-
1
-
-
2142645905
-
Effect of high dimension: By an example of a two sample problem
-
Z. Bai and H. Saranadasa. Effect of high dimension: by an example of a two sample problem. Statistica Sinica, 1996.
-
(1996)
Statistica Sinica
-
-
Bai, Z.1
Saranadasa, H.2
-
3
-
-
85064807599
-
-
arXiv
-
W. Bounliphone, E. Belilovsky, M. B. Blaschko, I. Antonoglou, and A. Gretton. A test of relative similarity for model selection in generative models. arXiv, 2015.
-
(2015)
A Test of Relative Similarity for Model Selection in Generative Models
-
-
Bounliphone, W.1
Belilovsky, E.2
Blaschko, M.B.3
Antonoglou, I.4
Gretton, A.5
-
4
-
-
0001135785
-
Sampling and bayes' inference in scientific modelling and robustness
-
G. E. P. Box. Sampling and bayes' inference in scientific modelling and robustness. Journal of the Royal Statistical Society, 1980.
-
(1980)
Journal of the Royal Statistical Society
-
-
Box, G.E.P.1
-
5
-
-
84965171796
-
Fast two-sample testing with analytic representations of probability measures
-
K. P. Chwialkowski, A. Ramdas, D. Sejdinovic, and A. Gretton. Fast two-sample testing with analytic representations of probability measures. NIPS, 2015.
-
(2015)
NIPS
-
-
Chwialkowski, K.P.1
Ramdas, A.2
Sejdinovic, D.3
Gretton, A.4
-
6
-
-
84983185824
-
Training generative neural networks via Maximum Mean Discrepancy optimization
-
K. G. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks via Maximum Mean Discrepancy optimization. UAI, 2015.
-
(2015)
UAI
-
-
Dziugaite, K.G.1
Roy, D.M.2
Ghahramani, Z.3
-
7
-
-
0003014023
-
Binomial approximation to the poisson binomial distribution
-
W. Ehm. Binomial approximation to the poisson binomial distribution. Statistics & Probability Letters, 1991.
-
(1991)
Statistics & Probability Letters
-
-
Ehm, W.1
-
9
-
-
8344239069
-
On multivariate goodness of fit and two sample testing
-
J. H. Friedman. On multivariate goodness of fit and two sample testing. eConf, 2003.
-
(2003)
eConf
-
-
Friedman, J.H.1
-
10
-
-
77951951390
-
Kernel choice and classifiability for rkhs embeddings of probability distributions
-
K. Fukumizu, A. Gretton, Gert R. L., B. Schölkopf, and B. Sriperumbudur. Kernel choice and classifiability for rkhs embeddings of probability distributions. NIPS, 2009.
-
(2009)
NIPS
-
-
Fukumizu, K.1
Gretton, A.2
Gert, R.L.3
Schölkopf, B.4
Sriperumbudur, B.5
-
11
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. NIPS, 2014.
-
(2014)
NIPS
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
12
-
-
33750587254
-
Measuring statistical dependence with hilbert-schmidt norms
-
A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical dependence with hilbert-schmidt norms. In ALT, 2005.
-
(2005)
ALT
-
-
Gretton, A.1
Bousquet, O.2
Smola, A.3
Schölkopf, B.4
-
13
-
-
84859477054
-
A kernel two-sample test
-
A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. J. Smola. A kernel two-sample test. JMLR, 2012a.
-
(2012)
JMLR
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Schölkopf, B.4
Smola, A.J.5
-
14
-
-
85047018874
-
Optimal kernel choice for large-scale two-sample tests
-
A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrishnan, M. Pontil, K. Fukumizu, and B. Sriperumbudur. Optimal kernel choice for large-scale two-sample tests. NIPS, 2012b.
-
(2012)
NIPS
-
-
Gretton, A.1
Sejdinovic, D.2
Strathmann, H.3
Balakrishnan, S.4
Pontil, M.5
Fukumizu, K.6
Sriperumbudur, B.7
-
16
-
-
84857892556
-
Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics
-
M. U. Gutmann and A. Hyvärinen. Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. JMLR, 2012.
-
(2012)
JMLR
-
-
Gutmann, M.U.1
Hyvärinen, A.2
-
17
-
-
84958589374
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CVPR, 2015.
-
(2015)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
18
-
-
51849117118
-
-
Technical report, University of Massachusetts, Amherst
-
G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, University of Massachusetts, Amherst, 2007.
-
(2007)
Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments
-
-
Huang, G.B.1
Ramesh, M.2
Berg, T.3
Learned-Miller, E.4
-
20
-
-
84990034290
-
Perceptual losses for real-time style transfer and super-resolution
-
J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. ECCV, 2016.
-
(2016)
ECCV
-
-
Johnson, J.1
Alahi, A.2
Fei-Fei, L.3
-
22
-
-
85083951076
-
A method for stochastic optimization
-
D. Kingma and J. Ba. Adam: A method for stochastic optimization. ICLR, 2015.
-
(2015)
ICLR
-
-
Kingma, D.1
Adam, J.Ba.2
-
23
-
-
0001869771
-
Sulla determinazione empirica di una legge di distribuzione
-
A. N. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. Inst. Ital. Attuari, 1933.
-
(1933)
Inst. Ital. Attuari
-
-
Kolmogorov, A.N.1
-
24
-
-
0002488052
-
Tests concerning random points on a circle
-
N. H. Kuiper. Tests concerning random points on a circle. Nederl. Akad. Wetensch. Proc., 63, 1962.
-
(1962)
Nederl. Akad. Wetensch. Proc.
, vol.63
-
-
Kuiper, N.H.1
-
27
-
-
84965161496
-
Statistical model criticism using kernel two sample tests
-
J. R. Lloyd and Z. Ghahramani. Statistical model criticism using kernel two sample tests. NIPS, 2015.
-
(2015)
NIPS
-
-
Lloyd, J.R.1
Ghahramani, Z.2
-
28
-
-
84965164729
-
Towards a learning theory of cause-effect inference
-
D. Lopez-Paz, K. Muandet, B. Schölkopf, and I. Tolstikhin. Towards a learning theory of cause-effect inference. In ICML, pp. 1452-1461, 2015.
-
(2015)
ICML
, pp. 1452-1461
-
-
Lopez-Paz, D.1
Muandet, K.2
Schölkopf, B.3
Tolstikhin, I.4
-
29
-
-
0002322469
-
On a test of whether one of two random variables is stochastically larger than the other
-
H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is stochastically larger than the other. The annals of mathematical statistics, 1947.
-
(1947)
The Annals of Mathematical Statistics
-
-
Mann, H.B.1
Whitney, D.R.2
-
30
-
-
84997719736
-
Linking losses for density ratio and class-probability estimation
-
A. K. Menon and C. S. Ong. Linking losses for density ratio and class-probability estimation. ICML, 2016.
-
(2016)
ICML
-
-
Menon, A.K.1
Ong, C.S.2
-
31
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. NIPS, 2013.
-
(2013)
NIPS
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
34
-
-
84979916807
-
Distinguishing cause from effect using observational data: Methods and benchmarks
-
J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, and B. Schölkopf. Distinguishing cause from effect using observational data: methods and benchmarks. JMLR, 2016.
-
(2016)
JMLR
-
-
Mooij, J.M.1
Peters, J.2
Janzing, D.3
Zscheischler, J.4
Schölkopf, B.5
-
35
-
-
85018914753
-
F-GaN: Training generative neural samplers using variational divergence minimization
-
S. Nowozin, B. Cseke, and R. Tomioka. f-GAN: Training generative neural samplers using variational divergence minimization. NIPS, 2016.
-
(2016)
NIPS
-
-
Nowozin, S.1
Cseke, B.2
Tomioka, R.3
-
38
-
-
70349349170
-
-
Cambridge University Press
-
J. Pearl. Causality. Cambridge University Press, 2009.
-
(2009)
Causality
-
-
Pearl, J.1
-
39
-
-
65549168742
-
Machine learning classifiers and fMRI: A tutorial overview
-
F. Pereira, T. Mitchell, and M. Botvinick. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage, 2009.
-
(2009)
Neuroimage
-
-
Pereira, F.1
Mitchell, T.2
Botvinick, M.3
-
40
-
-
84858766275
-
Estimation of information theoretic measures for continuous random variables
-
F. Pérez-Cruz. Estimation of information theoretic measures for continuous random variables. NIPS, 2009.
-
(2009)
NIPS
-
-
Pérez-Cruz, F.1
-
41
-
-
85083950271
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR, 2016.
-
(2016)
ICLR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
42
-
-
84985989193
-
-
arXiv
-
A. Ramdas, S. J. Reddi, B. Poczos, A. Singh, and L. Wasserman. Adaptivity and Computation-Statistics Tradeoffs for Kernel and Distance based High Dimensional Two Sample Testing. arXiv, 2015.
-
(2015)
Adaptivity and Computation-Statistics Tradeoffs for Kernel and Distance Based High Dimensional Two Sample Testing
-
-
Ramdas, A.1
Reddi, S.J.2
Poczos, B.3
Singh, A.4
Wasserman, L.5
-
44
-
-
84965162267
-
On the high dimensional power of a linear-time two sample test under mean-shift alternatives
-
S. J. Reddi, A. Ramdas, B. Póczos, A. Singh, and L. A. Wasserman. On the high dimensional power of a linear-time two sample test under mean-shift alternatives. AISTATS, 2015.
-
(2015)
AISTATS
-
-
Reddi, S.J.1
Ramdas, A.2
Póczos, B.3
Singh, A.4
Wasserman, L.A.5
-
45
-
-
79955815221
-
Information, divergence and risk for binary experiments
-
M. D. Reid and R. C. Williamson. Information, divergence and risk for binary experiments. JMLR, 2011.
-
(2011)
JMLR
-
-
Reid, M.D.1
Williamson, R.C.2
-
46
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet large scale visual recognition challenge. IJCV, 2015.
-
(2015)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
47
-
-
85018875486
-
Improved techniques for training GANs
-
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training GANs. NIPS, 2016.
-
(2016)
NIPS
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
48
-
-
0001893703
-
On the estimation of the discrepancy between empirical curves of distribution for two independent samples
-
N. V. Smirnov. On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Bull. Math. Univ. Moscou, 1939.
-
(1939)
Bull. Math. Univ. Moscou
-
-
Smirnov, N.V.1
-
50
-
-
0345399126
-
The probable error of a mean
-
Student
-
Student. The probable error of a mean. Biometrika, 1908.
-
(1908)
Biometrika
-
-
-
51
-
-
85041911349
-
-
arXiv
-
D. J. Sutherland, H.-Y. Tung, H. Strathmann, S. De, A. Ramdas, A. Smola, and A. Gretton. Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy. arXiv, 2016.
-
(2016)
Generative Models and Model Criticism Via Optimized Maximum Mean Discrepancy
-
-
Sutherland, D.J.1
Tung, H.-Y.2
Strathmann, H.3
De, S.4
Ramdas, A.5
Smola, A.6
Gretton, A.7
-
52
-
-
85083950260
-
A note on the evaluation of generative models
-
L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models. ICLR, 2016.
-
(2016)
ICLR
-
-
Theis, L.1
Van Den Oord, A.2
Bethge, M.3
-
54
-
-
0001884644
-
Individual comparisons by ranking methods
-
F. Wilcoxon. Individual comparisons by ranking methods. Biometrics bulletin, 1945.
-
(1945)
Biometrics Bulletin
-
-
Wilcoxon, F.1
-
55
-
-
84960434044
-
Two-sample homogeneity tests based on divergence measures
-
M. Wornowizki and R. Fried. Two-sample homogeneity tests based on divergence measures. Computational Statistics, 2016.
-
(2016)
Computational Statistics
-
-
Wornowizki, M.1
Fried, R.2
-
56
-
-
84979976120
-
-
arXiv
-
F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao. LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop. arXiv, 2015.
-
(2015)
LSUN: Construction of a Large-Scale Image Dataset Using Deep Learning with Humans in the Loop
-
-
Yu, F.1
Seff, A.2
Zhang, Y.3
Song, S.4
Funkhouser, T.5
Xiao, J.6
|