positive definite kernels
    • K. Fukumizu, L. Song, and A. Gretton. Kernel Bayes' rule: Bayesian inference with positive definite kernels. JMLR, 2013.
    • (2013) JMLR
    • Fukumizu, K.1    Song, L.2    Gretton, A.3
  • 6
    • 48349105056 scopus 로고    scopus 로고
    • Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds
    • Tilmann Gneiting, Larissa I. Stanberry, Eric P. Grimit, Leonhard Held, and Nicholas A. Johnson. Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds. TEST, 2008.
    • (2008) TEST
    • Gneiting, T.1    Stanberry, L.I.2    Grimit, E.P.3    Held, L.4    Johnson, N.A.5
  • 10
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 11
    • 84867122674 scopus 로고    scopus 로고
    • Modeling latent variable uncertainty for loss-based learning
    • M. P. Kumar, B. Packer, and D. Koller. Modeling latent variable uncertainty for loss-based learning. In ICML, 2012.
    • (2012) ICML
    • Kumar, M.P.1    Packer, B.2    Koller, D.3
  • 12
    • 84862300830 scopus 로고    scopus 로고
    • Approximate inference for the loss-calibrated Bayesian
    • S. Lacoste-Julien, F. Huszar, and Z. Ghahramani. Approximate inference for the loss-calibrated Bayesian. In AISTATS, 2011.
    • (2011) AISTATS
    • Lacoste-Julien, S.1    Huszar, F.2    Ghahramani, Z.3
  • 14
    • 84970016114 scopus 로고    scopus 로고
    • Generative moment matching networks
    • Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. In ICML, 2015.
    • (2015) ICML
    • Li, Y.1    Swersky, K.2    Zemel, R.3
  • 18
    • 84973889951 scopus 로고    scopus 로고
    • Training a feedback loop for hand pose estimation
    • M. Oberweger, P. Wohlhart, and V. Lepetit. Training a Feedback Loop for Hand Pose Estimation. In ICCV, 2015.
    • (2015) ICCV
    • Oberweger, M.1    Wohlhart, P.2    Lepetit, V.3
  • 21
    • 84911413891 scopus 로고    scopus 로고
    • Empirical minimum bayes risk prediction: How to extract an extra few% performance from vision models with just three more parameters
    • V. Premachandran, D. Tarlow, and D. Batra. Empirical minimum Bayes risk prediction: How to extract an extra few% performance from vision models with just three more parameters. In CVPR, 2014.
    • (2014) CVPR
    • Premachandran, V.1    Tarlow, D.2    Batra, D.3
  • 22
    • 84978298377 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2015.
    • (2015) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 23
    • 0003143622 scopus 로고
    • Diversity and dissimilarity coefficients: A unified approach
    • C.R. Rao. Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, pages Vol. 21, No. 1, pp 24-43, 1982.
    • (1982) Theoretical Population Biology, Pages , vol.21 , Issue.1 , pp. 24-43
    • Rao, C.R.1
  • 25
    • 85039155903 scopus 로고    scopus 로고
    • Unsupervised and semi-supervised learning with categorical generative adversarial networks
    • J. T. Springenberg. Unsupervised and semi-supervised learning with categorical generative adversarial networks. ICLR, 2016.
    • (2016) ICLR
    • Springenberg, J.T.1
  • 26
    • 84866688051 scopus 로고    scopus 로고
    • The vitruvian manifold: Inferring dense correspondences for oneshot human pose estimation
    • J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitruvian Manifold: Inferring dense correspondences for oneshot human pose estimation. In CVPR, 2012.
    • (2012) CVPR
    • Taylor, J.1    Shotton, J.2    Sharp, T.3    Fitzgibbon, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.