메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Generative models and model criticism via optimized maximum mean discrepancy

Author keywords

[No Author keywords available]

Indexed keywords

STATISTICAL TESTS;

EID: 85088227458     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (156)

References (34)
  • 3
    • 79959650504 scopus 로고    scopus 로고
    • Quickly generating representative samples from an rbm-derived process
    • Olivier Breuleux, Yoshua Bengio, and Pascal Vincent. Quickly generating representative samples from an rbm-derived process. Neural Computation, 23(8):2053-2073, 2011.
    • (2011) Neural Computation , vol.23 , Issue.8 , pp. 2053-2073
    • Breuleux, O.1    Bengio, Y.2    Vincent, P.3
  • 5
    • 84983185824 scopus 로고    scopus 로고
    • Training generative neural networks via maximum mean discrepancy optimization
    • Gintare Karolina Dziugaite, Daniel M. Roy, and Zoubin Ghahramani. Training generative neural networks via maximum mean discrepancy optimization. In Uncertainty in Artificial Intelligence, 2015. arXiv:1505.03906.
    • (2015) Uncertainty in Artificial Intelligence
    • Dziugaite, G.K.1    Roy, D.M.2    Ghahramani, Z.3
  • 18
    • 0010487372 scopus 로고    scopus 로고
    • Integral probability metrics and their generating classes of functions
    • Alfred Müller. Integral probability metrics and their generating classes of functions. Advances in Applied Probability, 29(2):429-443, 1997.
    • (1997) Advances in Applied Probability , vol.29 , Issue.2 , pp. 429-443
    • Müller, A.1
  • 19
    • 46749096457 scopus 로고    scopus 로고
    • On optimal quantization rules in some problems in sequential decentralized detection
    • XuanLong Nguyen, Martin J. Wainwright, and Michael I. Jordan. On optimal quantization rules in some problems in sequential decentralized detection. IEEE Transactions on Information Theory, 54(7):3285-3295, 2008.
    • (2008) IEEE Transactions on Information Theory , vol.54 , Issue.7 , pp. 3285-3295
    • Nguyen, X.1    Wainwright, M.J.2    Jordan, M.I.3
  • 22
    • 84961233903 scopus 로고    scopus 로고
    • On the decreasing power of kernel and distance based nonparametric hypothesis tests in high dimensions
    • Aaditya Ramdas, Sashank J. Reddi, Barnabás Póczos, Aarti Singh, and Larry Wasserman. On the decreasing power of kernel and distance based nonparametric hypothesis tests in high dimensions. In AAAI Conference on Artificial Intelligence, 2015b. arXiv:1406.2083.
    • (2015) AAAI Conference on Artificial Intelligence
    • Ramdas, A.1    Reddi, S.J.2    Póczos, B.3    Singh, A.4    Wasserman, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.