-
2
-
-
85071000763
-
-
Eric Battenberg, Sander Dieleman, Daniel Nouri, Eben Olson, Aäron van den Oord, Colin Raffel, Jan Schlüter, and Søren Kaae Sønderby. lasagne. https://github.com/Lasagne/Lasagne,2014.
-
(2014)
Lasagne
-
-
Battenberg, E.1
Dieleman, S.2
Nouri, D.3
Olson, E.4
Van Den Oord, A.5
Raffel, C.6
Schlüter, J.7
Sønderby, S.K.8
-
6
-
-
84965143571
-
Deep generative image models using a laplacian pyramid of adversarial networks
-
E. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, 2015.
-
(2015)
NIPS
-
-
Denton, E.1
Chintala, S.2
Szlam, A.3
Fergus, R.4
-
9
-
-
84983185824
-
Training generative neural networks via Maximum Mean Discrepancy optimization
-
Gintare Karolina Dziugaite, Daniel M. Roy, and Zoubin Ghahramani. Training generative neural networks via Maximum Mean Discrepancy optimization. In UAI. 2015.
-
(2015)
UAI
-
-
Dziugaite, G.K.1
Roy, D.M.2
Ghahramani, Z.3
-
10
-
-
84937849144
-
Generative adversarial nets
-
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger eds, Curran Associates, Inc
-
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 27, pp. 2672-2680. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
11
-
-
85018892483
-
Measuring the reliability of MCMC inference with bidirectional Monte Carlo
-
Roger Grosse, Siddharth Ancha, and Daniel M. Roy. Measuring the reliability of MCMC inference with bidirectional Monte Carlo. In NIPS, 2016.
-
(2016)
NIPS
-
-
Grosse, R.1
Ancha, S.2
Roy, D.M.3
-
14
-
-
38249043088
-
Random generation of combinatorial structures from a uniform distribution
-
Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science, 43:169-188, 1986.
-
(1986)
Theoretical Computer Science
, vol.43
, pp. 169-188
-
-
Jerrum, M.R.1
Valiant, L.G.2
Vazirani, V.V.3
-
15
-
-
85083952489
-
Auto-encoding variational bayes
-
Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
16
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
November
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
17
-
-
84970016114
-
Generative moment matching networks
-
In
-
Yujia Li and Kevin Swersky. Generative moment matching networks. In In ICML 32, 2015.
-
(2015)
ICML
, vol.32
-
-
Li, Y.1
Swersky, K.2
-
18
-
-
80051672658
-
Density networks
-
J. W. Kay and D. M. Titterington eds, O.U.
-
D. J. C. MacKay and M. N. Gibbs. Density networks. In J. W. Kay and D. M. Titterington (eds.), Statistics and Neural Networks, pp. 129-146. O.U.P., 1998.
-
(1998)
Statistics and Neural Networks
, pp. 129-146
-
-
MacKay, D.J.C.1
Gibbs, M.N.2
-
19
-
-
0000273048
-
Annealed importance sampling
-
April
-
Radford M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125-139, April 2001. ISSN 0960-3174. doi: 10.1023/A:1008923215028. URL http://dx.doi.org/10.1023/A:1008923215028.
-
(2001)
Statistics and Computing
, vol.11
, Issue.2
, pp. 125-139
-
-
Neal, R.M.1
-
21
-
-
0001473437
-
On estimation of a probability density function and mode
-
Emanuel Parzen. On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33(3):pp. 1065-1076, 1962. ISSN 00034851. URL http://www.jstor.org/stable/2237880.
-
(1962)
The Annals of Mathematical Statistics
, vol.33
, Issue.3
, pp. 1065-1076
-
-
Parzen, E.1
-
22
-
-
85083950271
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016.
-
(2016)
ICLR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
24
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Tony Jebara and Eric Xing eds, JMLR Workshop and Conference Proceedings
-
Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In Tony Jebara and Eric P. Xing (eds.), Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1278-1286. JMLR Workshop and Conference Proceedings, 2014. URL http://jmlr.org/proceedings/papers/v32/rezende14.pdf.
-
(2014)
Proceedings of the 31st International Conference on Machine Learning (ICML-14)
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
26
-
-
85018875486
-
Improved techniques for training gans
-
Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training gans. In NIPS, 2016.
-
(2016)
NIPS
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
27
-
-
85083950260
-
A note on the evaluation of generative models
-
Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative models. In ICLR, 2016.
-
(2016)
ICLR
-
-
Theis, L.1
Van Den Oord, A.2
Bethge, M.3
-
28
-
-
85083953522
-
The variational Gaussian process
-
Dustin Tran, Rajesh Ranganath, and David M. Blei. The variational Gaussian process. In ICLR, 2016.
-
(2016)
ICLR
-
-
Tran, D.1
Ranganath, R.2
Blei, D.M.3
-
29
-
-
84898933061
-
RNAdE: The real-valued neural autoregressive density-estimator
-
Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: The real-valued neural autoregressive density-estimator. In Advances in Neural Information Processing Systems 26, pp. 2175-2183. 2013. URL http://www.benignouria.com/en/research/papers/Uria2013.pdf.
-
(2013)
Advances in Neural Information Processing Systems
, vol.26
, pp. 2175-2183
-
-
Uria, B.1
Murray, I.2
Larochelle, H.3
-
31
-
-
0000320044
-
Scale mixtures of Gaussians and the statistics of natural images
-
Martin J. Wainwright and Eero P. Simoncelli. Scale mixtures of Gaussians and the statistics of natural images. In NIPS, 1999.
-
(1999)
NIPS
-
-
Wainwright, M.J.1
Simoncelli, E.P.2
|