-
1
-
-
85042161013
-
Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer
-
Sernadela, P.; González-Castro, L.; Carta, C.; van der Horst, E.; Lopes, P.; Kaliyaperumal, R.; Thompson, M.; Thompson, R.; Queralt-Rosinach, N.; Lopez, E.; et al. Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer. BioMed Res. Int. 2017, 2017, 1–13.
-
(2017)
Biomed Res. Int.
, vol.2017
, pp. 1-13
-
-
Sernadela, P.1
González-Castro, L.2
Carta, C.3
van der Horst, E.4
Lopes, P.5
Kaliyaperumal, R.6
Thompson, M.7
Thompson, R.8
Queralt-Rosinach, N.9
Lopez, E.10
-
2
-
-
85012119105
-
Industrializing rare disease therapy discovery and development
-
Ekins, S. Industrializing rare disease therapy discovery and development. Nat. Biotechnol. 2017, 35, 117– 118.
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 117-118
-
-
Ekins, S.1
-
3
-
-
85075645339
-
-
(accessed on 18 September 2019)
-
About Rare Diseases. Available online: https://www.eurordis.org/about-rare-diseases(accessed on 18 September 2019).
-
-
-
-
4
-
-
85063393087
-
Can a decision support system accelerate rare disease diagnosis? Evaluating the potential impact of Ada DX in a retrospective study
-
Ronicke, S.; Hirsch, M.C.; Turk, E.; Larionov, K.; Tientcheu, D.; Wagner, A.D. Can a decision support system accelerate rare disease diagnosis? Evaluating the potential impact of Ada DX in a retrospective study. Orphanet J. Rare Dis. 2019, 14, 69.
-
(2019)
Orphanet J. Rare Dis.
, vol.14
-
-
Ronicke, S.1
Hirsch, M.C.2
Turk, E.3
Larionov, K.4
Tientcheu, D.5
Wagner, A.D.6
-
5
-
-
85045187145
-
Challenges in Research and Health Technology Assessment of Rare Disease Technologies: Report of the ISPOR Rare Disease Special Interest Group
-
Nestler-Parr, S.; Korchagina, D.; Toumi, M.; Pashos, C.L.; Blanchette, C.; Molsen, E.; Morel, T.; Simoens, S.; Kaló, Z.; Gatermann, R.; et al. Challenges in Research and Health Technology Assessment of Rare Disease Technologies: Report of the ISPOR Rare Disease Special Interest Group. Value Health 2018, 21, 493–500.
-
(2018)
Value Health
, vol.21
, pp. 493-500
-
-
Nestler-Parr, S.1
Korchagina, D.2
Toumi, M.3
Pashos, C.L.4
Blanchette, C.5
Molsen, E.6
Morel, T.7
Simoens, S.8
Kaló, Z.9
Gatermann, R.10
-
6
-
-
85044518952
-
The Challenge of Rare Diseases
-
Stoller, J.K. The Challenge of Rare Diseases. Chest 2018, 153, 1309–1314.
-
(2018)
Chest
, vol.153
, pp. 1309-1314
-
-
Stoller, J.K.1
-
7
-
-
85069529331
-
Orphan drug development: The increasing role of clinical pharmacology
-
Ahmed, M.A.; Okour, M.; Brundage, R.; Kartha, R.V. Orphan drug development: The increasing role of clinical pharmacology. J. Pharmacokinet. Pharmacodyn. 2019, 46, 395–409.
-
(2019)
J. Pharmacokinet. Pharmacodyn.
, vol.46
, pp. 395-409
-
-
Ahmed, M.A.1
Okour, M.2
Brundage, R.3
Kartha, R.V.4
-
8
-
-
85056125716
-
From scientific discovery to treatments for rare diseases—The view from the National Center for Advancing Translational Sciences—Office of Rare Diseases Research
-
Kaufmann, P.; Pariser, A.R.; Austin, C. From scientific discovery to treatments for rare diseases—The view from the National Center for Advancing Translational Sciences—Office of Rare Diseases Research. Orphanet J. Rare Dis. 2018, 13, 196.
-
(2018)
Orphanet J. Rare Dis.
, vol.13
-
-
Kaufmann, P.1
Pariser, A.R.2
Austin, C.3
-
9
-
-
85037663316
-
Personalized Medicine: What’s in it for Rare Diseases?
-
Posada de la Paz, M., Taruscio, D., Groft, S.C., Eds.; Springer International Publishing: Cham, Switzerland
-
Schee genannt Halfmann, S.; Mählmann, L.; Leyens, L.; Reumann, M.; Brand, A. Personalized Medicine: What’s in it for Rare Diseases? In Rare Diseases Epidemiology: Update and Overview; Posada de la Paz, M., Taruscio, D., Groft, S.C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 1031, pp. 387–404, ISBN 978-3-319-67142-0.
-
(2017)
Rare Diseases Epidemiology: Update and Overview
, vol.1031
, pp. 387-404
-
-
Schee Genannt Halfmann, S.1
Mählmann, L.2
Leyens, L.3
Reumann, M.4
Brand, A.5
-
10
-
-
85071139508
-
Looking beyond the hype: Applied AI and machine learning in translational medicine
-
Toh, T.S.; Dondelinger, F.; Wang, D. Looking beyond the hype: Applied AI and machine learning in translational medicine. EBioMedicine 2019, 47, 607–615.
-
(2019)
Ebiomedicine
, vol.47
, pp. 607-615
-
-
Toh, T.S.1
Dondelinger, F.2
Wang, D.3
-
12
-
-
85064564680
-
Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis Screening and Visualization
-
Pasa, F.; Golkov, V.; Pfeiffer, F.; Cremers, D.; Pfeiffer, D. Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis Screening and Visualization. Sci. Rep. 2019, 9, 6268.
-
(2019)
Sci. Rep.
, vol.9
-
-
Pasa, F.1
Golkov, V.2
Pfeiffer, F.3
Cremers, D.4
Pfeiffer, D.5
-
13
-
-
85068644430
-
Deep Learning Model to Assess Cancer Risk on the Basis of a Breast MR Image Alone
-
Portnoi, T.; Yala, A.; Schuster, T.; Barzilay, R.; Dontchos, B.; Lamb, L.; Lehman, C. Deep Learning Model to Assess Cancer Risk on the Basis of a Breast MR Image Alone. Am. J. Roentgenol. 2019, 213, 227–233.
-
(2019)
Am. J. Roentgenol.
, vol.213
, pp. 227-233
-
-
Portnoi, T.1
Yala, A.2
Schuster, T.3
Barzilay, R.4
Dontchos, B.5
Lamb, L.6
Lehman, C.7
-
14
-
-
85068487040
-
The Application of Unsupervised Clustering Methods to Alzheimer’s Disease
-
Alashwal, H.; El Halaby, M.; Crouse, J.J.; Abdalla, A.; Moustafa, A.A. The Application of Unsupervised Clustering Methods to Alzheimer’s Disease. Front. Comput. Neurosci. 2019, 13, 31.
-
(2019)
Front. Comput. Neurosci.
, vol.13
, pp. 31
-
-
Alashwal, H.1
El Halaby, M.2
Crouse, J.J.3
Abdalla, A.4
Moustafa, A.A.5
-
15
-
-
85049130543
-
Application of density estimation algorithms in analyzing co-morbidities of migraine
-
Yang, M.-H.; Yang, F.-Y.; Oyang, Y.-J. Application of density estimation algorithms in analyzing co-morbidities of migraine. Netw. Model. Anal. Health Inform. Bioinform. 2013, 2, 95–107.
-
(2013)
Netw. Model. Anal. Health Inform. Bioinform.
, vol.2
, pp. 95-107
-
-
Yang, M.-H.1
Yang, F.-Y.2
Oyang, Y.-J.3
-
16
-
-
0036192067
-
Estimation of Survival Distributions of Treatment Policies in Two-Stage Randomization Designs in Clinical Trials
-
Lunceford, J.K.; Davidian, M.; Tsiatis, A.A. Estimation of Survival Distributions of Treatment Policies in Two-Stage Randomization Designs in Clinical Trials. Biometrics 2002, 58, 48–57.
-
(2002)
Biometrics
, vol.58
, pp. 48-57
-
-
Lunceford, J.K.1
Davidian, M.2
Tsiatis, A.A.3
-
17
-
-
84872856940
-
Adaptive control of epileptiform excitability in an in vitro model of limbic seizures
-
Panuccio, G.; Guez, A.; Vincent, R.; Avoli, M.; Pineau, J. Adaptive control of epileptiform excitability in an in vitro model of limbic seizures. Exp. Neurol. 2013, 241, 179–183.
-
(2013)
Exp. Neurol.
, vol.241
, pp. 179-183
-
-
Panuccio, G.1
Guez, A.2
Vincent, R.3
Avoli, M.4
Pineau, J.5
-
18
-
-
85059811921
-
High-performance medicine: The convergence of human and artificial intelligence
-
Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56.
-
(2019)
Nat. Med.
, vol.25
, pp. 44-56
-
-
Topol, E.J.1
-
20
-
-
65649092976
-
Biopython: Freely available Python tools for computational molecular biology and bioinformatics
-
Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25, 1422–1423.
-
(2009)
Bioinformatics
, vol.25
, pp. 1422-1423
-
-
Cock, P.J.A.1
Antao, T.2
Chang, J.T.3
Chapman, B.A.4
Cox, C.J.5
Dalke, A.6
Friedberg, I.7
Hamelryck, T.8
Kauff, F.9
Wilczynski, B.10
-
21
-
-
84874741731
-
Identifying Mendelian disease genes with the Variant Effect Scoring Tool
-
Carter, H.; Douville, C.; Stenson, P.D.; Cooper, D.N.; Karchin, R. Identifying Mendelian disease genes with the Variant Effect Scoring Tool. BMC Genom. 2013, 14, S3.
-
(2013)
BMC Genom
, vol.14
, pp. S3
-
-
Carter, H.1
Douville, C.2
Stenson, P.D.3
Cooper, D.N.4
Karchin, R.5
-
22
-
-
85054427804
-
ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants
-
Alirezaie, N.; Kernohan, K.D.; Hartley, T.; Majewski, J.; Hocking, T.D. ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants. Am. J. Hum. Genet. 2018, 103, 474–483.
-
(2018)
Am. J. Hum. Genet.
, vol.103
, pp. 474-483
-
-
Alirezaie, N.1
Kernohan, K.D.2
Hartley, T.3
Majewski, J.4
Hocking, T.D.5
-
23
-
-
85069644655
-
EDiVA—Classification and prioritization of pathogenic variants for clinical diagnostics
-
Bosio, M.; Drechsel, O.; Rahman, R.; Muyas, F.; Rabionet, R.; Bezdan, D.; Domenech Salgado, L.; Hor, H.; Schott, J.; Munell, F.; et al. eDiVA—Classification and prioritization of pathogenic variants for clinical diagnostics. Hum. Mutat. 2019, 40, 865–878.
-
(2019)
Hum. Mutat.
, vol.40
, pp. 865-878
-
-
Bosio, M.1
Drechsel, O.2
Rahman, R.3
Muyas, F.4
Rabionet, R.5
Bezdan, D.6
Domenech Salgado, L.7
Hor, H.8
Schott, J.9
Munell, F.10
-
24
-
-
85050539279
-
Predicting the clinical impact of human mutation with deep neural networks
-
Sundaram, L.; Gao, H.; Padigepati, S.R.; McRae, J.F.; Li, Y.; Kosmicki, J.A.; Fritzilas, N.; Hakenberg, J.; Dutta, A.; Shon, J.; et al. Predicting the clinical impact of human mutation with deep neural networks. Nat. Genet. 2018, 50, 1161–1170.
-
(2018)
Nat. Genet.
, vol.50
, pp. 1161-1170
-
-
Sundaram, L.1
Gao, H.2
Padigepati, S.R.3
McRae, J.F.4
Li, Y.5
Kosmicki, J.A.6
Fritzilas, N.7
Hakenberg, J.8
Dutta, A.9
Shon, J.10
-
25
-
-
85054078463
-
Impact of structural prior knowledge in SNV prediction: Towards causal variant finding in rare disease
-
Dehiya, V.; Thomas, J.; Sael, L. Impact of structural prior knowledge in SNV prediction: Towards causal variant finding in rare disease. PLoS ONE 2018, 13, e0204101.
-
(2018)
Plos ONE
, vol.13
-
-
Dehiya, V.1
Thomas, J.2
Sael, L.3
-
26
-
-
84880518692
-
Identification of deleterious synonymous variants in human genomes
-
Buske, O.J.; Manickaraj, A.; Mital, S.; Ray, P.N.; Brudno, M. Identification of deleterious synonymous variants in human genomes. Bioinformatics 2013, 29, 1843–1850.
-
(2013)
Bioinformatics
, vol.29
, pp. 1843-1850
-
-
Buske, O.J.1
Manickaraj, A.2
Mital, S.3
Ray, P.N.4
Brudno, M.5
-
27
-
-
84944233259
-
In Silico Prediction of the Effects of Mutations in the Human Mevalonate Kinase Gene: Towards a Predictive Framework for Mevalonate Kinase Deficiency: Effects of Mutations in Human MVK
-
Browne, C.; Timson, D.J. In Silico Prediction of the Effects of Mutations in the Human Mevalonate Kinase Gene: Towards a Predictive Framework for Mevalonate Kinase Deficiency: Effects of Mutations in Human MVK. Ann. Hum. Genet. 2015, 79, 451–459.
-
(2015)
Ann. Hum. Genet.
, vol.79
, pp. 451-459
-
-
Browne, C.1
Timson, D.J.2
-
28
-
-
79957874121
-
Genome-wide association identifies diverse causes of common variable immunodeficiency
-
Orange, J.S.; Glessner, J.T.; Resnick, E.; Sullivan, K.E.; Lucas, M.; Ferry, B.; Kim, C.E.; Hou, C.; Wang, F.; Chiavacci, R.; et al. Genome-wide association identifies diverse causes of common variable immunodeficiency. J. Allergy Clin. Immunol. 2011, 127, 1360–1367.e6.
-
(2011)
J. Allergy Clin. Immunol.
, vol.127
, pp. 1360-1367
-
-
Orange, J.S.1
Glessner, J.T.2
Resnick, E.3
Sullivan, K.E.4
Lucas, M.5
Ferry, B.6
Kim, C.E.7
Hou, C.8
Wang, F.9
Chiavacci, R.10
-
29
-
-
85060117879
-
Predicting Splicing from Primary Sequence with Deep Learning
-
Jaganathan, K.; Kyriazopoulou Panagiotopoulou, S.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176, 535–548.e24.
-
(2019)
Cell
, vol.176
, pp. 535-548
-
-
Jaganathan, K.1
Kyriazopoulou Panagiotopoulou, S.2
McRae, J.F.3
Darbandi, S.F.4
Knowles, D.5
Li, Y.I.6
Kosmicki, J.A.7
Arbelaez, J.8
Cui, W.9
Schwartz, G.B.10
-
30
-
-
85067130542
-
Predicting disease-causing variant combinations
-
Papadimitriou, S.; Gazzo, A.; Versbraegen, N.; Nachtegael, C.; Aerts, J.; Moreau, Y.; Van Dooren, S.; Nowé, A.; Smits, G.; Lenaerts, T. Predicting disease-causing variant combinations. Proc. Natl. Acad. Sci. USA 2019, 116, 11878–11887.
-
(2019)
Proc. Natl. Acad. Sci. USA
, vol.116
, pp. 11878-11887
-
-
Papadimitriou, S.1
Gazzo, A.2
Versbraegen, N.3
Nachtegael, C.4
Aerts, J.5
Moreau, Y.6
van Dooren, S.7
Nowé, A.8
Smits, G.9
Lenaerts, T.10
-
31
-
-
85059285536
-
Constructing a database for the relations between CNV and human genetic diseases via systematic text mining
-
Yang, X.; Song, Z.; Wu, C.; Wang, W.; Li, G.; Zhang, W.; Wu, L.; Lu, K. Constructing a database for the relations between CNV and human genetic diseases via systematic text mining. BMC Bioinform. 2018, 19, 528.
-
(2018)
BMC Bioinform
, vol.19
, pp. 528
-
-
Yang, X.1
Song, Z.2
Wu, C.3
Wang, W.4
Li, G.5
Zhang, W.6
Wu, L.7
Lu, K.8
-
32
-
-
85061131814
-
DeepPVP: Phenotype-based prioritization of causative variants using deep learning
-
Boudellioua, I.; Kulmanov, M.; Schofield, P.N.; Gkoutos, G.V.; Hoehndorf, R. DeepPVP: Phenotype-based prioritization of causative variants using deep learning. BMC Bioinform. 2018, 20, 65.
-
(2018)
BMC Bioinform
, vol.20
, pp. 65
-
-
Boudellioua, I.1
Kulmanov, M.2
Schofield, P.N.3
Gkoutos, G.V.4
Hoehndorf, R.5
-
33
-
-
85060610025
-
Xrare: A machine learning method jointly modeling phenotypes and genetic evidence for rare disease diagnosis
-
Li, Q.; Zhao, K.; Bustamante, C.D.; Ma, X.; Wong, W.H. Xrare: A machine learning method jointly modeling phenotypes and genetic evidence for rare disease diagnosis. Genet. Med. 2019, 21, 2126–2134.
-
(2019)
Genet. Med.
, vol.21
, pp. 2126-2134
-
-
Li, Q.1
Zhao, K.2
Bustamante, C.D.3
Ma, X.4
Wong, W.H.5
-
34
-
-
85049666228
-
Phenotype-driven gene prioritization for rare diseases using graph convolution on heterogeneous networks
-
Rao, A.; Vg, S.; Joseph, T.; Kotte, S.; Sivadasan, N.; Srinivasan, R. Phenotype-driven gene prioritization for rare diseases using graph convolution on heterogeneous networks. BMC Med. Genom. 2018, 11, 57.
-
(2018)
BMC Med. Genom.
, vol.11
-
-
Rao, A.1
Vg, S.2
Joseph, T.3
Kotte, S.4
Sivadasan, N.5
Srinivasan, R.6
-
35
-
-
84899483170
-
Inferring characteristic phenotypes via class association rule mining in the bone dysplasia domain
-
Paul, R.; Groza, T.; Hunter, J.; Zankl, A. Inferring characteristic phenotypes via class association rule mining in the bone dysplasia domain. J. Biomed. Inform. 2014, 48, 73–83.
-
(2014)
J. Biomed. Inform.
, vol.48
, pp. 73-83
-
-
Paul, R.1
Groza, T.2
Hunter, J.3
Zankl, A.4
-
36
-
-
85058789513
-
Mucopolysaccharidosis type II detection by Naïve Bayes Classifier: An example of patient classification for a rare disease using electronic medical records from the Canadian Primary Care Sentinel Surveillance Network
-
Ehsani-Moghaddam, B.; Queenan, J.A.; MacKenzie, J.; Birtwhistle, R.V. Mucopolysaccharidosis type II detection by Naïve Bayes Classifier: An example of patient classification for a rare disease using electronic medical records from the Canadian Primary Care Sentinel Surveillance Network. PLoS ONE 2018, 13, e0209018.
-
(2018)
Plos ONE
, vol.13
-
-
Ehsani-Moghaddam, B.1
Queenan, J.A.2
Mackenzie, J.3
Birtwhistle, R.V.4
-
37
-
-
85055264035
-
Utilization of Electronic Medical Records and Biomedical Literature to Support the Diagnosis of Rare Diseases Using Data Fusion and Collaborative Filtering Approaches
-
Shen, F.; Liu, S.; Wang, Y.; Wen, A.; Wang, L.; Liu, H. Utilization of Electronic Medical Records and Biomedical Literature to Support the Diagnosis of Rare Diseases Using Data Fusion and Collaborative Filtering Approaches. JMIR Med. Inform. 2018, 6, e11301.
-
(2018)
JMIR Med. Inform.
, vol.6
-
-
Shen, F.1
Liu, S.2
Wang, Y.3
Wen, A.4
Wang, L.5
Liu, H.6
-
38
-
-
85061539354
-
Rare disease knowledge enrichment through a data-driven approach
-
Shen, F.; Zhao, Y.; Wang, L.; Mojarad, M.R.; Wang, Y.; Liu, S.; Liu, H. Rare disease knowledge enrichment through a data-driven approach. BMC Med Inform. Decis. Mak. 2019, 19, 32.
-
(2019)
BMC Med Inform. Decis. Mak.
, vol.19
-
-
Shen, F.1
Zhao, Y.2
Wang, L.3
Mojarad, M.R.4
Wang, Y.5
Liu, S.6
Liu, H.7
-
39
-
-
84921633944
-
Phen-Gen: Combining phenotype and genotype to analyze rare disorders
-
Javed, A.; Agrawal, S.; Ng, P.C. Phen-Gen: Combining phenotype and genotype to analyze rare disorders. Nat. Methods 2014, 11, 935–937.
-
(2014)
Nat. Methods
, vol.11
, pp. 935-937
-
-
Javed, A.1
Agrawal, S.2
Ng, P.C.3
-
40
-
-
85042945363
-
A clinician friendly data warehouse oriented toward narrative reports: Dr. Warehouse
-
Garcelon, N.; Neuraz, A.; Salomon, R.; Faour, H.; Benoit, V.; Delapalme, A.; Munnich, A.; Burgun, A.; Rance, B. A clinician friendly data warehouse oriented toward narrative reports: Dr. Warehouse. J. Biomed. Inform. 2018, 80, 52–63.
-
(2018)
J. Biomed. Inform.
, vol.80
, pp. 52-63
-
-
Garcelon, N.1
Neuraz, A.2
Salomon, R.3
Faour, H.4
Benoit, V.5
Delapalme, A.6
Munnich, A.7
Burgun, A.8
Rance, B.9
-
41
-
-
85026446496
-
Finding patients using similarity measures in a rare diseases-oriented clinical data warehouse
-
Garcelon, N.; Neuraz, A.; Benoit, V.; Salomon, R.; Kracker, S.; Suarez, F.; Bahi-Buisson, N.; Hadj-Rabia, S.; Fischer, A.; Munnich, A.; et al. Finding patients using similarity measures in a rare diseases-oriented clinical data warehouse: Dr. Warehouse and the needle in the needle stack. J. Biomed. Inform. 2017, 73, 51–61.
-
(2017)
Dr. Warehouse and the Needle in the Needle Stack. J. Biomed. Inform
, vol.73
, pp. 51-61
-
-
Garcelon, N.1
Neuraz, A.2
Benoit, V.3
Salomon, R.4
Kracker, S.5
Suarez, F.6
Bahi-Buisson, N.7
Hadj-Rabia, S.8
Fischer, A.9
Munnich, A.10
-
42
-
-
84942807476
-
Important Considerations in the Initial Clinical Evaluation of the Dysmorphic Neonate
-
Smpokou, P.; Lanpher, B.C.; Rosenbaum, K.N. Important Considerations in the Initial Clinical Evaluation of the Dysmorphic Neonate. Adv. Neonatal Care 2015, 15, 248–252.
-
(2015)
Adv. Neonatal Care
, vol.15
, pp. 248-252
-
-
Smpokou, P.1
Lanpher, B.C.2
Rosenbaum, K.N.3
-
43
-
-
85048445198
-
Phenotypic Image Analysis Software Tools for Exploring and Understanding Big Image Data from Cell-Based Assays
-
Smith, K.; Piccinini, F.; Balassa, T.; Koos, K.; Danka, T.; Azizpour, H.; Horvath, P. Phenotypic Image Analysis Software Tools for Exploring and Understanding Big Image Data from Cell-Based Assays. Cell Syst. 2018, 6, 636–653.
-
(2018)
Cell Syst
, vol.6
, pp. 636-653
-
-
Smith, K.1
Piccinini, F.2
Balassa, T.3
Koos, K.4
Danka, T.5
Azizpour, H.6
Horvath, P.7
-
44
-
-
85059823357
-
Identifying facial phenotypes of genetic disorders using deep learning
-
Gurovich, Y.; Hanani, Y.; Bar, O.; Nadav, G.; Fleischer, N.; Gelbman, D.; Basel-Salmon, L.; Krawitz, P.M.; Kamphausen, S.B.; Zenker, M.; et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat. Med. 2019, 25, 60–64.
-
(2019)
Nat. Med.
, vol.25
, pp. 60-64
-
-
Gurovich, Y.1
Hanani, Y.2
Bar, O.3
Nadav, G.4
Fleischer, N.5
Gelbman, D.6
Basel-Salmon, L.7
Krawitz, P.M.8
Kamphausen, S.B.9
Zenker, M.10
-
45
-
-
84930630277
-
Deep learning
-
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
46
-
-
85041920931
-
Natural history and genotype-phenotype correlations in 72 individuals with SATB2-associated syndrome
-
Zarate, Y.A.; Smith-Hicks, C.L.; Greene, C.; Abbott, M.-A.; Siu, V.M.; Calhoun, A.R.U.L.; Pandya, A.; Li, C.; Sellars, E.A.; Kaylor, J.; et al. Natural history and genotype-phenotype correlations in 72 individuals with SATB2-associated syndrome. Am. J. Med. Genet. 2018, 176, 925–935.
-
(2018)
Am. J. Med. Genet
, vol.176
, pp. 925-935
-
-
Zarate, Y.A.1
Smith-Hicks, C.L.2
Greene, C.3
Abbott, M.-A.4
Siu, V.M.5
Calhoun, A.R.U.L.6
Pandya, A.7
Li, C.8
Sellars, E.A.9
Kaylor, J.10
-
47
-
-
84964063098
-
Recognition of the Cornelia de Lange syndrome phenotype with facial dysmorphology novel analysis: Recognition of the CdLS Phenotype with FDNA
-
Basel-Vanagaite, L.; Wolf, L.; Orin, M.; Larizza, L.; Gervasini, C.; Krantz, I.D.; Deardoff, M.A. Recognition of the Cornelia de Lange syndrome phenotype with facial dysmorphology novel analysis: Recognition of the CdLS Phenotype with FDNA. Clin. Genet. 2016, 89, 557–563.
-
(2016)
Clin. Genet.
, vol.89
, pp. 557-563
-
-
Basel-Vanagaite, L.1
Wolf, L.2
Orin, M.3
Larizza, L.4
Gervasini, C.5
Krantz, I.D.6
Deardoff, M.A.7
-
48
-
-
85036575463
-
Next generation phenotyping in Emanuel and Pallister-Killian syndrome using computer-aided facial dysmorphology analysis of 2D photos: LIEHR et al
-
Liehr, T.; Acquarola, N.; Pyle, K.; St-Pierre, S.; Rinholm, M.; Bar, O.; Wilhelm, K.; Schreyer, I. Next generation phenotyping in Emanuel and Pallister-Killian syndrome using computer-aided facial dysmorphology analysis of 2D photos: LIEHR et al. Clin. Genet. 2018, 93, 378–381.
-
(2018)
Clin. Genet.
, vol.93
, pp. 378-381
-
-
Liehr, T.1
Acquarola, N.2
Pyle, K.3
St-Pierre, S.4
Rinholm, M.5
Bar, O.6
Wilhelm, K.7
Schreyer, I.8
-
49
-
-
85063638412
-
The Discovery of a LEMD2-Associated Nuclear Envelopathy with Early Progeroid Appearance Suggests Advanced Applications for AI-Driven Facial Phenotyping
-
Marbach, F.; Rustad, C.F.; Riess, A.; Đukić, D.; Hsieh, T.-C.; Jobani, I.; Prescott, T.; Bevot, A.; Erger, F.; Houge, G.; et al. The Discovery of a LEMD2-Associated Nuclear Envelopathy with Early Progeroid Appearance Suggests Advanced Applications for AI-Driven Facial Phenotyping. Am. J. Hum. Genet. 2019, 104, 749–757.
-
(2019)
Am. J. Hum. Genet.
, vol.104
, pp. 749-757
-
-
Marbach, F.1
Rustad, C.F.2
Riess, A.3
Đukić, D.4
Hsieh, T.-C.5
Jobani, I.6
Prescott, T.7
Bevot, A.8
Erger, F.9
Houge, G.10
-
50
-
-
79551684556
-
Detecting Acromegaly: Screening for Disease with a Morphable Model
-
Larsen, R., Nielsen, M., Sporring, J., Eds.; Springer: Heidelberg, Germany
-
Learned-Miller, E.; Lu, Q.; Paisley, A.; Trainer, P.; Blanz, V.; Dedden, K.; Miller, R. Detecting Acromegaly: Screening for Disease with a Morphable Model. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006; Larsen, R., Nielsen, M., Sporring, J., Eds.; Springer: Heidelberg, Germany, 2006; Volume 4191, pp. 495–503, ISBN 978-3-540-44727-6.
-
(2006)
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006
, vol.4191
, pp. 495-503
-
-
Learned-Miller, E.1
Lu, Q.2
Paisley, A.3
Trainer, P.4
Blanz, V.5
Dedden, K.6
Miller, R.7
-
51
-
-
85015714544
-
Typical and atypical pathology in primary progressive aphasia variants: Pathology in PPA Variants
-
Spinelli, E.G.; Mandelli, M.L.; Miller, Z.A.; Santos-Santos, M.A.; Wilson, S.M.; Agosta, F.; Grinberg, L.T.; Huang, E.J.; Trojanowski, J.Q.; Meyer, M.; et al. Typical and atypical pathology in primary progressive aphasia variants: Pathology in PPA Variants. Ann Neurol. 2017, 81, 430–443.
-
(2017)
Ann Neurol
, vol.81
, pp. 430-443
-
-
Spinelli, E.G.1
Mandelli, M.L.2
Miller, Z.A.3
Santos-Santos, M.A.4
Wilson, S.M.5
Agosta, F.6
Grinberg, L.T.7
Huang, E.J.8
Trojanowski, J.Q.9
Meyer, M.10
-
52
-
-
85066983034
-
PEDIA: Prioritization of exome data by image analysis
-
Hsieh, T.-C.; Mensah, M.A.; Pantel, J.T.; Aguilar, D.; Bar, O.; Bayat, A.; Becerra-Solano, L.; Bentzen, H.B.; Biskup, S.; Borisov, O.; et al. PEDIA: Prioritization of exome data by image analysis. Genet. Med. 2019, doi: 10.1038/s41436-019-0566-2.
-
(2019)
Genet. Med.
-
-
Hsieh, T.-C.1
Mensah, M.A.2
Pantel, J.T.3
Aguilar, D.4
Bar, O.5
Bayat, A.6
Becerra-Solano, L.7
Bentzen, H.B.8
Biskup, S.9
Borisov, O.10
-
53
-
-
84879446057
-
HHT diagnosis by Mid-infrared spectroscopy and artificial neural network analysis
-
Lux, A.; Müller, R.; Tulk, M.; Olivieri, C.; Zarrabeita, R.; Salonikios, T.; Wirnitzer, B. HHT diagnosis by Mid-infrared spectroscopy and artificial neural network analysis. Orphanet J. Rare Dis. 2013, 8, 94.
-
(2013)
Orphanet J. Rare Dis.
, vol.8
, pp. 94
-
-
Lux, A.1
Müller, R.2
Tulk, M.3
Olivieri, C.4
Zarrabeita, R.5
Salonikios, T.6
Wirnitzer, B.7
-
54
-
-
85054141684
-
Deep learning approach for survival prediction for patients with synovial sarcoma
-
Han, I.; Kim, J.H.; Park, H.; Kim, H.-S.; Seo, S.W. Deep learning approach for survival prediction for patients with synovial sarcoma. Tumour Biol. 2018, 40, 101042831879926.
-
(2018)
Tumour Biol
, vol.40
-
-
Han, I.1
Kim, J.H.2
Park, H.3
Kim, H.-S.4
Seo, S.W.5
-
55
-
-
85062409093
-
Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas
-
van IJzendoorn, D.G.P.; Szuhai, K.; Briaire-de Bruijn, I.H.; Kostine, M.; Kuijjer, M.L.; Bovée, J.V.M.G. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas. PLoS Comput. Biol. 2019, 15, e1006826.
-
(2019)
Plos Comput. Biol.
, vol.15
-
-
van IJzendoorn, D.G.P.1
Szuhai, K.2
Briaire-De Bruijn, I.H.3
Kostine, M.4
Kuijjer, M.L.5
Bovée, J.V.M.G.6
-
56
-
-
84929658881
-
CSAX: Characterizing Systematic Anomalies in eXpression Data
-
Noto, K.; Majidi, S.; Edlow, A.G.; Wick, H.C.; Bianchi, D.W.; Slonim, D.K. CSAX: Characterizing Systematic Anomalies in eXpression Data. J. Comput. Biol. 2015, 22, 402–413.
-
(2015)
J. Comput. Biol.
, vol.22
, pp. 402-413
-
-
Noto, K.1
Majidi, S.2
Edlow, A.G.3
Wick, H.C.4
Bianchi, D.W.5
Slonim, D.K.6
-
57
-
-
85065538871
-
A Transfer Learning Framework for Transcriptomics Reveals Systemic Features of Rare Disease
-
Taroni, J.N.; Grayson, P.C.; Hu, Q.; Eddy, S.; Kretzler, M.; Merkel, P.A.; Greene, C.S. MultiPLIER: A Transfer Learning Framework for Transcriptomics Reveals Systemic Features of Rare Disease. Cell Syst. 2019, 8, 380–394.e4.
-
(2019)
Cell Syst
, vol.8
-
-
Taroni, J.N.1
Grayson, P.C.2
Hu, Q.3
Eddy, S.4
Kretzler, M.5
Merkel, P.A.6
Greene, C.S.7
-
58
-
-
84979536613
-
Design of Biomedical Robots for Phenotype Prediction Problems
-
deAndrés-Galiana, E.J.; Fernández-Martínez, J.L.; Sonis, S.T. Design of Biomedical Robots for Phenotype Prediction Problems. J. Comput. Biol. 2016, 23, 678–692.
-
(2016)
J. Comput. Biol.
, vol.23
, pp. 678-692
-
-
Deandrés-Galiana, E.J.1
Fernández-Martínez, J.L.2
Sonis, S.T.3
-
59
-
-
84995705666
-
Sensitivity analysis of gene ranking methods in phenotype prediction
-
deAndrés-Galiana, E.J.; Fernández-Martínez, J.L.; Sonis, S.T. Sensitivity analysis of gene ranking methods in phenotype prediction. J. Biomed. Inform. 2016, 64, 255–264.
-
(2016)
J. Biomed. Inform.
, vol.64
, pp. 255-264
-
-
Deandrés-Galiana, E.J.1
Fernández-Martínez, J.L.2
Sonis, S.T.3
-
60
-
-
85062835032
-
Mechanism of glucocerebrosidase activation and dysfunction in Gaucher disease unraveled by molecular dynamics and deep learning
-
Romero, R.; Ramanathan, A.; Yuen, T.; Bhowmik, D.; Mathew, M.; Munshi, L.B.; Javaid, S.; Bloch, M.; Lizneva, D.; Rahimova, A.; et al. Mechanism of glucocerebrosidase activation and dysfunction in Gaucher disease unraveled by molecular dynamics and deep learning. Proc. Natl. Acad. Sci. USA 2019, 116, 5086– 5095.
-
(2019)
Proc. Natl. Acad. Sci. USA
, vol.116
, pp. 5086-5095
-
-
Romero, R.1
Ramanathan, A.2
Yuen, T.3
Bhowmik, D.4
Mathew, M.5
Munshi, L.B.6
Javaid, S.7
Bloch, M.8
Lizneva, D.9
Rahimova, A.10
-
61
-
-
85059828980
-
DeepNEU: Cellular reprogramming comes of age – a machine learning platform with application to rare diseases research
-
Danter, W.R. DeepNEU: Cellular reprogramming comes of age – a machine learning platform with application to rare diseases research. Orphanet J. Rare Dis. 2019, 14, 13.
-
(2019)
Orphanet J. Rare Dis.
, vol.14
-
-
Danter, W.R.1
-
62
-
-
84930965777
-
Analysis of the human diseasome using phenotype similarity between common, genetic and infectious diseases
-
Hoehndorf, R.; Schofield, P.N.; Gkoutos, G.V. Analysis of the human diseasome using phenotype similarity between common, genetic and infectious diseases. Sci. Rep. 2015, 5, 10888.
-
(2015)
Sci. Rep.
, vol.5
-
-
Hoehndorf, R.1
Schofield, P.N.2
Gkoutos, G.V.3
-
63
-
-
85061808799
-
A Computational Framework for Genome-wide Characterization of the Human Disease Landscape
-
Lee, Y.; Krishnan, A.; Oughtred, R.; Rust, J.; Chang, C.S.; Ryu, J.; Kristensen, V.N.; Dolinski, K.; Theesfeld, C.L.; Troyanskaya, O.G. A Computational Framework for Genome-wide Characterization of the Human Disease Landscape. Cell Syst. 2019, 8, 152–162.e6.
-
(2019)
Cell Syst
, vol.8
, pp. 152-162
-
-
Lee, Y.1
Krishnan, A.2
Oughtred, R.3
Rust, J.4
Chang, C.S.5
Ryu, J.6
Kristensen, V.N.7
Dolinski, K.8
Theesfeld, C.L.9
Troyanskaya, O.G.10
-
64
-
-
85047553551
-
A checklist for clinical trials in rare disease: Obstacles and anticipatory actions—lessons learned from the FOR-DMD trial
-
Crow, R.A.; Hart, K.A.; McDermott, M.P.; Tawil, R.; Martens, W.B.; Herr, B.E.; McColl, E.; Wilkinson, J.; Kirschner, J.; King, W.M.; et al. A checklist for clinical trials in rare disease: Obstacles and anticipatory actions—lessons learned from the FOR-DMD trial. Trials 2018, 19, 291.
-
(2018)
Trials
, vol.19
-
-
Crow, R.A.1
Hart, K.A.2
McDermott, M.P.3
Tawil, R.4
Martens, W.B.5
Herr, B.E.6
McColl, E.7
Wilkinson, J.8
Kirschner, J.9
King, W.M.10
-
65
-
-
85056121395
-
Recommendations for the design of small population clinical trials
-
Day, S.; Jonker, A.H.; Lau, L.P.L.; Hilgers, R.-D.; Irony, I.; Larsson, K.; Roes, K.C.; Stallard, N. Recommendations for the design of small population clinical trials. Orphanet J. Rare Dis. 2018, 13, 195.
-
(2018)
Orphanet J. Rare Dis.
, vol.13
-
-
Day, S.1
Jonker, A.H.2
Lau, L.P.L.3
Hilgers, R.-D.4
Irony, I.5
Larsson, K.6
Roes, K.C.7
Stallard, N.8
-
66
-
-
85045008728
-
Characteristics of clinical trials in rare vs. Common diseases: A register-based Latvian study
-
Logviss, K.; Krievins, D.; Purvina, S. Characteristics of clinical trials in rare vs. common diseases: A register-based Latvian study. PLoS ONE 2018, 13, e0194494.
-
(2018)
Plos ONE
, vol.13
-
-
Logviss, K.1
Krievins, D.2
Purvina, S.3
-
67
-
-
85020761881
-
A Computable Phenotype Improves Cohort Ascertainment in a Pediatric Pulmonary Hypertension Registry
-
Geva, A.; Gronsbell, J.L.; Cai, T.; Cai, T.; Murphy, S.N.; Lyons, J.C.; Heinz, M.M.; Natter, M.D.; Patibandla, N.; Bickel, J.; et al. A Computable Phenotype Improves Cohort Ascertainment in a Pediatric Pulmonary Hypertension Registry. J. Pediatrics 2017, 188, 224–231.e5.
-
(2017)
J. Pediatrics
, vol.188
, pp. 224-231
-
-
Geva, A.1
Gronsbell, J.L.2
Cai, T.3
Cai, T.4
Murphy, S.N.5
Lyons, J.C.6
Heinz, M.M.7
Natter, M.D.8
Patibandla, N.9
Bickel, J.10
-
68
-
-
85034581329
-
The International Rare Diseases Research Consortium: Policies and Guidelines to maximize impact
-
Lochmüller, H.; Torrent i Farnell, J.; Le Cam, Y.; Jonker, A.H.; Lau, L.P.; Baynam, G.; Kaufmann, P.; Dawkins, H.J.; Lasko, P.; Austin, C.P.; et al. The International Rare Diseases Research Consortium: Policies and Guidelines to maximize impact. Eur. J. Hum. Genet. 2017, 25, 1293–1302.
-
(2017)
Eur. J. Hum. Genet
, vol.25
, pp. 1293-1302
-
-
Lochmüller, H.1
Torrent I Farnell, J.2
Le Cam, Y.3
Jonker, A.H.4
Lau, L.P.5
Baynam, G.6
Kaufmann, P.7
Dawkins, H.J.8
Lasko, P.9
Austin, C.P.10
-
69
-
-
77951484446
-
The application of biomarkers in clinical trials for motor neuron disease
-
Ganesalingam, J.; Bowser, R. The application of biomarkers in clinical trials for motor neuron disease. Biomark. Med. 2010, 4, 281–297.
-
(2010)
Biomark. Med.
, vol.4
, pp. 281-297
-
-
Ganesalingam, J.1
Bowser, R.2
-
70
-
-
85048137512
-
A pharmaco-metabolomics approach in a clinical trial of ALS: Identification of predictive markers of progression
-
Blasco, H.; Patin, F.; Descat, A.; Garçon, G.; Corcia, P.; Gelé, P.; Lenglet, T.; Bede, P.; Meininger, V.; Devos, D.; et al. A pharmaco-metabolomics approach in a clinical trial of ALS: Identification of predictive markers of progression. PLoS ONE 2018, 13, e0198116.
-
(2018)
Plos ONE
, vol.13
-
-
Blasco, H.1
Patin, F.2
Descat, A.3
Garçon, G.4
Corcia, P.5
Gelé, P.6
Lenglet, T.7
Bede, P.8
Meininger, V.9
Devos, D.10
-
71
-
-
85075642213
-
Cerebrospinal fluid metabolomics in West Syndrome: Central role of the serine metabolic pathway
-
Lagrue, E.; Madji Hounoum, B.; Rullier, C.R.; Andres, C.; Emond, P.; Bocca, C.; Castelnau, P.; Blasco, H. Cerebrospinal fluid metabolomics in West Syndrome: Central role of the serine metabolic pathway. J. Transl. Sci. 2018, 4, e101.
-
(2018)
J. Transl. Sci.
, vol.4
-
-
Lagrue, E.1
Madji Hounoum, B.2
Rullier, C.R.3
Andres, C.4
Emond, P.5
Bocca, C.6
Castelnau, P.7
Blasco, H.8
-
72
-
-
85041669094
-
In silico clinical trials for pediatric orphan diseases
-
Carlier, A.; Vasilevich, A.; Marechal, M.; de Boer, J.; Geris, L. In silico clinical trials for pediatric orphan diseases. Sci. Rep. 2018, 8, 2465.
-
(2018)
Sci. Rep.
, vol.8
-
-
Carlier, A.1
Vasilevich, A.2
Marechal, M.3
de Boer, J.4
Geris, L.5
-
73
-
-
85054423133
-
Towards automated clinical coding
-
Catling, F.; Spithourakis, G.P.; Riedel, S. Towards automated clinical coding. Int. J. Med Inform. 2018, 120, 50–61.
-
(2018)
Int. J. Med Inform.
, vol.120
, pp. 50-61
-
-
Catling, F.1
Spithourakis, G.P.2
Riedel, S.3
-
74
-
-
84988640362
-
Stacked ensemble combined with fuzzy matching for biomedical named entity recognition of diseases
-
Bhasuran, B.; Murugesan, G.; Abdulkadhar, S.; Natarajan, J. Stacked ensemble combined with fuzzy matching for biomedical named entity recognition of diseases. J. Biomed. Inform. 2016, 64, 1–9.
-
(2016)
J. Biomed. Inform.
, vol.64
, pp. 1-9
-
-
Bhasuran, B.1
Murugesan, G.2
Abdulkadhar, S.3
Natarajan, J.4
-
75
-
-
85064312088
-
Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition
-
Xu, K.; Yang, Z.; Kang, P.; Wang, Q.; Liu, W. Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition. Comput. Biol. Med. 2019, 108, 122–132.
-
(2019)
Comput. Biol. Med.
, vol.108
, pp. 122-132
-
-
Xu, K.1
Yang, Z.2
Kang, P.3
Wang, Q.4
Liu, W.5
-
76
-
-
84924271551
-
Rare Disease Registries Classification and Characterization: A Data Mining Approach
-
Santoro, M.; Coi, A.; Lipucci Di Paola, M.; Bianucci, A.M.; Gainotti, S.; Mollo, E.; Taruscio, D.; Vittozzi, L.; Bianchi, F. Rare Disease Registries Classification and Characterization: A Data Mining Approach. Public Health Genom. 2015, 18, 113–122.
-
(2015)
Public Health Genom
, vol.18
, pp. 113-122
-
-
Santoro, M.1
Coi, A.2
Lipucci Di Paola, M.3
Bianucci, A.M.4
Gainotti, S.5
Mollo, E.6
Taruscio, D.7
Vittozzi, L.8
Bianchi, F.9
-
77
-
-
85042309382
-
Congenital disorders of glycosylation (CDG): Quo vadis?
-
Péanne, R.; de Lonlay, P.; Foulquier, F.; Kornak, U.; Lefeber, D.J.; Morava, E.; Pérez, B.; Seta, N.; Thiel, C.; Van Schaftingen, E.; et al. Congenital disorders of glycosylation (CDG): Quo vadis? Eur. J. Med. Genet. 2018, 61, 643–663.
-
(2018)
Eur. J. Med. Genet.
, vol.61
, pp. 643-663
-
-
Péanne, R.1
de Lonlay, P.2
Foulquier, F.3
Kornak, U.4
Lefeber, D.J.5
Morava, E.6
Pérez, B.7
Seta, N.8
Thiel, C.9
van Schaftingen, E.10
-
79
-
-
85056729645
-
The challenge of CDG diagnosis
-
Francisco, R.; Marques-da-Silva, D.; Brasil, S.; Pascoal, C.; dos Reis Ferreira, V.; Morava, E.; Jaeken, J. The challenge of CDG diagnosis. Mol. Genet. Metab. 2019, 126, 1–5.
-
(2019)
Mol. Genet. Metab.
, vol.126
, pp. 1-5
-
-
Francisco, R.1
Marques-Da-Silva, D.2
Brasil, S.3
Pascoal, C.4
Dos Reis Ferreira, V.5
Morava, E.6
Jaeken, J.7
-
80
-
-
85068160845
-
CDG and immune response: From bedside to bench and back
-
Pascoal, C.; Francisco, R.; Ferro, T.; dos Reis Ferreira, V.; Jaeken, J.; Videira, P.A. CDG and immune response: From bedside to bench and back. J. Inherit. Metab. Dis. 2019, doi:10.1002/jimd.12126.
-
(2019)
J. Inherit. Metab. Dis.
-
-
Pascoal, C.1
Francisco, R.2
Ferro, T.3
Dos Reis Ferreira, V.4
Jaeken, J.5
Videira, P.A.6
-
81
-
-
85052084978
-
The Analysis of Variants in the General Population Reveals That PMM2 Is Extremely Tolerant to Missense Mutations and That Diagnosis of PMM2-CDG Can Benefit from the Identification of Modifiers
-
Citro, V.; Cimmaruta, C.; Monticelli, M.; Riccio, G.; Hay Mele, B.; Cubellis, M.; Andreotti, G. The Analysis of Variants in the General Population Reveals That PMM2 Is Extremely Tolerant to Missense Mutations and That Diagnosis of PMM2-CDG Can Benefit from the Identification of Modifiers. Int. J. Mol. Sci. 2018, 19, 2218.
-
(2018)
Int. J. Mol. Sci.
, vol.19
, pp. 2218
-
-
Citro, V.1
Cimmaruta, C.2
Monticelli, M.3
Riccio, G.4
Hay Mele, B.5
Cubellis, M.6
Andreotti, G.7
-
82
-
-
38849163717
-
Glycosylation site prediction using ensembles of Support Vector Machine classifiers
-
Caragea, C.; Sinapov, J.; Silvescu, A.; Dobbs, D.; Honavar, V. Glycosylation site prediction using ensembles of Support Vector Machine classifiers. BMC Bioinform. 2007, 8, 438.
-
(2007)
BMC Bioinform
, vol.8
, pp. 438
-
-
Caragea, C.1
Sinapov, J.2
Silvescu, A.3
Dobbs, D.4
Honavar, V.5
-
83
-
-
62149135362
-
Prediction of glycosylation sites using random forests
-
Hamby, S.E.; Hirst, J.D. Prediction of glycosylation sites using random forests. BMC Bioinform. 2008, 9, 500.
-
(2008)
BMC Bioinform
, vol.9
-
-
Hamby, S.E.1
Hirst, J.D.2
-
84
-
-
85046299553
-
CDG Therapies: From Bench to Bedside
-
Brasil, S.; Pascoal, C.; Francisco, R.; Marques-da-Silva, D.; Andreotti, G.; Videira, P.; Morava, E.; Jaeken, J.; dos Reis Ferreira, V. CDG Therapies: From Bench to Bedside. Int. J. Mol. Sci.2018, 19, 1304.
-
(2018)
Int. J. Mol. Sci.
, vol.19
, pp. 1304
-
-
Brasil, S.1
Pascoal, C.2
Francisco, R.3
Marques-Da-Silva, D.4
Andreotti, G.5
Videira, P.6
Morava, E.7
Jaeken, J.8
Dos Reis Ferreira, V.9
-
85
-
-
85046625541
-
Perspectives on Glycosylation and Its Congenital Disorders
-
Ng, B.G.; Freeze, H.H. Perspectives on Glycosylation and Its Congenital Disorders. Trends Genet. 2018, 34, 466–476.
-
(2018)
Trends Genet
, vol.34
, pp. 466-476
-
-
Ng, B.G.1
Freeze, H.H.2
-
86
-
-
85070843218
-
Maintaining order: COG complex controls Golgi trafficking, processing, and sorting
-
Blackburn, J.B.; D’Souza, Z.; Lupashin, V.V. Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Lett. 2019, 593, 2466–2487.
-
(2019)
FEBS Lett
, vol.593
, pp. 2466-2487
-
-
Blackburn, J.B.1
D’Souza, Z.2
Lupashin, V.V.3
-
87
-
-
0035089105
-
Congenital Disorders of Glycosylation: Glycosylation Defects in Man and Biological Models for Their Study
-
Marquardt, T.; Freeze, H. Congenital Disorders of Glycosylation: Glycosylation Defects in Man and Biological Models for Their Study. Biol. Chem. 2001, 382, 161–177.
-
(2001)
Biol. Chem.
, vol.382
, pp. 161-177
-
-
Marquardt, T.1
Freeze, H.2
-
88
-
-
85045948828
-
More than just sugars: Conserved oligomeric Golgi complex deficiency causes glycosylation-independent cellular defects
-
Blackburn, J.B.; Kudlyk, T.; Pokrovskaya, I.; Lupashin, V.V. More than just sugars: Conserved oligomeric Golgi complex deficiency causes glycosylation-independent cellular defects. Traffic 2018, 19, 463–480.
-
(2018)
Traffic
, vol.19
, pp. 463-480
-
-
Blackburn, J.B.1
Kudlyk, T.2
Pokrovskaya, I.3
Lupashin, V.V.4
-
89
-
-
85034849205
-
IsGPT: An optimized model to identify sub-Golgi protein types using SVM and Random Forest based feature selection
-
Rahman, M.S.; Rahman, M.K.; Kaykobad, M.; Rahman, M.S. isGPT: An optimized model to identify sub-Golgi protein types using SVM and Random Forest based feature selection. Artif. Intell. Med. 2018, 84, 90– 100.
-
(2018)
Artif. Intell. Med.
, vol.84
, pp. 90-100
-
-
Rahman, M.S.1
Rahman, M.K.2
Kaykobad, M.3
Rahman, M.S.4
-
90
-
-
85057133205
-
From gestalt to gene: Early predictive dysmorphic features of PMM2-CDG
-
Martinez-Monseny, A.; Cuadras, D.; Bolasell, M.; Muchart, J.; Arjona, C.; Borregan, M.; Algrabli, A.; Montero, R.; Artuch, R.; Velázquez-Fragua, R.; et al. From gestalt to gene: Early predictive dysmorphic features of PMM2-CDG. J. Med. Genet. 2019, 56, 236–245.
-
(2019)
J. Med. Genet.
, vol.56
, pp. 236-245
-
-
Martinez-Monseny, A.1
Cuadras, D.2
Bolasell, M.3
Muchart, J.4
Arjona, C.5
Borregan, M.6
Algrabli, A.7
Montero, R.8
Artuch, R.9
Velázquez-Fragua, R.10
-
91
-
-
85075654876
-
RDAD: A Machine Learning System to Support Phenotype-Based Rare Disease Diagnosis
-
Jia, J.; Wang, R.; An, Z.; Guo, Y.; Ni, X.; Shi, T. RDAD: A Machine Learning System to Support Phenotype-Based Rare Disease Diagnosis. Front. Genet. 2018, 9, 587.
-
(2018)
Front. Genet.
, vol.9
, pp. 587
-
-
Jia, J.1
Wang, R.2
An, Z.3
Guo, Y.4
Ni, X.5
Shi, T.6
-
92
-
-
84874210289
-
Validation of a new multiple osteochondromas classification through Switching Neural Networks
-
Mordenti, M.; Ferrari, E.; Pedrini, E.; Fabbri, N.; Campanacci, L.; Muselli, M.; Sangiorgi, L. Validation of a new multiple osteochondromas classification through Switching Neural Networks. Am. J. Med. Genet. 2013, 161, 556–560.
-
(2013)
Am. J. Med. Genet.
, vol.161
, pp. 556-560
-
-
Mordenti, M.1
Ferrari, E.2
Pedrini, E.3
Fabbri, N.4
Campanacci, L.5
Muselli, M.6
Sangiorgi, L.7
-
93
-
-
84859849103
-
Neurology of inherited glycosylation disorders
-
Freeze, H.H.; Eklund, E.A.; Ng, B.G.; Patterson, M.C. Neurology of inherited glycosylation disorders. Lancet Neurol. 2012, 11, 453–466.
-
(2012)
Lancet Neurol
, vol.11
, pp. 453-466
-
-
Freeze, H.H.1
Eklund, E.A.2
Ng, B.G.3
Patterson, M.C.4
-
94
-
-
85042509697
-
Stroke-Like Episodes and Cerebellar Syndrome in Phosphomannomutase Deficiency (PMM2-CDG): Evidence for Hypoglycosylation-Driven Channelopathy
-
Izquierdo-Serra, M.; Martínez-Monseny, A.; López, L.; Carrillo-García, J.; Edo, A.; Ortigoza-Escobar, J.; García, Ó.; Cancho-Candela, R.; Carrasco-Marina, M.; Gutiérrez-Solana, L. Stroke-Like Episodes and Cerebellar Syndrome in Phosphomannomutase Deficiency (PMM2-CDG): Evidence for Hypoglycosylation-Driven Channelopathy. Int. J. Mol. Sci.2018, 19, 619.
-
(2018)
Int. J. Mol. Sci.
, vol.19
, pp. 619
-
-
Izquierdo-Serra, M.1
Martínez-Monseny, A.2
López, L.3
Carrillo-García, J.4
Edo, A.5
Ortigoza-Escobar, J.6
García, Ó.7
Cancho-Candela, R.8
Carrasco-Marina, M.9
Gutiérrez-Solana, L.10
-
95
-
-
85056624361
-
Improving Young Stroke Prediction by Learning with Active Data Augmenter in a Large-Scale Electronic Medical Claims Database
-
Honolulu, HI, USA, July
-
Hung, C.-Y.; Lin, C.-H.; Lee, C.-C. Improving Young Stroke Prediction by Learning with Active Data Augmenter in a Large-Scale Electronic Medical Claims Database. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 5362–5365.
-
(2018)
Proceedings of the 2018 40Th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
, vol.17-21
, pp. 5362-5365
-
-
Hung, C.-Y.1
Lin, C.-H.2
Lee, C.-C.3
-
96
-
-
85042314185
-
Mining the transcriptome for rare disease therapies: A comparison of the efficiencies of two data mining approaches and a targeted cell-based drug screen
-
Mears, A.J.; Schock, S.C.; Hadwen, J.; Putos, S.; Dyment, D.; Boycott, K.M.; MacKenzie, A. Mining the transcriptome for rare disease therapies: A comparison of the efficiencies of two data mining approaches and a targeted cell-based drug screen. npj Genom. Med. 2017, 2, 14.
-
(2017)
Npj Genom. Med.
, vol.2
-
-
Mears, A.J.1
Schock, S.C.2
Hadwen, J.3
Putos, S.4
Dyment, D.5
Boycott, K.M.6
Mackenzie, A.7
-
97
-
-
85071976176
-
AI in Health: State of the Art, Challenges, and Future Directions
-
Wang, F.; Preininger, A. AI in Health: State of the Art, Challenges, and Future Directions. Yearb. Med. Inf. 2019, 28, 016–026.
-
(2019)
Yearb. Med. Inf.
, vol.28
, pp. 016-026
-
-
Wang, F.1
Preininger, A.2
-
98
-
-
84996517578
-
A Medical Decision Support System (DSS) for Ubiquitous Healthcare Diagnosis System
-
Conejar, R.J.; Kim, H.-K. A Medical Decision Support System (DSS) for Ubiquitous Healthcare Diagnosis System. Int. J. Softw. Eng. Its Appl. 2014, 8, 8.
-
(2014)
Int. J. Softw. Eng. Its Appl.
, vol.8
, pp. 8
-
-
Conejar, R.J.1
Kim, H.-K.2
-
99
-
-
85061202797
-
DNA methylation profiling reliably distinguishes pulmonary enteric adenocarcinoma from metastatic colorectal cancer
-
Jurmeister, P.; Schöler, A.; Arnold, A.; Klauschen, F.; Lenze, D.; Hummel, M.; Schweizer, L.; Bläker, H.; Pfitzner, B.M.; Mamlouk, S.; et al. DNA methylation profiling reliably distinguishes pulmonary enteric adenocarcinoma from metastatic colorectal cancer. Mod. Pathol. 2019, 32, 855–865.
-
(2019)
Mod. Pathol.
, vol.32
, pp. 855-865
-
-
Jurmeister, P.1
Schöler, A.2
Arnold, A.3
Klauschen, F.4
Lenze, D.5
Hummel, M.6
Schweizer, L.7
Bläker, H.8
Pfitzner, B.M.9
Mamlouk, S.10
-
100
-
-
85018772046
-
Patient’s Experience in Pediatric Primary Immunodeficiency Disorders: Computerized Classification of Questionnaires
-
Mücke, U.; Klemann, C.; Baumann, U.; Meyer-Bahlburg, A.; Kortum, X.; Klawonn, F.; Lechner, W.M.; Grigull, L. Patient’s Experience in Pediatric Primary Immunodeficiency Disorders: Computerized Classification of Questionnaires. Front. Immunol. 2017, 8, 384.
-
(2017)
Front. Immunol.
, vol.8
, pp. 384
-
-
Mücke, U.1
Klemann, C.2
Baumann, U.3
Meyer-Bahlburg, A.4
Kortum, X.5
Klawonn, F.6
Lechner, W.M.7
Grigull, L.8
-
101
-
-
84870778464
-
Involvement of Patient Organisations in Research and Development of Orphan Drugs for Rare Diseases in Europe
-
Mavris, M.; Le Cam, Y. Involvement of Patient Organisations in Research and Development of Orphan Drugs for Rare Diseases in Europe. Mol. Syndr. 2012, 3, 237–243.
-
(2012)
Mol. Syndr.
, vol.3
, pp. 237-243
-
-
Mavris, M.1
Le Cam, Y.2
-
102
-
-
85052697244
-
Mining Facebook Data of People with Rare Diseases: A Content-Based and Temporal Analysis
-
Subirats, L.; Reguera, N.; Bañón, A.; Gómez-Zúñiga, B.; Minguillón, J.; Armayones, M. Mining Facebook Data of People with Rare Diseases: A Content-Based and Temporal Analysis. Int. J. Environ. Res. Public Health 2018, 15, 1877.
-
(2018)
Int. J. Environ. Res. Public Health
, vol.15
, pp. 1877
-
-
Subirats, L.1
Reguera, N.2
Bañón, A.3
Gómez-Zúñiga, B.4
Minguillón, J.5
Armayones, M.6
|