메뉴 건너뛰기




Volumn 10, Issue 12, 2019, Pages

Artificial intelligence (AI) in rare diseases: Is the future brighter?

Author keywords

Artificial intelligence; Big data; Congenital disorders of glycosylation; Diagnosis; Drug repurposing; Machine learning; Personalized medicine; Rare diseases

Indexed keywords

BIOLOGICAL MARKER; GOLGI MATRIX;

EID: 85075672800     PISSN: None     EISSN: 20734425     Source Type: Journal    
DOI: 10.3390/genes10120978     Document Type: Review
Times cited : (77)

References (102)
  • 2
    • 85012119105 scopus 로고    scopus 로고
    • Industrializing rare disease therapy discovery and development
    • Ekins, S. Industrializing rare disease therapy discovery and development. Nat. Biotechnol. 2017, 35, 117– 118.
    • (2017) Nat. Biotechnol. , vol.35 , pp. 117-118
    • Ekins, S.1
  • 3
    • 85075645339 scopus 로고    scopus 로고
    • (accessed on 18 September 2019)
    • About Rare Diseases. Available online: https://www.eurordis.org/about-rare-diseases(accessed on 18 September 2019).
  • 4
    • 85063393087 scopus 로고    scopus 로고
    • Can a decision support system accelerate rare disease diagnosis? Evaluating the potential impact of Ada DX in a retrospective study
    • Ronicke, S.; Hirsch, M.C.; Turk, E.; Larionov, K.; Tientcheu, D.; Wagner, A.D. Can a decision support system accelerate rare disease diagnosis? Evaluating the potential impact of Ada DX in a retrospective study. Orphanet J. Rare Dis. 2019, 14, 69.
    • (2019) Orphanet J. Rare Dis. , vol.14
    • Ronicke, S.1    Hirsch, M.C.2    Turk, E.3    Larionov, K.4    Tientcheu, D.5    Wagner, A.D.6
  • 5
  • 6
    • 85044518952 scopus 로고    scopus 로고
    • The Challenge of Rare Diseases
    • Stoller, J.K. The Challenge of Rare Diseases. Chest 2018, 153, 1309–1314.
    • (2018) Chest , vol.153 , pp. 1309-1314
    • Stoller, J.K.1
  • 8
    • 85056125716 scopus 로고    scopus 로고
    • From scientific discovery to treatments for rare diseases—The view from the National Center for Advancing Translational Sciences—Office of Rare Diseases Research
    • Kaufmann, P.; Pariser, A.R.; Austin, C. From scientific discovery to treatments for rare diseases—The view from the National Center for Advancing Translational Sciences—Office of Rare Diseases Research. Orphanet J. Rare Dis. 2018, 13, 196.
    • (2018) Orphanet J. Rare Dis. , vol.13
    • Kaufmann, P.1    Pariser, A.R.2    Austin, C.3
  • 9
    • 85037663316 scopus 로고    scopus 로고
    • Personalized Medicine: What’s in it for Rare Diseases?
    • Posada de la Paz, M., Taruscio, D., Groft, S.C., Eds.; Springer International Publishing: Cham, Switzerland
    • Schee genannt Halfmann, S.; Mählmann, L.; Leyens, L.; Reumann, M.; Brand, A. Personalized Medicine: What’s in it for Rare Diseases? In Rare Diseases Epidemiology: Update and Overview; Posada de la Paz, M., Taruscio, D., Groft, S.C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 1031, pp. 387–404, ISBN 978-3-319-67142-0.
    • (2017) Rare Diseases Epidemiology: Update and Overview , vol.1031 , pp. 387-404
    • Schee Genannt Halfmann, S.1    Mählmann, L.2    Leyens, L.3    Reumann, M.4    Brand, A.5
  • 10
    • 85071139508 scopus 로고    scopus 로고
    • Looking beyond the hype: Applied AI and machine learning in translational medicine
    • Toh, T.S.; Dondelinger, F.; Wang, D. Looking beyond the hype: Applied AI and machine learning in translational medicine. EBioMedicine 2019, 47, 607–615.
    • (2019) Ebiomedicine , vol.47 , pp. 607-615
    • Toh, T.S.1    Dondelinger, F.2    Wang, D.3
  • 12
    • 85064564680 scopus 로고    scopus 로고
    • Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis Screening and Visualization
    • Pasa, F.; Golkov, V.; Pfeiffer, F.; Cremers, D.; Pfeiffer, D. Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis Screening and Visualization. Sci. Rep. 2019, 9, 6268.
    • (2019) Sci. Rep. , vol.9
    • Pasa, F.1    Golkov, V.2    Pfeiffer, F.3    Cremers, D.4    Pfeiffer, D.5
  • 15
    • 85049130543 scopus 로고    scopus 로고
    • Application of density estimation algorithms in analyzing co-morbidities of migraine
    • Yang, M.-H.; Yang, F.-Y.; Oyang, Y.-J. Application of density estimation algorithms in analyzing co-morbidities of migraine. Netw. Model. Anal. Health Inform. Bioinform. 2013, 2, 95–107.
    • (2013) Netw. Model. Anal. Health Inform. Bioinform. , vol.2 , pp. 95-107
    • Yang, M.-H.1    Yang, F.-Y.2    Oyang, Y.-J.3
  • 16
    • 0036192067 scopus 로고    scopus 로고
    • Estimation of Survival Distributions of Treatment Policies in Two-Stage Randomization Designs in Clinical Trials
    • Lunceford, J.K.; Davidian, M.; Tsiatis, A.A. Estimation of Survival Distributions of Treatment Policies in Two-Stage Randomization Designs in Clinical Trials. Biometrics 2002, 58, 48–57.
    • (2002) Biometrics , vol.58 , pp. 48-57
    • Lunceford, J.K.1    Davidian, M.2    Tsiatis, A.A.3
  • 17
    • 84872856940 scopus 로고    scopus 로고
    • Adaptive control of epileptiform excitability in an in vitro model of limbic seizures
    • Panuccio, G.; Guez, A.; Vincent, R.; Avoli, M.; Pineau, J. Adaptive control of epileptiform excitability in an in vitro model of limbic seizures. Exp. Neurol. 2013, 241, 179–183.
    • (2013) Exp. Neurol. , vol.241 , pp. 179-183
    • Panuccio, G.1    Guez, A.2    Vincent, R.3    Avoli, M.4    Pineau, J.5
  • 18
    • 85059811921 scopus 로고    scopus 로고
    • High-performance medicine: The convergence of human and artificial intelligence
    • Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56.
    • (2019) Nat. Med. , vol.25 , pp. 44-56
    • Topol, E.J.1
  • 21
    • 84874741731 scopus 로고    scopus 로고
    • Identifying Mendelian disease genes with the Variant Effect Scoring Tool
    • Carter, H.; Douville, C.; Stenson, P.D.; Cooper, D.N.; Karchin, R. Identifying Mendelian disease genes with the Variant Effect Scoring Tool. BMC Genom. 2013, 14, S3.
    • (2013) BMC Genom , vol.14 , pp. S3
    • Carter, H.1    Douville, C.2    Stenson, P.D.3    Cooper, D.N.4    Karchin, R.5
  • 22
    • 85054427804 scopus 로고    scopus 로고
    • ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants
    • Alirezaie, N.; Kernohan, K.D.; Hartley, T.; Majewski, J.; Hocking, T.D. ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants. Am. J. Hum. Genet. 2018, 103, 474–483.
    • (2018) Am. J. Hum. Genet. , vol.103 , pp. 474-483
    • Alirezaie, N.1    Kernohan, K.D.2    Hartley, T.3    Majewski, J.4    Hocking, T.D.5
  • 25
    • 85054078463 scopus 로고    scopus 로고
    • Impact of structural prior knowledge in SNV prediction: Towards causal variant finding in rare disease
    • Dehiya, V.; Thomas, J.; Sael, L. Impact of structural prior knowledge in SNV prediction: Towards causal variant finding in rare disease. PLoS ONE 2018, 13, e0204101.
    • (2018) Plos ONE , vol.13
    • Dehiya, V.1    Thomas, J.2    Sael, L.3
  • 26
    • 84880518692 scopus 로고    scopus 로고
    • Identification of deleterious synonymous variants in human genomes
    • Buske, O.J.; Manickaraj, A.; Mital, S.; Ray, P.N.; Brudno, M. Identification of deleterious synonymous variants in human genomes. Bioinformatics 2013, 29, 1843–1850.
    • (2013) Bioinformatics , vol.29 , pp. 1843-1850
    • Buske, O.J.1    Manickaraj, A.2    Mital, S.3    Ray, P.N.4    Brudno, M.5
  • 27
    • 84944233259 scopus 로고    scopus 로고
    • In Silico Prediction of the Effects of Mutations in the Human Mevalonate Kinase Gene: Towards a Predictive Framework for Mevalonate Kinase Deficiency: Effects of Mutations in Human MVK
    • Browne, C.; Timson, D.J. In Silico Prediction of the Effects of Mutations in the Human Mevalonate Kinase Gene: Towards a Predictive Framework for Mevalonate Kinase Deficiency: Effects of Mutations in Human MVK. Ann. Hum. Genet. 2015, 79, 451–459.
    • (2015) Ann. Hum. Genet. , vol.79 , pp. 451-459
    • Browne, C.1    Timson, D.J.2
  • 31
    • 85059285536 scopus 로고    scopus 로고
    • Constructing a database for the relations between CNV and human genetic diseases via systematic text mining
    • Yang, X.; Song, Z.; Wu, C.; Wang, W.; Li, G.; Zhang, W.; Wu, L.; Lu, K. Constructing a database for the relations between CNV and human genetic diseases via systematic text mining. BMC Bioinform. 2018, 19, 528.
    • (2018) BMC Bioinform , vol.19 , pp. 528
    • Yang, X.1    Song, Z.2    Wu, C.3    Wang, W.4    Li, G.5    Zhang, W.6    Wu, L.7    Lu, K.8
  • 33
    • 85060610025 scopus 로고    scopus 로고
    • Xrare: A machine learning method jointly modeling phenotypes and genetic evidence for rare disease diagnosis
    • Li, Q.; Zhao, K.; Bustamante, C.D.; Ma, X.; Wong, W.H. Xrare: A machine learning method jointly modeling phenotypes and genetic evidence for rare disease diagnosis. Genet. Med. 2019, 21, 2126–2134.
    • (2019) Genet. Med. , vol.21 , pp. 2126-2134
    • Li, Q.1    Zhao, K.2    Bustamante, C.D.3    Ma, X.4    Wong, W.H.5
  • 34
    • 85049666228 scopus 로고    scopus 로고
    • Phenotype-driven gene prioritization for rare diseases using graph convolution on heterogeneous networks
    • Rao, A.; Vg, S.; Joseph, T.; Kotte, S.; Sivadasan, N.; Srinivasan, R. Phenotype-driven gene prioritization for rare diseases using graph convolution on heterogeneous networks. BMC Med. Genom. 2018, 11, 57.
    • (2018) BMC Med. Genom. , vol.11
    • Rao, A.1    Vg, S.2    Joseph, T.3    Kotte, S.4    Sivadasan, N.5    Srinivasan, R.6
  • 35
    • 84899483170 scopus 로고    scopus 로고
    • Inferring characteristic phenotypes via class association rule mining in the bone dysplasia domain
    • Paul, R.; Groza, T.; Hunter, J.; Zankl, A. Inferring characteristic phenotypes via class association rule mining in the bone dysplasia domain. J. Biomed. Inform. 2014, 48, 73–83.
    • (2014) J. Biomed. Inform. , vol.48 , pp. 73-83
    • Paul, R.1    Groza, T.2    Hunter, J.3    Zankl, A.4
  • 36
    • 85058789513 scopus 로고    scopus 로고
    • Mucopolysaccharidosis type II detection by Naïve Bayes Classifier: An example of patient classification for a rare disease using electronic medical records from the Canadian Primary Care Sentinel Surveillance Network
    • Ehsani-Moghaddam, B.; Queenan, J.A.; MacKenzie, J.; Birtwhistle, R.V. Mucopolysaccharidosis type II detection by Naïve Bayes Classifier: An example of patient classification for a rare disease using electronic medical records from the Canadian Primary Care Sentinel Surveillance Network. PLoS ONE 2018, 13, e0209018.
    • (2018) Plos ONE , vol.13
    • Ehsani-Moghaddam, B.1    Queenan, J.A.2    Mackenzie, J.3    Birtwhistle, R.V.4
  • 37
    • 85055264035 scopus 로고    scopus 로고
    • Utilization of Electronic Medical Records and Biomedical Literature to Support the Diagnosis of Rare Diseases Using Data Fusion and Collaborative Filtering Approaches
    • Shen, F.; Liu, S.; Wang, Y.; Wen, A.; Wang, L.; Liu, H. Utilization of Electronic Medical Records and Biomedical Literature to Support the Diagnosis of Rare Diseases Using Data Fusion and Collaborative Filtering Approaches. JMIR Med. Inform. 2018, 6, e11301.
    • (2018) JMIR Med. Inform. , vol.6
    • Shen, F.1    Liu, S.2    Wang, Y.3    Wen, A.4    Wang, L.5    Liu, H.6
  • 39
    • 84921633944 scopus 로고    scopus 로고
    • Phen-Gen: Combining phenotype and genotype to analyze rare disorders
    • Javed, A.; Agrawal, S.; Ng, P.C. Phen-Gen: Combining phenotype and genotype to analyze rare disorders. Nat. Methods 2014, 11, 935–937.
    • (2014) Nat. Methods , vol.11 , pp. 935-937
    • Javed, A.1    Agrawal, S.2    Ng, P.C.3
  • 42
    • 84942807476 scopus 로고    scopus 로고
    • Important Considerations in the Initial Clinical Evaluation of the Dysmorphic Neonate
    • Smpokou, P.; Lanpher, B.C.; Rosenbaum, K.N. Important Considerations in the Initial Clinical Evaluation of the Dysmorphic Neonate. Adv. Neonatal Care 2015, 15, 248–252.
    • (2015) Adv. Neonatal Care , vol.15 , pp. 248-252
    • Smpokou, P.1    Lanpher, B.C.2    Rosenbaum, K.N.3
  • 43
    • 85048445198 scopus 로고    scopus 로고
    • Phenotypic Image Analysis Software Tools for Exploring and Understanding Big Image Data from Cell-Based Assays
    • Smith, K.; Piccinini, F.; Balassa, T.; Koos, K.; Danka, T.; Azizpour, H.; Horvath, P. Phenotypic Image Analysis Software Tools for Exploring and Understanding Big Image Data from Cell-Based Assays. Cell Syst. 2018, 6, 636–653.
    • (2018) Cell Syst , vol.6 , pp. 636-653
    • Smith, K.1    Piccinini, F.2    Balassa, T.3    Koos, K.4    Danka, T.5    Azizpour, H.6    Horvath, P.7
  • 47
    • 84964063098 scopus 로고    scopus 로고
    • Recognition of the Cornelia de Lange syndrome phenotype with facial dysmorphology novel analysis: Recognition of the CdLS Phenotype with FDNA
    • Basel-Vanagaite, L.; Wolf, L.; Orin, M.; Larizza, L.; Gervasini, C.; Krantz, I.D.; Deardoff, M.A. Recognition of the Cornelia de Lange syndrome phenotype with facial dysmorphology novel analysis: Recognition of the CdLS Phenotype with FDNA. Clin. Genet. 2016, 89, 557–563.
    • (2016) Clin. Genet. , vol.89 , pp. 557-563
    • Basel-Vanagaite, L.1    Wolf, L.2    Orin, M.3    Larizza, L.4    Gervasini, C.5    Krantz, I.D.6    Deardoff, M.A.7
  • 48
    • 85036575463 scopus 로고    scopus 로고
    • Next generation phenotyping in Emanuel and Pallister-Killian syndrome using computer-aided facial dysmorphology analysis of 2D photos: LIEHR et al
    • Liehr, T.; Acquarola, N.; Pyle, K.; St-Pierre, S.; Rinholm, M.; Bar, O.; Wilhelm, K.; Schreyer, I. Next generation phenotyping in Emanuel and Pallister-Killian syndrome using computer-aided facial dysmorphology analysis of 2D photos: LIEHR et al. Clin. Genet. 2018, 93, 378–381.
    • (2018) Clin. Genet. , vol.93 , pp. 378-381
    • Liehr, T.1    Acquarola, N.2    Pyle, K.3    St-Pierre, S.4    Rinholm, M.5    Bar, O.6    Wilhelm, K.7    Schreyer, I.8
  • 49
    • 85063638412 scopus 로고    scopus 로고
    • The Discovery of a LEMD2-Associated Nuclear Envelopathy with Early Progeroid Appearance Suggests Advanced Applications for AI-Driven Facial Phenotyping
    • Marbach, F.; Rustad, C.F.; Riess, A.; Đukić, D.; Hsieh, T.-C.; Jobani, I.; Prescott, T.; Bevot, A.; Erger, F.; Houge, G.; et al. The Discovery of a LEMD2-Associated Nuclear Envelopathy with Early Progeroid Appearance Suggests Advanced Applications for AI-Driven Facial Phenotyping. Am. J. Hum. Genet. 2019, 104, 749–757.
    • (2019) Am. J. Hum. Genet. , vol.104 , pp. 749-757
    • Marbach, F.1    Rustad, C.F.2    Riess, A.3    Đukić, D.4    Hsieh, T.-C.5    Jobani, I.6    Prescott, T.7    Bevot, A.8    Erger, F.9    Houge, G.10
  • 54
    • 85054141684 scopus 로고    scopus 로고
    • Deep learning approach for survival prediction for patients with synovial sarcoma
    • Han, I.; Kim, J.H.; Park, H.; Kim, H.-S.; Seo, S.W. Deep learning approach for survival prediction for patients with synovial sarcoma. Tumour Biol. 2018, 40, 101042831879926.
    • (2018) Tumour Biol , vol.40
    • Han, I.1    Kim, J.H.2    Park, H.3    Kim, H.-S.4    Seo, S.W.5
  • 55
    • 85062409093 scopus 로고    scopus 로고
    • Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas
    • van IJzendoorn, D.G.P.; Szuhai, K.; Briaire-de Bruijn, I.H.; Kostine, M.; Kuijjer, M.L.; Bovée, J.V.M.G. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas. PLoS Comput. Biol. 2019, 15, e1006826.
    • (2019) Plos Comput. Biol. , vol.15
    • van IJzendoorn, D.G.P.1    Szuhai, K.2    Briaire-De Bruijn, I.H.3    Kostine, M.4    Kuijjer, M.L.5    Bovée, J.V.M.G.6
  • 57
    • 85065538871 scopus 로고    scopus 로고
    • A Transfer Learning Framework for Transcriptomics Reveals Systemic Features of Rare Disease
    • Taroni, J.N.; Grayson, P.C.; Hu, Q.; Eddy, S.; Kretzler, M.; Merkel, P.A.; Greene, C.S. MultiPLIER: A Transfer Learning Framework for Transcriptomics Reveals Systemic Features of Rare Disease. Cell Syst. 2019, 8, 380–394.e4.
    • (2019) Cell Syst , vol.8
    • Taroni, J.N.1    Grayson, P.C.2    Hu, Q.3    Eddy, S.4    Kretzler, M.5    Merkel, P.A.6    Greene, C.S.7
  • 61
    • 85059828980 scopus 로고    scopus 로고
    • DeepNEU: Cellular reprogramming comes of age – a machine learning platform with application to rare diseases research
    • Danter, W.R. DeepNEU: Cellular reprogramming comes of age – a machine learning platform with application to rare diseases research. Orphanet J. Rare Dis. 2019, 14, 13.
    • (2019) Orphanet J. Rare Dis. , vol.14
    • Danter, W.R.1
  • 62
    • 84930965777 scopus 로고    scopus 로고
    • Analysis of the human diseasome using phenotype similarity between common, genetic and infectious diseases
    • Hoehndorf, R.; Schofield, P.N.; Gkoutos, G.V. Analysis of the human diseasome using phenotype similarity between common, genetic and infectious diseases. Sci. Rep. 2015, 5, 10888.
    • (2015) Sci. Rep. , vol.5
    • Hoehndorf, R.1    Schofield, P.N.2    Gkoutos, G.V.3
  • 66
    • 85045008728 scopus 로고    scopus 로고
    • Characteristics of clinical trials in rare vs. Common diseases: A register-based Latvian study
    • Logviss, K.; Krievins, D.; Purvina, S. Characteristics of clinical trials in rare vs. common diseases: A register-based Latvian study. PLoS ONE 2018, 13, e0194494.
    • (2018) Plos ONE , vol.13
    • Logviss, K.1    Krievins, D.2    Purvina, S.3
  • 69
    • 77951484446 scopus 로고    scopus 로고
    • The application of biomarkers in clinical trials for motor neuron disease
    • Ganesalingam, J.; Bowser, R. The application of biomarkers in clinical trials for motor neuron disease. Biomark. Med. 2010, 4, 281–297.
    • (2010) Biomark. Med. , vol.4 , pp. 281-297
    • Ganesalingam, J.1    Bowser, R.2
  • 74
    • 84988640362 scopus 로고    scopus 로고
    • Stacked ensemble combined with fuzzy matching for biomedical named entity recognition of diseases
    • Bhasuran, B.; Murugesan, G.; Abdulkadhar, S.; Natarajan, J. Stacked ensemble combined with fuzzy matching for biomedical named entity recognition of diseases. J. Biomed. Inform. 2016, 64, 1–9.
    • (2016) J. Biomed. Inform. , vol.64 , pp. 1-9
    • Bhasuran, B.1    Murugesan, G.2    Abdulkadhar, S.3    Natarajan, J.4
  • 75
    • 85064312088 scopus 로고    scopus 로고
    • Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition
    • Xu, K.; Yang, Z.; Kang, P.; Wang, Q.; Liu, W. Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition. Comput. Biol. Med. 2019, 108, 122–132.
    • (2019) Comput. Biol. Med. , vol.108 , pp. 122-132
    • Xu, K.1    Yang, Z.2    Kang, P.3    Wang, Q.4    Liu, W.5
  • 81
    • 85052084978 scopus 로고    scopus 로고
    • The Analysis of Variants in the General Population Reveals That PMM2 Is Extremely Tolerant to Missense Mutations and That Diagnosis of PMM2-CDG Can Benefit from the Identification of Modifiers
    • Citro, V.; Cimmaruta, C.; Monticelli, M.; Riccio, G.; Hay Mele, B.; Cubellis, M.; Andreotti, G. The Analysis of Variants in the General Population Reveals That PMM2 Is Extremely Tolerant to Missense Mutations and That Diagnosis of PMM2-CDG Can Benefit from the Identification of Modifiers. Int. J. Mol. Sci. 2018, 19, 2218.
    • (2018) Int. J. Mol. Sci. , vol.19 , pp. 2218
    • Citro, V.1    Cimmaruta, C.2    Monticelli, M.3    Riccio, G.4    Hay Mele, B.5    Cubellis, M.6    Andreotti, G.7
  • 82
    • 38849163717 scopus 로고    scopus 로고
    • Glycosylation site prediction using ensembles of Support Vector Machine classifiers
    • Caragea, C.; Sinapov, J.; Silvescu, A.; Dobbs, D.; Honavar, V. Glycosylation site prediction using ensembles of Support Vector Machine classifiers. BMC Bioinform. 2007, 8, 438.
    • (2007) BMC Bioinform , vol.8 , pp. 438
    • Caragea, C.1    Sinapov, J.2    Silvescu, A.3    Dobbs, D.4    Honavar, V.5
  • 83
    • 62149135362 scopus 로고    scopus 로고
    • Prediction of glycosylation sites using random forests
    • Hamby, S.E.; Hirst, J.D. Prediction of glycosylation sites using random forests. BMC Bioinform. 2008, 9, 500.
    • (2008) BMC Bioinform , vol.9
    • Hamby, S.E.1    Hirst, J.D.2
  • 85
    • 85046625541 scopus 로고    scopus 로고
    • Perspectives on Glycosylation and Its Congenital Disorders
    • Ng, B.G.; Freeze, H.H. Perspectives on Glycosylation and Its Congenital Disorders. Trends Genet. 2018, 34, 466–476.
    • (2018) Trends Genet , vol.34 , pp. 466-476
    • Ng, B.G.1    Freeze, H.H.2
  • 86
    • 85070843218 scopus 로고    scopus 로고
    • Maintaining order: COG complex controls Golgi trafficking, processing, and sorting
    • Blackburn, J.B.; D’Souza, Z.; Lupashin, V.V. Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Lett. 2019, 593, 2466–2487.
    • (2019) FEBS Lett , vol.593 , pp. 2466-2487
    • Blackburn, J.B.1    D’Souza, Z.2    Lupashin, V.V.3
  • 87
    • 0035089105 scopus 로고    scopus 로고
    • Congenital Disorders of Glycosylation: Glycosylation Defects in Man and Biological Models for Their Study
    • Marquardt, T.; Freeze, H. Congenital Disorders of Glycosylation: Glycosylation Defects in Man and Biological Models for Their Study. Biol. Chem. 2001, 382, 161–177.
    • (2001) Biol. Chem. , vol.382 , pp. 161-177
    • Marquardt, T.1    Freeze, H.2
  • 88
    • 85045948828 scopus 로고    scopus 로고
    • More than just sugars: Conserved oligomeric Golgi complex deficiency causes glycosylation-independent cellular defects
    • Blackburn, J.B.; Kudlyk, T.; Pokrovskaya, I.; Lupashin, V.V. More than just sugars: Conserved oligomeric Golgi complex deficiency causes glycosylation-independent cellular defects. Traffic 2018, 19, 463–480.
    • (2018) Traffic , vol.19 , pp. 463-480
    • Blackburn, J.B.1    Kudlyk, T.2    Pokrovskaya, I.3    Lupashin, V.V.4
  • 89
    • 85034849205 scopus 로고    scopus 로고
    • IsGPT: An optimized model to identify sub-Golgi protein types using SVM and Random Forest based feature selection
    • Rahman, M.S.; Rahman, M.K.; Kaykobad, M.; Rahman, M.S. isGPT: An optimized model to identify sub-Golgi protein types using SVM and Random Forest based feature selection. Artif. Intell. Med. 2018, 84, 90– 100.
    • (2018) Artif. Intell. Med. , vol.84 , pp. 90-100
    • Rahman, M.S.1    Rahman, M.K.2    Kaykobad, M.3    Rahman, M.S.4
  • 91
    • 85075654876 scopus 로고    scopus 로고
    • RDAD: A Machine Learning System to Support Phenotype-Based Rare Disease Diagnosis
    • Jia, J.; Wang, R.; An, Z.; Guo, Y.; Ni, X.; Shi, T. RDAD: A Machine Learning System to Support Phenotype-Based Rare Disease Diagnosis. Front. Genet. 2018, 9, 587.
    • (2018) Front. Genet. , vol.9 , pp. 587
    • Jia, J.1    Wang, R.2    An, Z.3    Guo, Y.4    Ni, X.5    Shi, T.6
  • 96
    • 85042314185 scopus 로고    scopus 로고
    • Mining the transcriptome for rare disease therapies: A comparison of the efficiencies of two data mining approaches and a targeted cell-based drug screen
    • Mears, A.J.; Schock, S.C.; Hadwen, J.; Putos, S.; Dyment, D.; Boycott, K.M.; MacKenzie, A. Mining the transcriptome for rare disease therapies: A comparison of the efficiencies of two data mining approaches and a targeted cell-based drug screen. npj Genom. Med. 2017, 2, 14.
    • (2017) Npj Genom. Med. , vol.2
    • Mears, A.J.1    Schock, S.C.2    Hadwen, J.3    Putos, S.4    Dyment, D.5    Boycott, K.M.6    Mackenzie, A.7
  • 97
    • 85071976176 scopus 로고    scopus 로고
    • AI in Health: State of the Art, Challenges, and Future Directions
    • Wang, F.; Preininger, A. AI in Health: State of the Art, Challenges, and Future Directions. Yearb. Med. Inf. 2019, 28, 016–026.
    • (2019) Yearb. Med. Inf. , vol.28 , pp. 016-026
    • Wang, F.1    Preininger, A.2
  • 98
    • 84996517578 scopus 로고    scopus 로고
    • A Medical Decision Support System (DSS) for Ubiquitous Healthcare Diagnosis System
    • Conejar, R.J.; Kim, H.-K. A Medical Decision Support System (DSS) for Ubiquitous Healthcare Diagnosis System. Int. J. Softw. Eng. Its Appl. 2014, 8, 8.
    • (2014) Int. J. Softw. Eng. Its Appl. , vol.8 , pp. 8
    • Conejar, R.J.1    Kim, H.-K.2
  • 101
    • 84870778464 scopus 로고    scopus 로고
    • Involvement of Patient Organisations in Research and Development of Orphan Drugs for Rare Diseases in Europe
    • Mavris, M.; Le Cam, Y. Involvement of Patient Organisations in Research and Development of Orphan Drugs for Rare Diseases in Europe. Mol. Syndr. 2012, 3, 237–243.
    • (2012) Mol. Syndr. , vol.3 , pp. 237-243
    • Mavris, M.1    Le Cam, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.