메뉴 건너뛰기




Volumn , Issue , 2018, Pages 3942-3951

FiLM: Visual reasoning with a general conditioning layer

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DEEP LEARNING;

EID: 85055416465     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1888)

References (42)
  • 2
    • 84993660571 scopus 로고    scopus 로고
    • Learning to compose neural networks for question answering
    • Andreas, J.; Marcus, R.; Darrell, T.; and Klein, D. 2016a. Learning to compose neural networks for question answering. In NAACL.
    • (2016) NAACL
    • Andreas, J.1    Marcus, R.2    Darrell, T.3    Klein, D.4
  • 5
    • 84899013802 scopus 로고    scopus 로고
    • Translating embeddings for modeling multi-relational data
    • Burges, C. J. C.; Bottou, L.; Welling, M.; Ghahramani, Z.; and Weinberger, K. Q., eds, Curran Associates, Inc
    • Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and Yakhnenko, O. 2013. Translating embeddings for modeling multi-relational data. In Burges, C. J. C.; Bottou, L.; Welling, M.; Ghahramani, Z.; and Weinberger, K. Q., eds., NIPS. Curran Associates, Inc. 2787-2795.
    • (2013) NIPS , pp. 2787-2795
    • Bordes, A.1    Usunier, N.2    Garcia-Duran, A.3    Weston, J.4    Yakhnenko, O.5
  • 8
    • 85088228106 scopus 로고    scopus 로고
    • A learned representation for artistic style
    • Dumoulin, V.; Shlens, J.; and Kudlur, M. 2017. A learned representation for artistic style. In ICLR.
    • (2017) ICLR
    • Dumoulin, V.1    Shlens, J.2    Kudlur, M.3
  • 9
    • 85083952626 scopus 로고    scopus 로고
    • Learning factored representations in a deep mixture of experts
    • Eigen, D.; Ranzato, M.; and Sutskever, I. 2014. Learning factored representations in a deep mixture of experts. In ICLR Workshops.
    • (2014) ICLR Workshops
    • Eigen, D.1    Ranzato, M.2    Sutskever, I.3
  • 13
    • 85041900002 scopus 로고    scopus 로고
    • Making the V in VQA matter: Elevating the role of image understanding in Visual Question Answering
    • Goyal, Y.; Khot, T.; Summers-Stay, D.; Batra, D.; and Parikh, D. 2017. Making the V in VQA matter: Elevating the role of image understanding in Visual Question Answering. In CVPR.
    • (2017) CVPR
    • Goyal, Y.1    Khot, T.2    Summers-Stay, D.3    Batra, D.4    Parikh, D.5
  • 14
    • 84959890267 scopus 로고    scopus 로고
    • Traversing knowledge graphs in vector space
    • Guu, K.; Miller, J.; and Liang, P. 2015. Traversing knowledge graphs in vector space. In EMNLP.
    • (2015) EMNLP
    • Guu, K.1    Miller, J.2    Liang, P.3
  • 15
  • 16
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning for image recognition. In CVPR.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 17
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • Hochreiter, S., and Schmidhuber, J. 1997. Long short-term memory. Neural Comput. 9(8):1735-1780.
    • (1997) Neural Comput , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 18
    • 85041904328 scopus 로고    scopus 로고
    • Learning to reason: End-to-end module networks for visual question answering
    • Hu, R.; Andreas, J.; Rohrbach, M.; Darrell, T.; and Saenko, K. 2017. Learning to reason: End-to-end module networks for visual question answering. In ICCV.
    • (2017) ICCV
    • Hu, R.1    Andreas, J.2    Rohrbach, M.3    Darrell, T.4    Saenko, K.5
  • 20
    • 85041925505 scopus 로고    scopus 로고
    • Arbitrary style transfer in real-time with adaptive instance normalization
    • Huang, X., and Belongie, S. 2017. Arbitrary style transfer in real-time with adaptive instance normalization. In ICCV.
    • (2017) ICCV
    • Huang, X.1    Belongie, S.2
  • 21
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 24
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the em algorithm
    • Jordan, M. I., and Jacobs, R. A. 1994. Hierarchical mixtures of experts and the em algorithm. Neural Comput. 6(2):181-214.
    • (1994) Neural Comput , vol.6 , Issue.2 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 25
    • 85039151782 scopus 로고    scopus 로고
    • Dynamic layer normalization for adaptive neural acoustic modeling in speech recognition
    • Kim, T.; Song, I.; and Bengio, Y. 2017. Dynamic layer normalization for adaptive neural acoustic modeling in speech recognition. In InterSpeech.
    • (2017) InterSpeech
    • Kim, T.1    Song, I.2    Bengio, Y.3
  • 26
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • Kingma, D. P., and Ba, J. 2015. Adam: A method for stochastic optimization. In ICLR.
    • (2015) ICLR
    • Kingma, D.P.1    Ba, J.2
  • 28
    • 85018917850 scopus 로고    scopus 로고
    • Hierarchical question-image co-attention for visual question answering
    • Lu, J.; Yang, J.; Batra, D.; and Parikh, D. 2016. Hierarchical question-image co-attention for visual question answering. In NIPS.
    • (2016) NIPS
    • Lu, J.1    Yang, J.2    Batra, D.3    Parikh, D.4
  • 29
    • 84937822746 scopus 로고    scopus 로고
    • A multi-world approach to question answering about real-world scenes based on uncertain input
    • Malinowski, M., and Fritz, M. 2014. A multi-world approach to question answering about real-world scenes based on uncertain input. In NIPS.
    • (2014) NIPS
    • Malinowski, M.1    Fritz, M.2
  • 30
    • 84973896625 scopus 로고    scopus 로고
    • Ask your neurons: A neural-based approach to answering questions about images
    • Malinowski, M.; Rohrbach, M.; and Fritz, M. 2015. Ask your neurons: A neural-based approach to answering questions about images. In ICCV.
    • (2015) ICCV
    • Malinowski, M.1    Rohrbach, M.2    Fritz, M.3
  • 31
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean, J. 2013. Distributed representations of words and phrases and their compositionality. In NIPS.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 32
    • 85057290984 scopus 로고    scopus 로고
    • Zero-shot task generalization with multi-task deep reinforcement learning
    • Oh, J.; Singh, S.; Lee, H.; and Kholi, P. 2017. Zero-shot task generalization with multi-task deep reinforcement learning. In ICML.
    • (2017) ICML
    • Oh, J.1    Singh, S.2    Lee, H.3    Kholi, P.4
  • 34
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • Radford, A.; Metz, L.; and Chintala, S. 2016. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR.
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 40
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-sne
    • Nov
    • van der Maaten, L., and Hinton, G. 2008. Visualizing data using t-sne. JMLR 9(Nov):2579-2605.
    • (2008) JMLR , vol.9 , pp. 2579-2605
    • Van Der Maaten, L.1    Hinton, G.2
  • 42
    • 84986334021 scopus 로고    scopus 로고
    • Stacked attention networks for image question answering
    • Yang, Z.; He, X.; Gao, J.; Deng, L.; and Smola, A. J. 2016. Stacked attention networks for image question answering. In CVPR.
    • (2016) CVPR
    • Yang, Z.1    He, X.2    Gao, J.3    Deng, L.4    Smola, A.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.