메뉴 건너뛰기




Volumn , Issue , 2017, Pages

On the quantitative analysis of decoder-based generative models

Author keywords

[No Author keywords available]

Indexed keywords

DEEP NEURAL NETWORKS; IMPORTANCE SAMPLING;

EID: 85088225625     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (78)

References (32)
  • 6
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • E. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, 2015.
    • (2015) NIPS
    • Denton, E.1    Chintala, S.2    Szlam, A.3    Fergus, R.4
  • 9
    • 84983185824 scopus 로고    scopus 로고
    • Training generative neural networks via Maximum Mean Discrepancy optimization
    • Gintare Karolina Dziugaite, Daniel M. Roy, and Zoubin Ghahramani. Training generative neural networks via Maximum Mean Discrepancy optimization. In UAI. 2015.
    • (2015) UAI
    • Dziugaite, G.K.1    Roy, D.M.2    Ghahramani, Z.3
  • 10
    • 84937849144 scopus 로고    scopus 로고
    • Generative adversarial nets
    • Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger eds, Curran Associates, Inc
    • Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 27, pp. 2672-2680. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 2672-2680
    • Goodfellow, I.1    Pouget-Abadie, J.2    Mirza, M.3    Xu, B.4    Warde-Farley, D.5    Ozair, S.6    Courville, A.7    Bengio, Y.8
  • 11
    • 85018892483 scopus 로고    scopus 로고
    • Measuring the reliability of MCMC inference with bidirectional Monte Carlo
    • Roger Grosse, Siddharth Ancha, and Daniel M. Roy. Measuring the reliability of MCMC inference with bidirectional Monte Carlo. In NIPS, 2016.
    • (2016) NIPS
    • Grosse, R.1    Ancha, S.2    Roy, D.M.3
  • 14
    • 38249043088 scopus 로고
    • Random generation of combinatorial structures from a uniform distribution
    • Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science, 43:169-188, 1986.
    • (1986) Theoretical Computer Science , vol.43 , pp. 169-188
    • Jerrum, M.R.1    Valiant, L.G.2    Vazirani, V.V.3
  • 15
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 16
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • November
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 17
    • 84970016114 scopus 로고    scopus 로고
    • Generative moment matching networks
    • In
    • Yujia Li and Kevin Swersky. Generative moment matching networks. In In ICML 32, 2015.
    • (2015) ICML , vol.32
    • Li, Y.1    Swersky, K.2
  • 18
    • 80051672658 scopus 로고    scopus 로고
    • Density networks
    • J. W. Kay and D. M. Titterington eds, O.U.
    • D. J. C. MacKay and M. N. Gibbs. Density networks. In J. W. Kay and D. M. Titterington (eds.), Statistics and Neural Networks, pp. 129-146. O.U.P., 1998.
    • (1998) Statistics and Neural Networks , pp. 129-146
    • MacKay, D.J.C.1    Gibbs, M.N.2
  • 19
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • April
    • Radford M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125-139, April 2001. ISSN 0960-3174. doi: 10.1023/A:1008923215028. URL http://dx.doi.org/10.1023/A:1008923215028.
    • (2001) Statistics and Computing , vol.11 , Issue.2 , pp. 125-139
    • Neal, R.M.1
  • 21
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Emanuel Parzen. On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33(3):pp. 1065-1076, 1962. ISSN 00034851. URL http://www.jstor.org/stable/2237880.
    • (1962) The Annals of Mathematical Statistics , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 22
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016.
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 24
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • Tony Jebara and Eric Xing eds, JMLR Workshop and Conference Proceedings
    • Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In Tony Jebara and Eric P. Xing (eds.), Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1278-1286. JMLR Workshop and Conference Proceedings, 2014. URL http://jmlr.org/proceedings/papers/v32/rezende14.pdf.
    • (2014) Proceedings of the 31st International Conference on Machine Learning (ICML-14) , pp. 1278-1286
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 27
    • 85083950260 scopus 로고    scopus 로고
    • A note on the evaluation of generative models
    • Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative models. In ICLR, 2016.
    • (2016) ICLR
    • Theis, L.1    Van Den Oord, A.2    Bethge, M.3
  • 28
    • 85083953522 scopus 로고    scopus 로고
    • The variational Gaussian process
    • Dustin Tran, Rajesh Ranganath, and David M. Blei. The variational Gaussian process. In ICLR, 2016.
    • (2016) ICLR
    • Tran, D.1    Ranganath, R.2    Blei, D.M.3
  • 29
    • 84898933061 scopus 로고    scopus 로고
    • RNAdE: The real-valued neural autoregressive density-estimator
    • Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: The real-valued neural autoregressive density-estimator. In Advances in Neural Information Processing Systems 26, pp. 2175-2183. 2013. URL http://www.benignouria.com/en/research/papers/Uria2013.pdf.
    • (2013) Advances in Neural Information Processing Systems , vol.26 , pp. 2175-2183
    • Uria, B.1    Murray, I.2    Larochelle, H.3
  • 31
    • 0000320044 scopus 로고    scopus 로고
    • Scale mixtures of Gaussians and the statistics of natural images
    • Martin J. Wainwright and Eero P. Simoncelli. Scale mixtures of Gaussians and the statistics of natural images. In NIPS, 1999.
    • (1999) NIPS
    • Wainwright, M.J.1    Simoncelli, E.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.