메뉴 건너뛰기




Volumn , Issue , 2018, Pages

CGANs with projection discriminator

Author keywords

[No Author keywords available]

Indexed keywords

DISCRIMINATORS; OPTICAL RESOLVING POWER;

EID: 85083951993     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (785)

References (33)
  • 1
    • 85035363407 scopus 로고    scopus 로고
    • Wasserstein generative adversarial networks
    • Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In ICML, pp. 214–223, 2017.
    • (2017) ICML , pp. 214-223
    • Arjovsky, M.1    Chintala, S.2    Bottou, L.3
  • 3
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • Emily Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, pp. 1486–1494, 2015.
    • (2015) NIPS , pp. 1486-1494
    • Denton, E.1    Chintala, S.2    Szlam, A.3    Fergus, R.4
  • 5
    • 85088228106 scopus 로고    scopus 로고
    • A learned representation for artistic style
    • Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation for artistic style. In ICLR, 2017b.
    • (2017) ICLR
    • Dumoulin, V.1    Shlens, J.2    Kudlur, M.3
  • 8
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016a.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 11
    • 85046992994 scopus 로고    scopus 로고
    • Learning to discover cross-domain relations with generative adversarial networks
    • Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jungkwon Lee, and Jiwon Kim. Learning to discover cross-domain relations with generative adversarial networks. In ICML, pp. 1857–1865, 2017.
    • (2017) ICML , pp. 1857-1865
    • Kim, T.1    Cha, M.2    Kim, H.3    Lee, J.4    Kim, J.5
  • 12
    • 85083951076 scopus 로고    scopus 로고
    • ADaM: A method for stochastic optimization
    • Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 16
    • 85083950959 scopus 로고    scopus 로고
    • Spectral normalization for generative adversarial networks
    • Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks. In ICLR, 2018.
    • (2018) ICLR
    • Miyato, T.1    Kataoka, T.2    Koyama, M.3    Yoshida, Y.4
  • 17
    • 85041919547 scopus 로고    scopus 로고
    • Plug & play generative networks: Conditional iterative generation of images in latent space
    • Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug & play generative networks: Conditional iterative generation of images in latent space. In CVPR, 2017.
    • (2017) CVPR
    • Nguyen, A.1    Clune, J.2    Bengio, Y.3    Dosovitskiy, A.4    Yosinski, J.5
  • 18
    • 85018914753 scopus 로고    scopus 로고
    • F-GaN: Training generative neural samplers using variational divergence minimization
    • Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training generative neural samplers using variational divergence minimization. In NIPS, pp. 271–279, 2016.
    • (2016) NIPS , pp. 271-279
    • Nowozin, S.1    Cseke, B.2    Tomioka, R.3
  • 19
    • 85019040819 scopus 로고    scopus 로고
    • Conditional image synthesis with auxiliary classifier GANs
    • Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary classifier GANs. In ICML, pp. 2642–2651, 2017.
    • (2017) ICML , pp. 2642-2651
    • Odena, A.1    Olah, C.2    Shlens, J.3
  • 21
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016.
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 22
    • 85006947809 scopus 로고    scopus 로고
    • Generative adversarial text to image synthesis
    • Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee. Generative adversarial text to image synthesis. In ICML, pp. 1060–1069, 2016.
    • (2016) ICML , pp. 1060-1069
    • Reed, S.1    Akata, Z.2    Yan, X.3    Logeswaran, L.4    Schiele, B.5    Lee, H.6
  • 24
    • 85039461633 scopus 로고    scopus 로고
    • Temporal generative adversarial nets with singular value clipping
    • Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Temporal generative adversarial nets with singular value clipping. In ICCV, 2017.
    • (2017) ICCV
    • Saito, M.1    Matsumoto, E.2    Saito, S.3
  • 32
    • 85040306596 scopus 로고    scopus 로고
    • Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks
    • Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang Wang, and Dimitris Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. In ICCV, 2017.
    • (2017) ICCV
    • Zhang, H.1    Xu, T.2    Li, H.3    Zhang, S.4    Huang, X.5    Wang, X.6    Metaxas, D.7
  • 33
    • 85041892358 scopus 로고    scopus 로고
    • Unpaired image-to-image translation using cycle-consistent adversarial networks
    • Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In ICCV, 2017.
    • (2017) ICCV
    • Zhu, J.-Y.1    Park, T.2    Isola, P.3    Efros, A.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.