-
3
-
-
33746724078
-
Log-euclidean metrics for fast and simple calculus on diffusion tensors
-
Arsigny, Vincent, Fillard, Pierre, Pennec, Xavier, and Ay-ache, Nicholas. Log-euclidean metrics for fast and simple calculus on diffusion tensors. In Magnetic Resonance in Medicine, 2006.
-
(2006)
Magnetic Resonance in Medicine
-
-
Arsigny, V.1
Fillard, P.2
Pennec, X.3
Ayache, N.4
-
5
-
-
85019228440
-
Infogan: Interpretable representation learning by information maximizing generative adversarial nets
-
Chen, Xi, Duan, Yan, Houthooft, Rein, Schulman, John, Sutskever, Ilya, and Abbeel, Pieter. Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In NIPS, 2016.
-
(2016)
NIPS
-
-
Chen, X.1
Duan, Y.2
Houthooft, R.3
Schulman, J.4
Sutskever, I.5
Abbeel, P.6
-
6
-
-
84983185824
-
Training generative neural networks via maximum mean discrepancy optimization
-
Dziugaite, Gintare Karolina, Roy, Daniel M., and Ghahramani, Zoubin. Training generative neural networks via maximum mean discrepancy optimization. In VAI, 2015.
-
(2015)
VAI
-
-
Dziugaite, G.K.1
Roy Daniel, M.2
Ghahramani, Z.3
-
7
-
-
84937849144
-
Generative adversarial nets
-
Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley, David, Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. Generative adversarial nets. In NIPS. 2014.
-
(2014)
NIPS
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
8
-
-
84859477054
-
A kernel two-sample test
-
Gretton, Arthur, Borgwardt, Karsten M., Rasch, Malte J., Schölkopf, Bernhard, and Smola, Alexander. A kernel two-sample test. JMLR, 2012.
-
(2012)
JMLR
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Schölkopf, B.4
Smola, A.5
-
9
-
-
51849117118
-
Labeled faces in the wild: A database for studying face recognition in unconstrained environments
-
Huang, Gary B., Ramesh, Manu, Berg, Tamara, and Learned-Miller, Erik. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, 2007.
-
(2007)
Technical Report
-
-
Huang, G.B.1
Ramesh, M.2
Berg, T.3
Learned-Miller, E.4
-
10
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Ioffe, Sergey and Szegedy, Christian. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proc. ICML, 2015.
-
(2015)
Proc.ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
11
-
-
85030759098
-
Image-to-image translation with conditional adversarial networks
-
Isola, Phillip, Zhu, Jun-Yan, Zhou, Tinghui, and Efros, Alexei A. Image-to-image translation with conditional adversarial networks. CVPR, 2017.
-
(2017)
CVPR
-
-
Isola, P.1
Zhu, J.-Y.2
Zhou, T.3
Efros, A.A.4
-
12
-
-
84919805977
-
Auto-encoding variational bayes
-
Kingma, Diederik P. and Welling, Max. Auto-encoding variational bayes. NIPS, 2013.
-
(2013)
NIPS
-
-
Kingma, D.P.1
Welling, M.2
-
13
-
-
77956002520
-
Learning multiple layers of features from tiny images
-
thesis
-
Krizhevsky, A. and Hinton, G. Learning multiple layers of features from tiny images. Master's thesis, 2009.
-
(2009)
Master's
-
-
Krizhevsky, A.1
Hinton, G.2
-
14
-
-
84970016114
-
Generative moment matching networks
-
Li, Yujia, Swersky, Kevin, and Zemel, Richard. Generative moment matching networks. In ICML, 2015.
-
(2015)
ICML
-
-
Li, Y.1
Swersky, K.2
Zemel, R.3
-
16
-
-
85007231135
-
-
Muandet, Krikamol, Fukumizu, Kenji, Sriperumbudur, Bharath, and Schlkopf, Bernhard. Kernel mean embedding of distributions: A review and beyond. arXiv:1605.09522, 2016.
-
(2016)
Kernel Mean Embedding of Distributions: A Review and beyond
-
-
Muandet, K.1
Fukumizu, K.2
Sriperumbudur, B.3
Schlkopf, B.4
-
17
-
-
0010487372
-
Integral probability metrics and their generating classes of functions
-
Muller, Alfred. Integral probability metrics and their generating classes of functions. Advances in Applied Probability, 1997.
-
(1997)
Advances in Applied Probability
-
-
Muller, A.1
-
18
-
-
85018914753
-
F-gan: Training generative neural samplers using variational divergence minimization
-
Nowozin, Sebastian, Cseke, Botond, and Tomioka, Ryota. f-gan: Training generative neural samplers using variational divergence minimization. In NIPS, 2016.
-
(2016)
NIPS
-
-
Nowozin, S.1
Cseke, B.2
Tomioka, R.3
-
21
-
-
85161980201
-
Random features for large-scale kernel machines
-
Rahimi, Ali and Recht, Benjamin. Random features for large-scale kernel machines. In NIPS. 2008.
-
(2008)
NIPS
-
-
Rahimi, A.1
Recht, B.2
-
22
-
-
85018875486
-
Improved techniques for training gans
-
Salimans, Tim, Goodfellow, Ian, Zaremba, Wojciech, Cheung, Vicki, Radford, Alec, Chen, Xi, and Chen, Xi. Improved techniques for training gans. In NIPS. 2016.
-
(2016)
NIPS
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
Chen, X.7
-
23
-
-
77951962690
-
-
Sriperumbudur, Bharath K., Fukumizu, Kenji, Gretton, Arthur, Schlkopf, Bernhard, and Lanckriet, Gert R. G. On integral probability metrics, phi -divergences and binary classification, 2009.
-
(2009)
On Integral Probability Metrics, Phi -divergences and Binary Classification
-
-
Sriperumbudur, B.K.1
Fukumizu, K.2
Gretton, A.3
Schlkopf, B.4
Lanckriet, G.R.G.5
-
24
-
-
84875150887
-
On the empirical estimation of integral probability metrics
-
Sriperumbudur, Bharath K., Fukumizu, Kenji, Gretton, Arthur, Schlkopf, Bernhard, and Lanckriet, Gert R. G. On the empirical estimation of integral probability metrics. Electronic Journal of Statistics, 2012.
-
(2012)
Electronic Journal of Statistics
-
-
Sriperumbudur, B.K.1
Fukumizu, K.2
Gretton, A.3
Schlkopf, B.4
Lanckriet, G.R.G.5
-
25
-
-
85083950260
-
A note on the evaluation of generative models
-
Theis, Lucas, Oord, Aaron van den, and Bethge, Matthias. A note on the evaluation of generative models. ICLR, 2016.
-
(2016)
ICLR
-
-
Den Van, T.L.1
Oord, A.2
Bethge, M.3
-
26
-
-
84979976120
-
-
Yu, Fisher, Zhang, Yinda, Song, Shuran, Seff, Ari, and Xiao, Jianxiong. Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv:1506.03365, 2015.
-
(2015)
Lsun: Construction of A Large-scale Image Dataset Using Deep Learning with Humans in the Loop
-
-
Yu, F.1
Zhang, Y.2
Song, S.3
Seff, A.4
Xiao, J.5
-
27
-
-
85087518435
-
Energy based generative adversarial networks
-
Zhao, Junbo, Mathieu, Michael, and Lecun, Yann. Energy based generative adversarial networks. ICLR, 2017.
-
(2017)
ICLR
-
-
Zhao, J.1
Mathieu, M.2
Lecun, Y.3
|