메뉴 건너뛰기




Volumn 13, Issue 12, 2018, Pages

Mucopolysaccharidosis type II detection by Naïve Bayes Classifier: An example of patient classification for a rare disease using electronic medical records from the Canadian Primary Care Sentinel Surveillance Network

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; ALGORITHM; ARTICLE; CANADA; CLASSIFICATION; CLINICAL FEATURE; COMPARATIVE STUDY; CONTROLLED STUDY; DIAGNOSTIC ACCURACY; ELECTRONIC MEDICAL RECORD; EXTRACTION; FEMALE; FORECASTING; HUMAN; HUNTER SYNDROME; MAJOR CLINICAL STUDY; MALE; MARKOV BLANKET BAYESIAN ALGORITHM; NAIVE BAYES CLASSIFICATION ALGORITHM; PRIMARY MEDICAL CARE; RARE DISEASE; RECURSIVE BACKWARD FEATURE ELIMINATION ALGORITHM; VALIDATION PROCESS; AUTOMATED PATTERN RECOGNITION; BAYES THEOREM; COMPUTER ASSISTED DIAGNOSIS; DATA MINING; ELECTRONIC HEALTH RECORD; PRIMARY HEALTH CARE; PROCEDURES; SENTINEL SURVEILLANCE; YOUNG ADULT;

EID: 85058789513     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0209018     Document Type: Article
Times cited : (22)

References (39)
  • 3
    • 85058792267 scopus 로고    scopus 로고
    • U.S. Department of Health and Human Services
    • U.S. Department of Health and Human Services. Orphan Drug Act. 2018; https://www.fda.gov/RegulatoryInformation/LawsEnforcedbyFDA/SignificantAmendmentstotheFDCAct/OrphanDrugAct/ default.htm
    • (2018) Orphan Drug Act
  • 4
    • 85046565818 scopus 로고    scopus 로고
    • Canada’s Rare Disease Strategy. The Canadian Organization for Rare Disorders. 2017; http://www.raredisorders.ca//content/uploads/CORD_Canada_RD_Strategy_22May15.pdf
    • (2017) The Canadian Organization for Rare Disorders
  • 5
    • 0015798495 scopus 로고
    • The defect in the Hunter syndrome: Deficiency of sulfoidur-onate sulfatase
    • PMID: 4269173
    • Bach G, Eisenberg FJ, Cantz M, Neufeld EF. The defect in the Hunter syndrome: deficiency of sulfoidur-onate sulfatase. Proc Natl Acad Sci USA. 1973; 70: 2134–2138. PMID: 4269173
    • (1973) Proc Natl Acad Sci USA , vol.70 , pp. 2134-2138
    • Bach, G.1    Eisenberg, F.J.2    Cantz, M.3    Neufeld, E.F.4
  • 6
    • 85058825244 scopus 로고    scopus 로고
    • The Canadian Society for Mucopolysac-charide and Related Diseases Inc
    • A Guide to Understanding Mucopolysaccharidosis (MPS) II. The Canadian Society for Mucopolysac-charide and Related Diseases Inc. 2017; https://www.mpssociety.ca/wp-content/uploads/2017/04/MPSIIBookletEnglish.pdf
    • (2017) A Guide to Understanding Mucopolysaccharidosis (MPS) II
  • 8
    • 38849176942 scopus 로고    scopus 로고
    • Recognition and diagnosis of mucopolysaccharidosis II (Hunter Syndrome)
    • Martin R, Beck M, Eng C, Giugliani R, Harmatz P, Muñoz V. Recognition and diagnosis of mucopolysaccharidosis II (Hunter Syndrome). Pediatrics. 2008; 121: 377–386.
    • (2008) Pediatrics , vol.121 , pp. 377-386
    • Martin, R.1    Beck, M.2    Eng, C.3    Giugliani, R.4    Harmatz, P.5    Muñoz, V.6
  • 10
    • 85058792261 scopus 로고    scopus 로고
    • Mucopolysaccharidosis type II
    • Mucopolysaccharidosis type II. Genetics Home Reference. 2016; https://rarediseases.info.nih.gov/diseases/6675/mucopolysaccharidosis-type-ii
    • (2016) Genetics Home Reference
  • 14
    • 84857008691 scopus 로고    scopus 로고
    • Predicting sample size required for classification performance
    • PMID: 22336388
    • Figueroa RL, Zeng-Treitler Q, Kandula S, Ngo LH. Predicting sample size required for classification performance BMC Med. Inform. Decis. Mak. 2012; 12: 8. https://doi.org/10.1186/1472-6947-12-8 PMID: 22336388
    • (2012) BMC Med. Inform. Decis. Mak. , vol.12 , pp. 8
    • Figueroa, R.L.1    Zeng-Treitler, Q.2    Kandula, S.3    Ngo, L.H.4
  • 16
    • 77949630731 scopus 로고    scopus 로고
    • Balance impairment as a risk factor for falls in community-dwelling older adults who are high functioning: A prospective study
    • PMID: 20056721
    • Muir SW, Berg K, Chesworth B, Klar N, Speechley M. Balance impairment as a risk factor for falls in community-dwelling older adults who are high functioning: a prospective study. Phys Ther. 2010; 90:338–47. https://doi.org/10.2522/ptj.20090163 PMID: 20056721
    • (2010) Phys Ther , vol.90 , pp. 338-347
    • Muir, S.W.1    Berg, K.2    Chesworth, B.3    Klar, N.4    Speechley, M.5
  • 17
    • 56249113343 scopus 로고    scopus 로고
    • Building predictive models in R using the caret package
    • Kuhn M. Building predictive models in R using the caret package. Journal of Statistical Software. 2008; 28(5): 1–26. https://doi.org/10.18637/jss.v028.i05
    • (2008) Journal of Statistical Software , vol.28 , Issue.5 , pp. 1-26
    • Kuhn, M.1
  • 21
    • 0017360990 scopus 로고    scopus 로고
    • The measurement of observer agreement for categorical data
    • Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1997; 33: 159–174.
    • (1997) Biometrics , vol.33 , pp. 159-174
    • Landis, J.R.1    Koch, G.G.2
  • 22
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Kluwer, Boston
    • Cooper GF, Herskovits E. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning. Kluwer, Boston. 1992; 9: 309–347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 23
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • Kluwer, Boston
    • Friedman N, Geiger D and Goldszmidt M. Bayesian Network Classifiers. Machine Learning. Kluwer, Boston. 1997; 29: 131–163.
    • (1997) Machine Learning , vol.29 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 25
    • 85075614736 scopus 로고    scopus 로고
    • On the classification performance of tan and general Bayesian networks
    • Bramer M., Petridis M., Coenen F. eds Springer, London
    • Madden MG. On the Classification Performance of TAN and General Bayesian Networks. In: Bramer M., Petridis M., Coenen F. (eds) Research and Development in Intelligent Systems XXV. SGAI 2008. Springer, London; 2009.
    • (2009) Research and Development in Intelligent Systems XXV. SGAI 2008
    • Madden, M.G.1
  • 26
    • 84879852866 scopus 로고    scopus 로고
    • Decision support in heart disease prediction system using naive Bayes
    • Subbalakshmi G, Ramesh K, Rao MC. Decision support in heart disease prediction system using naive Bayes. Indian J Comput Sci Eng. 2011; 2:170–6.
    • (2011) Indian J Comput Sci Eng , vol.2 , pp. 170-176
    • Subbalakshmi, G.1    Ramesh, K.2    Rao, M.C.3
  • 32
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D, Geiger D, Chickering DM. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning; 1995. 20:197–243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 33
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper GF. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence; 1990. 42(2–3):393–405.
    • (1990) Artificial Intelligence , vol.42 , Issue.2-3 , pp. 393-405
    • Cooper, G.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.