메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 2242-2251

Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; INVERSE PROBLEMS; MAPPING;

EID: 85041892358     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.244     Document Type: Conference Paper
Times cited : (16288)

References (61)
  • 3
    • 84965932242 scopus 로고
    • Back-translation for cross-cultural research
    • R. W. Brislin. Back-translation for cross-cultural research. Journal of cross-cultural psychology, 1 (3):185-216, 1970.
    • (1970) Journal of Cross-cultural Psychology , vol.1 , Issue.3 , pp. 185-216
    • Brislin, R.W.1
  • 5
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • E. L. Denton, S. Chintala, R. Fergus, et al. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, pages 1486-1494, 2015.
    • (2015) NIPS , pp. 1486-1494
    • Denton, E.L.1    Chintala, S.2    Fergus, R.3
  • 8
    • 0033285309 scopus 로고    scopus 로고
    • Texture synthesis by non-parametric sampling
    • IEEE
    • A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In ICCV, volume 2, pages 1033-1038. IEEE, 1999.
    • (1999) ICCV , vol.2 , pp. 1033-1038
    • Efros, A.A.1    Leung, T.K.2
  • 9
    • 84973897611 scopus 로고    scopus 로고
    • Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
    • D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In ICCV, pages 2650-2658, 2015.
    • (2015) ICCV , pp. 2650-2658
    • Eigen, D.1    Fergus, R.2
  • 11
    • 84986325538 scopus 로고    scopus 로고
    • Image style transfer using convolutional neural networks
    • L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. CVPR, 2016.
    • (2016) CVPR
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 12
    • 85030230124 scopus 로고    scopus 로고
    • Unsupervised monocular depth estimation with left-right consistency
    • C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised monocular depth estimation with left-right consistency. In CVPR, 2017.
    • (2017) CVPR
    • Godard, C.1    Mac Aodha, O.2    Brostow, G.J.3
  • 16
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, pages 770-778, 2016.
    • (2016) CVPR , pp. 770-778
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 18
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313 (5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 19
    • 84882751060 scopus 로고    scopus 로고
    • Consistent shape maps via semidefinite programming
    • Wiley Online Library
    • Q.-X. Huang and L. Guibas. Consistent shape maps via semidefinite programming. In Computer Graphics Forum, volume 32, pages 177-186. Wiley Online Library, 2013.
    • (2013) Computer Graphics Forum , vol.32 , pp. 177-186
    • Huang, Q.-X.1    Guibas, L.2
  • 20
    • 85030759098 scopus 로고    scopus 로고
    • Image-toimage translation with conditional adversarial networks
    • P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-toimage translation with conditional adversarial networks. In CVPR, 2017.
    • (2017) CVPR
    • Isola, P.1    Zhu, J.-Y.2    Zhou, T.3    Efros, A.A.4
  • 21
    • 84990854047 scopus 로고    scopus 로고
    • Perceptual losses for real-time style transfer and super-resolution
    • Springer
    • J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, pages 694-711. Springer, 2016.
    • (2016) ECCV , pp. 694-711
    • Johnson, J.1    Alahi, A.2    Fei-Fei, L.3
  • 23
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • D. P. Kingma and M. Welling. Auto-encoding variational bayes. ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 24
    • 84905741277 scopus 로고    scopus 로고
    • Transient attributes for high-level understanding and editing of outdoor scenes
    • P.-Y. Laffont, Z. Ren, X. Tao, C. Qian, and J. Hays. Transient attributes for high-level understanding and editing of outdoor scenes. ACM Transactions on Graphics (TOG), 33 (4):149, 2014.
    • (2014) ACM Transactions on Graphics (TOG) , vol.33 , Issue.4 , pp. 149
    • Laffont, P.-Y.1    Ren, Z.2    Tao, X.3    Qian, C.4    Hays, J.5
  • 26
    • 84990854650 scopus 로고    scopus 로고
    • Precomputed real-time texture synthesis with markovian generative adversarial networks
    • C. Li and M. Wand. Precomputed real-time texture synthesis with markovian generative adversarial networks. ECCV, 2016.
    • (2016) ECCV
    • Li, C.1    Wand, M.2
  • 28
    • 85019190707 scopus 로고    scopus 로고
    • Coupled generative adversarial networks
    • M.-Y. Liu and O. Tuzel. Coupled generative adversarial networks. In NIPS, pages 469-477, 2016.
    • (2016) NIPS , pp. 469-477
    • Liu, M.-Y.1    Tuzel, O.2
  • 29
    • 84945230598 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, pages 3431-3440, 2015.
    • (2015) CVPR , pp. 3431-3440
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 32
    • 85083952137 scopus 로고    scopus 로고
    • Deep multiscale video prediction beyond mean square error
    • M. Mathieu, C. Couprie, and Y. LeCun. Deep multiscale video prediction beyond mean square error. ICLR, 2016.
    • (2016) ICLR
    • Mathieu, M.1    Couprie, C.2    LeCun, Y.3
  • 33
    • 85018893392 scopus 로고    scopus 로고
    • Disentangling factors of variation in deep representation using adversarial training
    • M. F. Mathieu, J. Zhao, A. Ramesh, P. Sprechmann, and Y. LeCun. Disentangling factors of variation in deep representation using adversarial training. In NIPS, pages 5040-5048, 2016.
    • (2016) NIPS , pp. 5040-5048
    • Mathieu, M.F.1    Zhao, J.2    Ramesh, A.3    Sprechmann, P.4    LeCun, Y.5
  • 37
    • 0344120243 scopus 로고    scopus 로고
    • Unsupervised image translation
    • R. Rosales, K. Achan, and B. J. Frey. Unsupervised image translation. In iccv, pages 472-478, 2003.
    • (2003) Iccv , pp. 472-478
    • Rosales, R.1    Achan, K.2    Frey, B.J.3
  • 40
    • 85040345002 scopus 로고    scopus 로고
    • Scribbler: Controlling deep image synthesis with sketch and color
    • P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays. Scribbler: Controlling deep image synthesis with sketch and color. In CVPR, 2017.
    • (2017) CVPR
    • Sangkloy, P.1    Lu, J.2    Fang, C.3    Yu, F.4    Hays, J.5
  • 41
    • 84887839353 scopus 로고    scopus 로고
    • Datadriven hallucination of different times of day from a single outdoor photo
    • Y. Shih, S. Paris, F. Durand, and W. T. Freeman. Datadriven hallucination of different times of day from a single outdoor photo. ACM Transactions on Graphics (TOG), 32 (6):200, 2013.
    • (2013) ACM Transactions on Graphics (TOG) , vol.32 , Issue.6 , pp. 200
    • Shih, Y.1    Paris, S.2    Durand, F.3    Freeman, W.T.4
  • 44
    • 78149293673 scopus 로고    scopus 로고
    • Dense point trajectories by GPU-accelerated large displacement optical flow
    • Springer
    • N. Sundaram, T. Brox, and K. Keutzer. Dense point trajectories by gpu-accelerated large displacement optical flow. In ECCV, pages 438-451. Springer, 2010.
    • (2010) ECCV , pp. 438-451
    • Sundaram, N.1    Brox, T.2    Keutzer, K.3
  • 46
    • 84959224456 scopus 로고    scopus 로고
    • Modeling object appearance using contextconditioned component analysis
    • D. Turmukhambetov, N. D. Campbell, S. J. Prince, and J. Kautz. Modeling object appearance using contextconditioned component analysis. In CVPR, pages 4156-4164, 2015.
    • (2015) CVPR , pp. 4156-4164
    • Turmukhambetov, D.1    Campbell, N.D.2    Prince, S.J.3    Kautz, J.4
  • 50
    • 85018901251 scopus 로고    scopus 로고
    • Generating videos with scene dynamics
    • C. Vondrick, H. Pirsiavash, and A. Torralba. Generating videos with scene dynamics. In NIPS, pages 613-621, 2016.
    • (2016) NIPS , pp. 613-621
    • Vondrick, C.1    Pirsiavash, H.2    Torralba, A.3
  • 51
    • 84898809523 scopus 로고    scopus 로고
    • Image cosegmentation via consistent functional maps
    • F. Wang, Q. Huang, and L. J. Guibas. Image cosegmentation via consistent functional maps. In ICCV, pages 849-856, 2013.
    • (2013) ICCV , pp. 849-856
    • Wang, F.1    Huang, Q.2    Guibas, L.J.3
  • 52
    • 84990022453 scopus 로고    scopus 로고
    • Generative image modeling using style and structure adversarial networks
    • X. Wang and A. Gupta. Generative image modeling using style and structure adversarial networks. ECCV, 2016.
    • (2016) ECCV
    • Wang, X.1    Gupta, A.2
  • 53
    • 85016159876 scopus 로고    scopus 로고
    • Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling
    • J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In NIPS, pages 82-90, 2016.
    • (2016) NIPS , pp. 82-90
    • Wu, J.1    Zhang, C.2    Xue, T.3    Freeman, B.4    Tenenbaum, J.5
  • 54
    • 84973859794 scopus 로고    scopus 로고
    • Holistically-nested edge detection
    • S. Xie and Z. Tu. Holistically-nested edge detection. In ICCV, 2015.
    • (2015) ICCV
    • Xie, S.1    Tu, Z.2
  • 55
    • 85041904928 scopus 로고    scopus 로고
    • Dualgan: Unsupervised dual learning for image-to-image translation
    • Z. Yi, H. Zhang, T. Gong, Tan, and M. Gong. Dualgan: Unsupervised dual learning for image-to-image translation. In ICCV, 2017.
    • (2017) ICCV
    • Yi, Z.1    Zhang, H.2    Gong, T.3    Tan Gong, M.4
  • 56
    • 77956006566 scopus 로고    scopus 로고
    • Disambiguating visual relations using loop constraints
    • IEEE
    • C. Zach, M. Klopschitz, and M. Pollefeys. Disambiguating visual relations using loop constraints. In CVPR, pages 1426-1433. IEEE, 2010.
    • (2010) CVPR , pp. 1426-1433
    • Zach, C.1    Klopschitz, M.2    Pollefeys, M.3
  • 59
    • 84959209973 scopus 로고    scopus 로고
    • Flowweb: Joint image set alignment by weaving consistent, pixelwise correspondences
    • T. Zhou, Y. Jae Lee, S. X. Yu, and A. A. Efros. Flowweb: Joint image set alignment by weaving consistent, pixelwise correspondences. In CVPR, pages 1191-1200, 2015.
    • (2015) CVPR , pp. 1191-1200
    • Zhou, T.1    Jae Lee, Y.2    Yu, S.X.3    Efros, A.A.4
  • 60
    • 84986260188 scopus 로고    scopus 로고
    • Learning dense correspondence via 3d-guided cycle consistency
    • T. Zhou, P. Krahenbuhl, M. Aubry, Q. Huang, and A. A. Efros. Learning dense correspondence via 3d-guided cycle consistency. In CVPR, pages 117-126, 2016.
    • (2016) CVPR , pp. 117-126
    • Zhou, T.1    Krahenbuhl, P.2    Aubry, M.3    Huang, Q.4    Efros, A.A.5
  • 61
    • 85030465393 scopus 로고    scopus 로고
    • Generative visual manipulation on the natural image manifold
    • J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros. Generative visual manipulation on the natural image manifold. In ECCV, 2016.
    • (2016) ECCV
    • Zhu, J.-Y.1    Krähenbühl, P.2    Shechtman, E.3    Efros, A.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.