-
1
-
-
84973389608
-
Analyzing the performance of multilayer neural networks for object recognition
-
P. Agrawal, R. B. Girshick, and J. Malik. Analyzing the performance of multilayer neural networks for object recognition. In ECCV, 2014
-
(2014)
ECCV
-
-
Agrawal, P.1
Girshick, R.B.2
Malik, J.3
-
2
-
-
85161970767
-
Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach
-
A. Bergamo and L. Torresani. Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach. In NIPS. 2010
-
(2010)
NIPS.
-
-
Bergamo, A.1
Torresani, L.2
-
4
-
-
84990051868
-
-
arXiv preprint arXiv:1606.00915
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. ArXiv preprint arXiv:1606.00915, 2016
-
(2016)
Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected Crfs
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
5
-
-
84973865248
-
Webly supervised learning of convolutional networks
-
X. Chen and A. Gupta. Webly supervised learning of convolutional networks. In ICCV, 2015
-
(2015)
ICCV
-
-
Chen, X.1
Gupta, A.2
-
6
-
-
84898803720
-
Neil: Extracting visual knowledge from web data
-
X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting visual knowledge from web data. In ICCV, 2013
-
(2013)
ICCV
-
-
Chen, X.1
Shrivastava, A.2
Gupta, A.3
-
8
-
-
84877760312
-
Large scale distributed deep networks
-
J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A.W. Senior, P. A. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In NIPS, 2012
-
(2012)
NIPS
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.V.6
Mao, M.Z.7
Ranzato, M.8
Senior, A.W.9
Tucker, P.A.10
Yang, K.11
Ng, A.Y.12
-
9
-
-
84911368326
-
Learning everything about anything: Webly-supervised visual concept learning
-
S. Divvala, A. Farhadi, and C. Guestrin. Learning everything about anything: Webly-supervised visual concept learning. In CVPR, 2014
-
(2014)
CVPR
-
-
Divvala, S.1
Farhadi, A.2
Guestrin, C.3
-
10
-
-
84973916088
-
Unsupervised visual representation learning by context prediction
-
C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In ICCV, 2015
-
(2015)
ICCV
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
12
-
-
77951298115
-
The pascal visual object classes (VOC) Challenge
-
M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The Pascal Visual Object Classes (VOC) Challenge. IJCV, 2010
-
(2010)
IJCV
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.3
Winn, J.4
Zisserman, A.5
-
13
-
-
77951298115
-
The pascal visual object classes (voc) challenge
-
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. IJCV, 2010
-
(2010)
IJCV
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
15
-
-
84856686500
-
Semantic contours from inverse detectors
-
B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse detectors. In ICCV, 2011
-
(2011)
ICCV
-
-
Hariharan, B.1
Arbeláez, P.2
Bourdev, L.3
Maji, S.4
Malik, J.5
-
16
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
17
-
-
84959176782
-
Distilling the knowledge in a neural network
-
G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. In NIPS, 2014
-
(2014)
NIPS
-
-
Hinton, G.1
Vinyals, O.2
Dean, J.3
-
18
-
-
85041891404
-
Speed/accuracy trade-offs for modern convolutional object detectors
-
J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy. Speed/accuracy trade-offs for modern convolutional object detectors. In CVPR, 2017
-
(2017)
CVPR
-
-
Huang, J.1
Rathod, V.2
Sun, C.3
Zhu, M.4
Korattikara, A.5
Fathi, A.6
Fischer, I.7
Wojna, Z.8
Song, Y.9
Guadarrama, S.10
Murphy, K.11
-
21
-
-
84958611219
-
Deep classifiers from image tags in the wild
-
H. Izadinia, B. C. Russell, A. Farhadi, M. D. Hoffman, and A. Hertzmann. Deep classifiers from image tags in the wild. In ACM MM, 2015
-
(2015)
ACM MM
-
-
Izadinia, H.1
Russell, B.C.2
Farhadi, A.3
Hoffman, M.D.4
Hertzmann, A.5
-
22
-
-
84959235126
-
What do 15,000 object categories tell us about classifying and localizing actions
-
M. Jain, J. C. van Gemert, and C. G. Snoek. What do 15,000 object categories tell us about classifying and localizing actions In CVPR, 2015
-
(2015)
CVPR
-
-
Jain, M.1
Van Gemert, J.C.2
Snoek, C.G.3
-
24
-
-
84992147801
-
-
arXiv:1511.06789
-
J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev, T. Duerig, J. Philbin, and F. Li. The unreasonable effectiveness of noisy data for fine-grained recognition. ArXiv:1511.06789, 2015
-
(2015)
The Unreasonable Effectiveness of Noisy Data for Fine-grained Recognition
-
-
Krause, J.1
Sapp, B.2
Howard, A.3
Zhou, H.4
Toshev, A.5
Duerig, T.6
Philbin, J.7
Li, F.8
-
25
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
26
-
-
84937834115
-
Microsoft COCO: Common objects in context
-
T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: common objects in context. In ECCV, 2014
-
(2014)
ECCV
-
-
Lin, T.1
Maire, M.2
Belongie, S.J.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
27
-
-
84959234727
-
-
arXiv:1502.03409
-
K. Ni, R. A. Pearce, K. Boakye, B. V. Essen, D. Borth, B. Chen, and E. X. Wang. Large-scale deep learning on the YFCC100M dataset. ArXiv:1502.03409, 2015
-
(2015)
Large-scale Deep Learning on the YFCC100M Dataset
-
-
Ni, K.1
Pearce, R.A.2
Boakye, K.3
Essen, B.V.4
Borth, D.5
Chen, B.6
Wang, E.X.7
-
28
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014
-
(2014)
CVPR
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
29
-
-
85032504901
-
-
arXiv:1701.01779
-
G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tompson, C. Bregler, and K. Murphy. Towards accurate multiperson pose estimation in the wild. ArXiv:1701.01779, 2017
-
(2017)
Towards Accurate Multiperson Pose Estimation in the Wild
-
-
Papandreou, G.1
Zhu, T.2
Kanazawa, N.3
Toshev, A.4
Tompson, J.5
Bregler, C.6
Murphy, K.7
-
31
-
-
84990042430
-
-
arXiv:1604.01360
-
L. Pinto, D. Gandhi, Y. Han, Y. Park, and A. Gupta. The curious robot: Learning visual representations via physical interactions. ArXiv:1604.01360, 2016
-
(2016)
The Curious Robot: Learning Visual Representations Via Physical Interactions
-
-
Pinto, L.1
Gandhi, D.2
Han, Y.3
Park, Y.4
Gupta, A.5
-
33
-
-
84960980241
-
Faster R-CNN: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015
-
(2015)
NIPS
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
34
-
-
84887379226
-
Unsupervised joint object discovery and segmentation in internet images
-
M. Rubinstein, A. Joulin, J. Kopf, and C. Liu. Unsupervised joint object discovery and segmentation in internet images. CVPR, 2013
-
(2013)
CVPR
-
-
Rubinstein, M.1
Joulin, A.2
Kopf, J.3
Liu, C.4
-
35
-
-
84909978410
-
-
arXiv:1409.0575
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and F. Li. Imagenet large scale visual recognition challenge. ArXiv:1409.0575, 2014
-
(2014)
Imagenet Large Scale Visual Recognition Challenge
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.S.10
Berg, A.C.11
Li, F.12
-
39
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
40
-
-
84949572890
-
-
arXiv:1503.01817
-
B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L. Li. The new data and new challenges in multimedia research. ArXiv:1503.01817, 2015
-
(2015)
The New Data and New Challenges in Multimedia Research
-
-
Thomee, B.1
Shamma, D.A.2
Friedland, G.3
Elizalde, B.4
Ni, K.5
Poland, D.6
Borth, D.7
Li, L.8
-
41
-
-
80052908300
-
Unbiased look at dataset bias
-
A. Torralba and A. Efros. Unbiased look at dataset bias. CVPR, 2011
-
(2011)
CVPR
-
-
Torralba, A.1
Efros, A.2
|