-
1
-
-
85075670920
-
Tensorflow: A system for large-scale machine learning
-
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kud- lur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P. A., Vasudevan, V., Warden, P., Wicke, M., Yu, Y and Zheng, X. Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implemen-tation, OSDI2016, Savannah, GA, USA, November 2-4, 2016., pp. 265-283, 2016.
-
(2016)
12th USENIX Symposium on Operating Systems Design and Implementation, OSDI2016, Savannah, GA, USA, November 2-4, 2016
, pp. 265-283
-
-
Abadi, M.1
Barham, P.2
Chen, J.3
Chen, Z.4
Davis, A.5
Dean, J.6
Devin, M.7
Ghemawat, S.8
Irving, G.9
Isard, M.10
Kud-Lur, M.11
Levenberg, J.12
Monga, R.13
Moore, S.14
Murray, D.G.15
Steiner, B.16
Tucker, P.A.17
Vasudevan, V.18
Warden, P.19
Wicke, M.20
Yu, Y.21
Zheng, X.22
more..
-
2
-
-
85047000246
-
Towards principled methods for training generative adversarial networks
-
Aijovsky, M. and Bottou, L. Towards principled methods for training generative adversarial networks. CoRR, abs/1701.04862, 2017.
-
(2017)
CoRR, Abs/1701.04862
-
-
Aijovsky, M.1
Bottou, L.2
-
3
-
-
85047006402
-
Wasserstein gan
-
Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein GAN. CoRR, abs/1701.07875, 2017.
-
(2017)
CoRR, Abs/1701.07875
-
-
Arjovsky, M.1
Chintala, S.2
Bottou, L.3
-
5
-
-
85050948181
-
BEGAN: Boundary equilibrium generative adversarial networks
-
Berthelot, D., Schumm, T., and Metz, L. BEGAN: Boundary equilibrium generative adversarial networks. CoRR, abs/1703.10717, 2017.
-
(2017)
CoRR, Abs/1703.10717
-
-
Berthelot, D.1
Schumm, T.2
Metz, L.3
-
7
-
-
84937849144
-
Generative adversarial nets
-
Montreal, Quebec, Canada
-
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. C., and Bengio, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp. 2672-2680, 2014.
-
(2014)
Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014
, pp. 2672-2680
-
-
Goodfellow, I.J.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.C.7
Bengio, Y.8
-
8
-
-
85047004943
-
Improved training of wasserstein gans
-
Long Beach, CA, USA
-
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. Improved training of wasserstein gans. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 5769-5779, 2017.
-
(2017)
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017
, pp. 5769-5779
-
-
Gulrajani, I.1
Ahmed, F.2
Arjovsky, M.3
Dumoulin, V.4
Courville, A.C.5
-
9
-
-
84986274465
-
Deep residual learning for image recognition
-
He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
10
-
-
85041020882
-
Gans trained by a two time-scale update rule converge to a local nash equilibrium
-
Long Beach, CA, USA
-
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 6629-6640, 2017.
-
(2017)
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017
, pp. 6629-6640
-
-
Heusel, M.1
Ramsauer, H.2
Unterthiner, T.3
Nessler, B.4
Hochreiter, S.5
-
11
-
-
85049871154
-
Progressive growing of gans for improved quality, stability, and variation
-
Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.
-
(2017)
ArXiv Preprint ArXiv:1710.10196
-
-
Karras, T.1
Aila, T.2
Laine, S.3
Lehtinen, J.4
-
12
-
-
58149088380
-
Nonlinear systems
-
New Jersey
-
Khalil, H. K. Nonlinear systems. Prentice-Hall, New Jersey, 2(5):5-10, 1996.
-
(1996)
Prentice-Hall
, vol.2
, Issue.5
, pp. 5-10
-
-
Khalil, H.K.1
-
13
-
-
85057240990
-
How to train your DRAGAN
-
Kodali, N., Abernethy, J. D., Hays, J., and Kira, Z. How to train your DRAGAN. CoRR, abs/1705.07215, 2017.
-
(2017)
CoRR, Abs/1705.07215
-
-
Kodali, N.1
Abernethy, J.D.2
Hays, J.3
Kira, Z.4
-
15
-
-
84973917446
-
Deep learning face attributes in the wild
-
Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face attributes in the wild. In Proceedings of International Conference on Computer Vision (ICCV), 2015.
-
(2015)
Proceedings of International Conference on Computer Vision (ICCV)
-
-
Liu, Z.1
Luo, P.2
Wang, X.3
Tang, X.4
-
16
-
-
85040674875
-
The numerics of gans
-
Long Beach, CA, USA
-
Mescheder, L. M., Nowozin, S., and Geiger, A. The numerics of gans. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 1823-1833, 2017.
-
(2017)
Advances in Neural Information Processing Systems 30: Annual conference on neural information processing systems 2017, 4-9 December 2017
, pp. 1823-1833
-
-
Mescheder, L.M.1
Nowozin, S.2
Geiger, A.3
-
17
-
-
85047004888
-
Gradient descent GAN optimization is locally stable
-
Long Beach, CA, USA
-
Nagarajan, V. and Kolter, J. Z. Gradient descent GAN optimization is locally stable. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 5591-5600, 2017.
-
(2017)
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017
, pp. 5591-5600
-
-
Nagarajan, V.1
Kolter, J.Z.2
-
18
-
-
85018914753
-
-Gan: Training generative neural samplers using variational divergence minimization
-
f, Barcelona, Spain
-
Nowozin, S., Cseke, B., and Tomioka, R. f-gan: Training generative neural samplers using variational divergence minimization. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 271-279, 2016.
-
(2016)
Advances in Neural Information Processing Systems 29: Annual Conference on Neural Infor-mation Processing Systems 2016, December 5-10, 2016
, pp. 271-279
-
-
Nowozin, S.1
Cseke, B.2
Tomioka, R.3
-
19
-
-
85047343776
-
-
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A. Automatic differentiation in pytorch. 2017.
-
(2017)
Automatic Differentiation in Pytorch
-
-
Paszke, A.1
Gross, S.2
Chintala, S.3
Chanan, G.4
Yang, E.5
DeVito, Z.6
Lin, Z.7
Desmaison, A.8
Antiga, L.9
Lerer, A.10
-
20
-
-
85029497805
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
Radford, A., Metz, L., and Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.
-
(2015)
ArXiv Preprint ArXiv:1511.06434
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
21
-
-
85047000798
-
Stabilizing training of generative adversarial networks through regularization
-
Long Beach, CA, USA
-
Roth, K., Lucchi, A., Nowozin, S., and Hofmann, T. Stabilizing training of generative adversarial networks through regularization. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 2015-2025, 2017.
-
(2017)
Advances in Neural Information Processing Systems 30: Annual Conference on Neural In-formation Processing Systems 2017, 4-9 DecemSber 2017
, pp. 2015-2025
-
-
Roth, K.1
Lucchi, A.2
Nowozin, S.3
Hofmann, T.4
-
22
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211-252, 2015. doi:10.1007/sll263-015-0816-y.
-
(2015)
International Journal of Computer Vision (IJCV)
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
23
-
-
85018875486
-
Improved techniques fpr training gans
-
Barcelona, Spain
-
Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V., Radford, A., and Chen, X. Improved techniques fpr training gans. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 2226-2234, 2016.
-
(2016)
Advances in Neural Information Processing Systems 29: Annual Conference on Neural Infor-mation Processing Systems 2016, December 5-10, 2016
, pp. 2226-2234
-
-
Salimans, T.1
Goodfellow, I.J.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
24
-
-
85030256165
-
Amortised MAP inference for image super- resolution
-
Sonderby, C. K., Caballero, J., Theis, L., Shi, W., and Huszar, F. Amortised MAP inference for image super- resolution. CoRR, abs/1610.04490, 2016.
-
(2016)
Amortised MAP Inference for Image Super- Resolution, CoRR, Abs/1610.04490
-
-
Sonderby, C.K.1
Caballero, J.2
Theis, L.3
Shi, W.4
Huszar, F.5
-
26
-
-
85018506849
-
Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop
-
Yu, F., Zhang, Y., Song, S., Seff, A., and Xiao, J. Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365, 2015.
-
(2015)
ArXiv Preprint ArXiv
, vol.1506
, pp. 03365
-
-
Yu, F.1
Zhang, Y.2
Song, S.3
Seff, A.4
Xiao, J.5
-
27
-
-
85026325239
-
Energy-based generative adversarial network
-
Zhao, J. J., Mathieu, M., and LeCun, Y. Energy-based generative adversarial network. CoRR, abs/1609.03126, 2016.
-
(2016)
CoRR, Abs/1609
, pp. 03126
-
-
Zhao, J.J.1
Mathieu, M.2
LeCun, Y.3
|