-
1
-
-
69949183624
-
Conserved functions of membrane active GTPases in coated vesicle formation
-
Pucadyil TJ and Schmid SL (2009) Conserved functions of membrane active GTPases in coated vesicle formation. Science 325, 1217–1220.
-
(2009)
Science
, vol.325
, pp. 1217-1220
-
-
Pucadyil, T.J.1
Schmid, S.L.2
-
2
-
-
0037136560
-
Structure of the Sec23/24–Sar1 pre-budding complex of the COPII vesicle coat
-
Bi X, Corpina RA and Goldberg J (2002) Structure of the Sec23/24–Sar1 pre-budding complex of the COPII vesicle coat. Nature 419, 271.
-
(2002)
Nature
, vol.419
, pp. 271
-
-
Bi, X.1
Corpina, R.A.2
Goldberg, J.3
-
5
-
-
34247623568
-
Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle
-
Cai H, Reinisch K and Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12, 671–682.
-
(2007)
Dev Cell
, vol.12
, pp. 671-682
-
-
Cai, H.1
Reinisch, K.2
Ferro-Novick, S.3
-
6
-
-
0038726917
-
ER-to-Golgi transport: COP I and COP II function (Review)
-
Duden R (2003) ER-to-Golgi transport: COP I and COP II function (Review). Mol Membr Biol 20, 197–207.
-
(2003)
Mol Membr Biol
, vol.20
, pp. 197-207
-
-
Duden, R.1
-
7
-
-
69249213354
-
The COPI system: molecular mechanisms and function
-
Beck R, Ravet M, Wieland FT and Cassel D (2009) The COPI system: molecular mechanisms and function. FEBS Lett 583, 2701–2709.
-
(2009)
FEBS Lett
, vol.583
, pp. 2701-2709
-
-
Beck, R.1
Ravet, M.2
Wieland, F.T.3
Cassel, D.4
-
8
-
-
30844453760
-
Life of a clathrin coat: insights from clathrin and AP structures
-
Edeling MA, Smith C and Owen D (2006) Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol 7, 32.
-
(2006)
Nat Rev Mol Cell Biol
, vol.7
, pp. 32
-
-
Edeling, M.A.1
Smith, C.2
Owen, D.3
-
9
-
-
78651066551
-
COPII-mediated vesicle formation at a glance
-
Jensen D and Schekman R (2011) COPII-mediated vesicle formation at a glance. J Cell Sci 124, 1–4.
-
(2011)
J Cell Sci
, vol.124
, pp. 1-4
-
-
Jensen, D.1
Schekman, R.2
-
11
-
-
84955173009
-
Forty years of clathrin-coated vesicles
-
Robinson MS (2015) Forty years of clathrin-coated vesicles. Traffic 16, 1210–1238.
-
(2015)
Traffic
, vol.16
, pp. 1210-1238
-
-
Robinson, M.S.1
-
12
-
-
85041376087
-
Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval
-
Hirst J, Itzhak DN, Antrobus R, Borner GHH and Robinson MS (2018) Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval. PLoS Biol 16, e2004411.
-
(2018)
PLoS Biol
, vol.16
-
-
Hirst, J.1
Itzhak, D.N.2
Antrobus, R.3
Borner, G.H.H.4
Robinson, M.S.5
-
13
-
-
59649120867
-
Structural characterization of Tip20p and Dsl1p, subunits of the Dsl1p vesicle tethering complex
-
Tripathi A, Ren Y, Jeffrey PD and Hughson FM (2009) Structural characterization of Tip20p and Dsl1p, subunits of the Dsl1p vesicle tethering complex. Nat Struct Mol Biol 16, 114–123.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 114-123
-
-
Tripathi, A.1
Ren, Y.2
Jeffrey, P.D.3
Hughson, F.M.4
-
14
-
-
14744272136
-
Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells
-
Zolov SN and Lupashin VV (2005) Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol 168, 747–759.
-
(2005)
J Cell Biol
, vol.168
, pp. 747-759
-
-
Zolov, S.N.1
Lupashin, V.V.2
-
15
-
-
77955061381
-
Transport vesicle uncoating: it's later than you think
-
Trahey M and Hay JC (2010) Transport vesicle uncoating: it's later than you think. F1000 Biol Rep 2, 47.
-
(2010)
F1000 Biol Rep
, vol.2
, pp. 47
-
-
Trahey, M.1
Hay, J.C.2
-
16
-
-
38949170598
-
Rab GTPases at a glance
-
Schwartz SL, Cao C, Pylypenko O, Rak A and Wandinger-Ness A (2008) Rab GTPases at a glance. J Cell Sci 121, 246.
-
(2008)
J Cell Sci
, vol.121
, pp. 246
-
-
Schwartz, S.L.1
Cao, C.2
Pylypenko, O.3
Rak, A.4
Wandinger-Ness, A.5
-
17
-
-
68049105101
-
Rab GTPases as coordinators of vesicle traffic
-
Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10, 513.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 513
-
-
Stenmark, H.1
-
18
-
-
78751656754
-
Role of Rab GTPases in membrane traffic and cell physiology
-
Hutagalung AH and Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91, 119–149.
-
(2011)
Physiol Rev
, vol.91
, pp. 119-149
-
-
Hutagalung, A.H.1
Novick, P.J.2
-
19
-
-
33747066132
-
Rabs and their effectors: achieving specificity in membrane traffic
-
Grosshans BL, Ortiz D and Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA 103, 11821–11827.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 11821-11827
-
-
Grosshans, B.L.1
Ortiz, D.2
Novick, P.3
-
20
-
-
0043162027
-
Long coiled-coil proteins and membrane traffic
-
Gillingham AK and Munro S (2003) Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta 1641, 71–85.
-
(2003)
Biochim Biophys Acta
, vol.1641
, pp. 71-85
-
-
Gillingham, A.K.1
Munro, S.2
-
21
-
-
85043368012
-
The Golgin family of coiled-coil tethering proteins
-
Witkos TM and Lowe M (2015) The Golgin family of coiled-coil tethering proteins. Front Cell Dev Biol 3, 86.
-
(2015)
Front Cell Dev Biol
, vol.3
, pp. 86
-
-
Witkos, T.M.1
Lowe, M.2
-
22
-
-
85043375557
-
At the ends of their tethers! How coiled-coil proteins capture vesicles at the Golgi
-
Gillingham AK (2017) At the ends of their tethers! How coiled-coil proteins capture vesicles at the Golgi. Biochem Soc Trans 46, 43–50.
-
(2017)
Biochem Soc Trans
, vol.46
, pp. 43-50
-
-
Gillingham, A.K.1
-
23
-
-
0036629335
-
Vesicle tethering complexes in membrane traffic
-
Whyte JR and Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115, 2627–2637.
-
(2002)
J Cell Sci
, vol.115
, pp. 2627-2637
-
-
Whyte, J.R.1
Munro, S.2
-
24
-
-
33644816187
-
Role of tethering factors in secretory membrane traffic
-
Sztul E and Lupashin V (2006) Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 290, C11–C26.
-
(2006)
Am J Physiol Cell Physiol
, vol.290
, pp. C11-C26
-
-
Sztul, E.1
Lupashin, V.2
-
25
-
-
78049368534
-
Tethering factors as organizers of intracellular vesicular traffic
-
Yu IM and Hughson FM (2010) Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 26, 137–156.
-
(2010)
Annu Rev Cell Dev Biol
, vol.26
, pp. 137-156
-
-
Yu, I.M.1
Hughson, F.M.2
-
26
-
-
85014847875
-
Bridging the gap between glycosylation and vesicle traffic
-
Fisher P and Ungar D (2016) Bridging the gap between glycosylation and vesicle traffic. Front Cell Dev Biol 4, 15.
-
(2016)
Front Cell Dev Biol
, vol.4
, pp. 15
-
-
Fisher, P.1
Ungar, D.2
-
27
-
-
78149306025
-
Multisubunit tethering complexes and their role in membrane fusion
-
Brocker C, Engelbrecht-Vandre S and Ungermann C (2010) Multisubunit tethering complexes and their role in membrane fusion. Curr Biol 20, R943–R952.
-
(2010)
Curr Biol
, vol.20
, pp. R943-R952
-
-
Brocker, C.1
Engelbrecht-Vandre, S.2
Ungermann, C.3
-
28
-
-
85069162684
-
The physiological functions of the golgin vesicle tethering proteins
-
Lowe M (2019) The physiological functions of the golgin vesicle tethering proteins. Front Cell Dev Biol 7, 94.
-
(2019)
Front Cell Dev Biol
, vol.7
, pp. 94
-
-
Lowe, M.1
-
29
-
-
84984653623
-
An endosomal tether undergoes an entropic collapse to bring vesicles together
-
Murray DH, Jahnel M, Lauer J, Avellaneda MJ, Brouilly N, Cezanne A, Morales-Navarrete H, Perini ED, Ferguson C, Lupas AN et al. (2016) An endosomal tether undergoes an entropic collapse to bring vesicles together. Nature 537, 107–111.
-
(2016)
Nature
, vol.537
, pp. 107-111
-
-
Murray, D.H.1
Jahnel, M.2
Lauer, J.3
Avellaneda, M.J.4
Brouilly, N.5
Cezanne, A.6
Morales-Navarrete, H.7
Perini, E.D.8
Ferguson, C.9
Lupas, A.N.10
-
30
-
-
84968796233
-
Protein flexibility is required for vesicle tethering at the Golgi
-
Cheung PY, Limouse C, Mabuchi H and Pfeffer SR (2015) Protein flexibility is required for vesicle tethering at the Golgi. Elife 4, e12790.
-
(2015)
Elife
, vol.4
-
-
Cheung, P.Y.1
Limouse, C.2
Mabuchi, H.3
Pfeffer, S.R.4
-
31
-
-
84865305431
-
Structures and mechanisms of vesicle coat components and multisubunit tethering complexes
-
Jackson LP, Kummel D, Reinisch KM and Owen DJ (2012) Structures and mechanisms of vesicle coat components and multisubunit tethering complexes. Curr Opin Cell Biol 24, 475–483.
-
(2012)
Curr Opin Cell Biol
, vol.24
, pp. 475-483
-
-
Jackson, L.P.1
Kummel, D.2
Reinisch, K.M.3
Owen, D.J.4
-
32
-
-
1542409030
-
The specificity of SNARE-dependent fusion is encoded in the SNARE motif
-
Paumet F, Rahimian V and Rothman JE (2004) The specificity of SNARE-dependent fusion is encoded in the SNARE motif. Proc Natl Acad Sci USA 101, 3376–3380.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 3376-3380
-
-
Paumet, F.1
Rahimian, V.2
Rothman, J.E.3
-
33
-
-
20444407298
-
SNAREs and traffic
-
Hong W (2005) SNAREs and traffic. Biochim Biophys Acta 1744, 120–144.
-
(2005)
Biochim Biophys Acta
, vol.1744
, pp. 120-144
-
-
Hong, W.1
-
35
-
-
84890884015
-
Tethering the assembly of SNARE complexes
-
Hong W and Lev S (2014) Tethering the assembly of SNARE complexes. Trends Cell Biol 24, 35–43.
-
(2014)
Trends Cell Biol
, vol.24
, pp. 35-43
-
-
Hong, W.1
Lev, S.2
-
36
-
-
0032430423
-
Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs
-
Fasshauer D, Sutton RB, Brunger AT and Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci USA 95, 15781–15786.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 15781-15786
-
-
Fasshauer, D.1
Sutton, R.B.2
Brunger, A.T.3
Jahn, R.4
-
39
-
-
0034946048
-
Three SNARE complexes cooperate to mediate membrane fusion
-
Hua Y and Scheller RH (2001) Three SNARE complexes cooperate to mediate membrane fusion. Proc Natl Acad Sci USA 98, 8065–8070.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 8065-8070
-
-
Hua, Y.1
Scheller, R.H.2
-
41
-
-
33845987734
-
Selective activation of cognate SNAREpins by Sec1/Munc18 proteins
-
Shen J, Tareste DC, Paumet F, Rothman JE and Melia TJ (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128, 183–195.
-
(2007)
Cell
, vol.128
, pp. 183-195
-
-
Shen, J.1
Tareste, D.C.2
Paumet, F.3
Rothman, J.E.4
Melia, T.J.5
-
42
-
-
84870232182
-
The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices–guilty as charged?
-
Rizo J and Sudhof TC (2012) The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices–guilty as charged? Annu Rev Cell Dev Biol 28, 279–308.
-
(2012)
Annu Rev Cell Dev Biol
, vol.28
, pp. 279-308
-
-
Rizo, J.1
Sudhof, T.C.2
-
43
-
-
58849092285
-
Membrane fusion: grappling with SNARE and SM proteins
-
Sudhof TC and Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477.
-
(2009)
Science
, vol.323
, pp. 474-477
-
-
Sudhof, T.C.1
Rothman, J.E.2
-
44
-
-
84964795519
-
Recent advances in deciphering the structure and molecular mechanism of the AAA+ ATPase N-ethylmaleimide-sensitive factor (NSF)
-
Zhao M and Brunger AT (2016) Recent advances in deciphering the structure and molecular mechanism of the AAA+ ATPase N-ethylmaleimide-sensitive factor (NSF). J Mol Biol 428, 1912–1926.
-
(2016)
J Mol Biol
, vol.428
, pp. 1912-1926
-
-
Zhao, M.1
Brunger, A.T.2
-
45
-
-
84937394649
-
The synaptic vesicle release machinery
-
Rizo J and Xu J (2015) The synaptic vesicle release machinery. Annu Rev Biophys 44, 339–367.
-
(2015)
Annu Rev Biophys
, vol.44
, pp. 339-367
-
-
Rizo, J.1
Xu, J.2
-
46
-
-
79957561279
-
Organization of the synthesis of glycolipid oligosaccharides in the Golgi complex
-
Maccioni HJF, Quiroga R and Spessott W (2011) Organization of the synthesis of glycolipid oligosaccharides in the Golgi complex. FEBS Lett 585, 1691–1698.
-
(2011)
FEBS Lett
, vol.585
, pp. 1691-1698
-
-
Maccioni, H.J.F.1
Quiroga, R.2
Spessott, W.3
-
47
-
-
84862728161
-
Vertebrate protein glycosylation: diversity, synthesis and function
-
Moremen KW, Tiemeyer M and Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13, 448–462.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 448-462
-
-
Moremen, K.W.1
Tiemeyer, M.2
Nairn, A.V.3
-
48
-
-
33745381312
-
Genetic defects in the human glycome
-
Freeze HH (2006) Genetic defects in the human glycome. Nat Rev Genet 7, 537.
-
(2006)
Nat Rev Genet
, vol.7
, pp. 537
-
-
Freeze, H.H.1
-
50
-
-
80053060999
-
Structures, biosynthesis, and functions of gangliosides – an overview
-
Yu RK, Tsai YT, Ariga T and Yanagisawa M (2011) Structures, biosynthesis, and functions of gangliosides – an overview. J Oleo Sci 60, 537–544.
-
(2011)
J Oleo Sci
, vol.60
, pp. 537-544
-
-
Yu, R.K.1
Tsai, Y.T.2
Ariga, T.3
Yanagisawa, M.4
-
52
-
-
0037193464
-
Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function
-
Ungar D, Oka T, Brittle EE, Vasile E, Lupashin VV, Chatterton JE, Heuser JE, Krieger M and Waters MG (2002) Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 157, 405–415.
-
(2002)
J Cell Biol
, vol.157
, pp. 405-415
-
-
Ungar, D.1
Oka, T.2
Brittle, E.E.3
Vasile, E.4
Lupashin, V.V.5
Chatterton, J.E.6
Heuser, J.E.7
Krieger, M.8
Waters, M.G.9
-
53
-
-
84979017473
-
COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex
-
Willett R, Blackburn JB, Climer L, Pokrovskaya I, Kudlyk T, Wang W and Lupashin V (2016) COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex. Sci Rep 6, 29139.
-
(2016)
Sci Rep
, vol.6
, pp. 29139
-
-
Willett, R.1
Blackburn, J.B.2
Climer, L.3
Pokrovskaya, I.4
Kudlyk, T.5
Wang, W.6
Lupashin, V.7
-
54
-
-
23044502309
-
Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex
-
Fotso P, Koryakina Y, Pavliv O, Tsiomenko AB and Lupashin VV (2005) Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J Biol Chem 280, 27613–27623.
-
(2005)
J Biol Chem
, vol.280
, pp. 27613-27623
-
-
Fotso, P.1
Koryakina, Y.2
Pavliv, O.3
Tsiomenko, A.B.4
Lupashin, V.V.5
-
55
-
-
25444466999
-
Genetic analysis of the subunit organization and function of the conserved oligomeric golgi (COG) complex: studies of COG5- and COG7-deficient mammalian cells
-
Oka T, Vasile E, Penman M, Novina CD, Dykxhoorn DM, Ungar D, Hughson FM and Krieger M (2005) Genetic analysis of the subunit organization and function of the conserved oligomeric golgi (COG) complex: studies of COG5- and COG7-deficient mammalian cells. J Biol Chem 280, 32736–32745.
-
(2005)
J Biol Chem
, vol.280
, pp. 32736-32745
-
-
Oka, T.1
Vasile, E.2
Penman, M.3
Novina, C.D.4
Dykxhoorn, D.M.5
Ungar, D.6
Hughson, F.M.7
Krieger, M.8
-
57
-
-
25444486756
-
Subunit architecture of the conserved oligomeric Golgi complex
-
Ungar D, Oka T, Vasile E, Krieger M and Hughson FM (2005) Subunit architecture of the conserved oligomeric Golgi complex. J Biol Chem 280, 32729–32735.
-
(2005)
J Biol Chem
, vol.280
, pp. 32729-32735
-
-
Ungar, D.1
Oka, T.2
Vasile, E.3
Krieger, M.4
Hughson, F.M.5
-
58
-
-
84978718885
-
Molecular architecture of the complete COG tethering complex
-
Ha JY, Chou HT, Ungar D, Yip CK, Walz T and Hughson FM (2016) Molecular architecture of the complete COG tethering complex. Nat Struct Mol Biol 23, 758–760.
-
(2016)
Nat Struct Mol Biol
, vol.23
, pp. 758-760
-
-
Ha, J.Y.1
Chou, H.T.2
Ungar, D.3
Yip, C.K.4
Walz, T.5
Hughson, F.M.6
-
59
-
-
33748174648
-
IntraGolgi distribution of the conserved oligomeric Golgi (COG) complex
-
Vasile E, Oka T, Ericsson M, Nakamura N and Krieger M (2006) IntraGolgi distribution of the conserved oligomeric Golgi (COG) complex. Exp Cell Res 312, 3132–3141.
-
(2006)
Exp Cell Res
, vol.312
, pp. 3132-3141
-
-
Vasile, E.1
Oka, T.2
Ericsson, M.3
Nakamura, N.4
Krieger, M.5
-
60
-
-
84982792097
-
Arabidopsis COG complex subunits COG3 and COG8 modulate Golgi morphology, vesicle trafficking homeostasis and are essential for pollen tube growth
-
Tan X, Cao K, Liu F, Li Y, Li P, Gao C, Ding Y, Lan Z, Shi Z, Rui Q et al. (2016) Arabidopsis COG complex subunits COG3 and COG8 modulate Golgi morphology, vesicle trafficking homeostasis and are essential for pollen tube growth. PLoS Genet 12, e1006140.
-
(2016)
PLoS Genet
, vol.12
-
-
Tan, X.1
Cao, K.2
Liu, F.3
Li, Y.4
Li, P.5
Gao, C.6
Ding, Y.7
Lan, Z.8
Shi, Z.9
Rui, Q.10
-
61
-
-
77954557058
-
Comparative analyses of the conserved oligomeric Golgi (COG) complex in vertebrates
-
Quental R, Azevedo L, Matthiesen R and Amorim A (2010) Comparative analyses of the conserved oligomeric Golgi (COG) complex in vertebrates. BMC Evol Biol 10, 212.
-
(2010)
BMC Evol Biol
, vol.10
, pp. 212
-
-
Quental, R.1
Azevedo, L.2
Matthiesen, R.3
Amorim, A.4
-
62
-
-
33847648364
-
Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins
-
Koumandou VL, Dacks JB, Coulson RM and Field MC (2007) Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol Biol 7, 29.
-
(2007)
BMC Evol Biol
, vol.7
, pp. 29
-
-
Koumandou, V.L.1
Dacks, J.B.2
Coulson, R.M.3
Field, M.C.4
-
63
-
-
0029843493
-
The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae
-
TerBush DR, Maurice T, Roth D and Novick P (1996) The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J 15, 6483–6494.
-
(1996)
EMBO J
, vol.15
, pp. 6483-6494
-
-
TerBush, D.R.1
Maurice, T.2
Roth, D.3
Novick, P.4
-
65
-
-
85042767185
-
Cryo-EM structure of the exocyst complex
-
Mei K, Li Y, Wang S, Shao G, Wang J, Ding Y, Luo G, Yue P, Liu JJ, Wang X et al. (2018) Cryo-EM structure of the exocyst complex. Nat Struct Mol Biol 25, 139–146.
-
(2018)
Nat Struct Mol Biol
, vol.25
, pp. 139-146
-
-
Mei, K.1
Li, Y.2
Wang, S.3
Shao, G.4
Wang, J.5
Ding, Y.6
Luo, G.7
Yue, P.8
Liu, J.J.9
Wang, X.10
-
66
-
-
0035489304
-
The SeC34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic
-
Whyte JRC and Munro S (2001) The SeC34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 1, 527–537.
-
(2001)
Dev Cell
, vol.1
, pp. 527-537
-
-
Whyte, J.R.C.1
Munro, S.2
-
67
-
-
67651160303
-
Remote homology between Munc13 MUN domain and vesicle tethering complexes
-
Pei J, Ma C, Rizo J and Grishin NV (2009) Remote homology between Munc13 MUN domain and vesicle tethering complexes. J Mol Biol 391, 509–517.
-
(2009)
J Mol Biol
, vol.391
, pp. 509-517
-
-
Pei, J.1
Ma, C.2
Rizo, J.3
Grishin, N.V.4
-
68
-
-
85059764100
-
Munc18 and Munc13 serve as a functional template to orchestrate neuronal SNARE complex assembly
-
Wang S, Li Y, Gong J, Ye S, Yang X, Zhang R and Ma C (2019) Munc18 and Munc13 serve as a functional template to orchestrate neuronal SNARE complex assembly. Nat Commun 10, 69.
-
(2019)
Nat Commun
, vol.10
, pp. 69
-
-
Wang, S.1
Li, Y.2
Gong, J.3
Ye, S.4
Yang, X.5
Zhang, R.6
Ma, C.7
-
69
-
-
84887478931
-
The Golgi puppet master: COG complex at center stage of membrane trafficking interactions
-
Willett R, Ungar D and Lupashin V (2013) The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem Cell Biol 140, 271–283.
-
(2013)
Histochem Cell Biol
, vol.140
, pp. 271-283
-
-
Willett, R.1
Ungar, D.2
Lupashin, V.3
-
70
-
-
0030050828
-
New mutants of Saccharomyces cerevisiae affected in the transport of proteins from the endoplasmic reticulum to the Golgi complex
-
Wuestehube LJ, Duden R, Eun A, Hamamoto S, Korn P, Ram R and Schekman R (1996) New mutants of Saccharomyces cerevisiae affected in the transport of proteins from the endoplasmic reticulum to the Golgi complex. Genetics 142, 393–406.
-
(1996)
Genetics
, vol.142
, pp. 393-406
-
-
Wuestehube, L.J.1
Duden, R.2
Eun, A.3
Hamamoto, S.4
Korn, P.5
Ram, R.6
Schekman, R.7
-
71
-
-
33645131266
-
COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation
-
Shestakova A, Zolov S and Lupashin V (2006) COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 7, 191–204.
-
(2006)
Traffic
, vol.7
, pp. 191-204
-
-
Shestakova, A.1
Zolov, S.2
Lupashin, V.3
-
72
-
-
84889604245
-
Dissecting functions of the conserved oligomeric Golgi tethering complex using a cell-free assay
-
Cottam NP, Wilson KM, Ng BG, Korner C, Freeze HH and Ungar D (2014) Dissecting functions of the conserved oligomeric Golgi tethering complex using a cell-free assay. Traffic 15, 12–21.
-
(2014)
Traffic
, vol.15
, pp. 12-21
-
-
Cottam, N.P.1
Wilson, K.M.2
Ng, B.G.3
Korner, C.4
Freeze, H.H.5
Ungar, D.6
-
73
-
-
0021126647
-
Receptor-mediated endocytosis of low density lipoprotein: somatic cell mutants define multiple genes required for expression of surface- receptor activity
-
Kingsley DM and Krieger M (1984) Receptor-mediated endocytosis of low density lipoprotein: somatic cell mutants define multiple genes required for expression of surface- receptor activity. Proc Natl Acad Sci USA 81, 5454–5458.
-
(1984)
Proc Natl Acad Sci USA
, vol.81
, pp. 5454-5458
-
-
Kingsley, D.M.1
Krieger, M.2
-
74
-
-
0022455528
-
Three types of low density lipoprotein receptor-deficient mutant have pleiotropic defects in the synthesis of N-linked, O-linked, and lipid-linked carbohydrate chains
-
Kingsley DM, Kozarsky KF, Segal M and Krieger M (1986) Three types of low density lipoprotein receptor-deficient mutant have pleiotropic defects in the synthesis of N-linked, O-linked, and lipid-linked carbohydrate chains. J Cell Biol 102, 1576–1585.
-
(1986)
J Cell Biol
, vol.102
, pp. 1576-1585
-
-
Kingsley, D.M.1
Kozarsky, K.F.2
Segal, M.3
Krieger, M.4
-
75
-
-
0032734240
-
The yeast GRD20 gene is required for protein sorting in the trans-Golgi network/endosomal system and for polarization of the actin cytoskeleton
-
Spelbrink RG and Nothwehr SF (1999) The yeast GRD20 gene is required for protein sorting in the trans-Golgi network/endosomal system and for polarization of the actin cytoskeleton. Mol Biol Cell 10, 4263–4281.
-
(1999)
Mol Biol Cell
, vol.10
, pp. 4263-4281
-
-
Spelbrink, R.G.1
Nothwehr, S.F.2
-
76
-
-
0035999979
-
Identification of Sec36p, Sec37p, and Sec38p: components of yeast complex that contains Sec34p and Sec35p
-
Ram RJ, Li B and Kaiser CA (2002) Identification of Sec36p, Sec37p, and Sec38p: components of yeast complex that contains Sec34p and Sec35p. Mol Biol Cell 13, 1484–1500.
-
(2002)
Mol Biol Cell
, vol.13
, pp. 1484-1500
-
-
Ram, R.J.1
Li, B.2
Kaiser, C.A.3
-
77
-
-
0037071543
-
The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins
-
Suvorova ES, Duden R and Lupashin VV (2002) The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J Cell Biol 157, 631–643.
-
(2002)
J Cell Biol
, vol.157
, pp. 631-643
-
-
Suvorova, E.S.1
Duden, R.2
Lupashin, V.V.3
-
78
-
-
84869498236
-
Mutations in Cog7 affect Golgi structure, meiotic cytokinesis and sperm development during Drosophila spermatogenesis
-
Belloni G, Sechi S, Riparbelli MG, Fuller MT, Callaini G and Giansanti MG (2012) Mutations in Cog7 affect Golgi structure, meiotic cytokinesis and sperm development during Drosophila spermatogenesis. J Cell Sci 125, 5441–5452.
-
(2012)
J Cell Sci
, vol.125
, pp. 5441-5452
-
-
Belloni, G.1
Sechi, S.2
Riparbelli, M.G.3
Fuller, M.T.4
Callaini, G.5
Giansanti, M.G.6
-
79
-
-
85032803343
-
COG7 deficiency in Drosophila generates multifaceted developmental, behavioral and protein glycosylation phenotypes
-
Frappaolo A, Sechi S, Kumagai T, Robinson S, Fraschini R, Karimpour-Ghahnavieh A, Belloni G, Piergentili R, Tiemeyer KH, Tiemeyer M et al. (2017) COG7 deficiency in Drosophila generates multifaceted developmental, behavioral and protein glycosylation phenotypes. J Cell Sci 130, 3637–3649.
-
(2017)
J Cell Sci
, vol.130
, pp. 3637-3649
-
-
Frappaolo, A.1
Sechi, S.2
Kumagai, T.3
Robinson, S.4
Fraschini, R.5
Karimpour-Ghahnavieh, A.6
Belloni, G.7
Piergentili, R.8
Tiemeyer, K.H.9
Tiemeyer, M.10
-
80
-
-
32244443956
-
The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C. elegans
-
Kubota Y, Sano M, Goda S, Suzuki N and Nishiwaki K (2006) The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C. elegans. Development 133, 263–273.
-
(2006)
Development
, vol.133
, pp. 263-273
-
-
Kubota, Y.1
Sano, M.2
Goda, S.3
Suzuki, N.4
Nishiwaki, K.5
-
81
-
-
84860361402
-
The conserved oligomeric Golgi complex is required for fucosylation of N-glycans in Caenorhabditis elegans
-
Struwe WB and Reinhold VN (2012) The conserved oligomeric Golgi complex is required for fucosylation of N-glycans in Caenorhabditis elegans. Glycobiology 22, 863–875.
-
(2012)
Glycobiology
, vol.22
, pp. 863-875
-
-
Struwe, W.B.1
Reinhold, V.N.2
-
82
-
-
44449096760
-
EMBRYO YELLOW gene, encoding a subunit of the conserved oligomeric Golgi complex, is required for appropriate cell expansion and meristem organization in Arabidopsis thaliana
-
Ishikawa T, Machida C, Yoshioka Y, Ueda T, Nakano A and Machida Y (2008) EMBRYO YELLOW gene, encoding a subunit of the conserved oligomeric Golgi complex, is required for appropriate cell expansion and meristem organization in Arabidopsis thaliana. Genes Cells 13, 521–535.
-
(2008)
Genes Cells
, vol.13
, pp. 521-535
-
-
Ishikawa, T.1
Machida, C.2
Yoshioka, Y.3
Ueda, T.4
Nakano, A.5
Machida, Y.6
-
83
-
-
84874735462
-
The conserved oligomeric Golgi complex is involved in penetration resistance of barley to the barley powdery mildew fungus
-
Ostertag M, Stammler J, Douchkov D, Eichmann R and Hückelhoven R (2013) The conserved oligomeric Golgi complex is involved in penetration resistance of barley to the barley powdery mildew fungus. Mol Plant Pathol 14, 230–240.
-
(2013)
Mol Plant Pathol
, vol.14
, pp. 230-240
-
-
Ostertag, M.1
Stammler, J.2
Douchkov, D.3
Eichmann, R.4
Hückelhoven, R.5
-
84
-
-
2342467375
-
The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins
-
Oka T, Ungar D, Hughson FM and Krieger M (2004) The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins. Mol Biol Cell 15, 2423–2435.
-
(2004)
Mol Biol Cell
, vol.15
, pp. 2423-2435
-
-
Oka, T.1
Ungar, D.2
Hughson, F.M.3
Krieger, M.4
-
85
-
-
78651310761
-
Defective GM3 synthesis in Cog2 null mutant CHO cells associates to mislocalization of lactosylceramide sialyltransferase in the Golgi complex
-
Spessott W, Uliana A and Maccioni HJ (2010) Defective GM3 synthesis in Cog2 null mutant CHO cells associates to mislocalization of lactosylceramide sialyltransferase in the Golgi complex. Neurochem Res 35, 2161–2167.
-
(2010)
Neurochem Res
, vol.35
, pp. 2161-2167
-
-
Spessott, W.1
Uliana, A.2
Maccioni, H.J.3
-
86
-
-
78650657539
-
Cog2 null mutant CHO cells show defective sphingomyelin synthesis
-
Spessott W, Uliana A and Maccioni HJ (2010) Cog2 null mutant CHO cells show defective sphingomyelin synthesis. J Biol Chem 285, 41472–41482.
-
(2010)
J Biol Chem
, vol.285
, pp. 41472-41482
-
-
Spessott, W.1
Uliana, A.2
Maccioni, H.J.3
-
87
-
-
0033571293
-
Sec34p, a protein required for vesicle tethering to the yeast Golgi apparatus, is in a complex with Sec35p
-
VanRheenen SM, Cao X, Sapperstein SK, Chiang EC, Lupashin VV, Barlowe C and Waters MG (1999) Sec34p, a protein required for vesicle tethering to the yeast Golgi apparatus, is in a complex with Sec35p. J Cell Biol 147, 729–742.
-
(1999)
J Cell Biol
, vol.147
, pp. 729-742
-
-
VanRheenen, S.M.1
Cao, X.2
Sapperstein, S.K.3
Chiang, E.C.4
Lupashin, V.V.5
Barlowe, C.6
Waters, M.G.7
-
88
-
-
85012928812
-
Rab1 interacts with GOLPH3 and controls Golgi structure and contractile ring constriction during cytokinesis in Drosophila melanogaster
-
Sechi S, Frappaolo A, Fraschini R, Capalbo L, Gottardo M, Belloni G, Glover DM, Wainman A and Giansanti MG (2017) Rab1 interacts with GOLPH3 and controls Golgi structure and contractile ring constriction during cytokinesis in Drosophila melanogaster. Open Biol 7, 160275.
-
(2017)
Open Biol
, vol.7
, pp. 160275
-
-
Sechi, S.1
Frappaolo, A.2
Fraschini, R.3
Capalbo, L.4
Gottardo, M.5
Belloni, G.6
Glover, D.M.7
Wainman, A.8
Giansanti, M.G.9
-
89
-
-
85018464605
-
The interactome of the copper transporter ATP7A belongs to a network of neurodevelopmental and neurodegeneration factors
-
Comstra HS, McArthy J, Rudin-Rush S, Hartwig C, Gokhale A, Zlatic SA, Blackburn JB, Werner E, Petris M, D'Souza P et al. (2017) The interactome of the copper transporter ATP7A belongs to a network of neurodevelopmental and neurodegeneration factors. Elife 6, e24722.
-
(2017)
Elife
, vol.6
-
-
Comstra, H.S.1
McArthy, J.2
Rudin-Rush, S.3
Hartwig, C.4
Gokhale, A.5
Zlatic, S.A.6
Blackburn, J.B.7
Werner, E.8
Petris, M.9
D'Souza, P.10
-
90
-
-
84867232722
-
A conserved N-terminal arginine-motif in GOLPH3-family proteins mediates binding to coatomer
-
Tu L, Chen L and Banfield DK (2012) A conserved N-terminal arginine-motif in GOLPH3-family proteins mediates binding to coatomer. Traffic 13, 1496–1507.
-
(2012)
Traffic
, vol.13
, pp. 1496-1507
-
-
Tu, L.1
Chen, L.2
Banfield, D.K.3
-
91
-
-
84909983113
-
Golgi phosphoprotein 3 triggers signal-mediated incorporation of glycosyltransferases into coatomer-coated (COPI) vesicles
-
Eckert ES, Reckmann I, Hellwig A, Rohling S, El-Battari A, Wieland FT and Popoff V (2014) Golgi phosphoprotein 3 triggers signal-mediated incorporation of glycosyltransferases into coatomer-coated (COPI) vesicles. J Biol Chem 289, 31319–31329.
-
(2014)
J Biol Chem
, vol.289
, pp. 31319-31329
-
-
Eckert, E.S.1
Reckmann, I.2
Hellwig, A.3
Rohling, S.4
El-Battari, A.5
Wieland, F.T.6
Popoff, V.7
-
92
-
-
68049109551
-
Functional analysis of GS28, an intra-Golgi SNARE, in Caenorhabditis elegans
-
Maekawa M, Inoue T, Kobuna H, Nishimura T, Gengyo-Ando K, Mitani S and Arai H (2009) Functional analysis of GS28, an intra-Golgi SNARE, in Caenorhabditis elegans. Genes Cells 14, 1003–1013.
-
(2009)
Genes Cells
, vol.14
, pp. 1003-1013
-
-
Maekawa, M.1
Inoue, T.2
Kobuna, H.3
Nishimura, T.4
Gengyo-Ando, K.5
Mitani, S.6
Arai, H.7
-
93
-
-
79960293848
-
The Caenorhabditis elegans GARP complex contains the conserved Vps51 subunit and is required to maintain lysosomal morphology
-
Luo L, Hannemann M, Koenig S, Hegermann J, Ailion M, Cho MK, Sasidharan N, Zweckstetter M, Rensing SA and Eimer S (2011) The Caenorhabditis elegans GARP complex contains the conserved Vps51 subunit and is required to maintain lysosomal morphology. Mol Biol Cell 22, 2564–2578.
-
(2011)
Mol Biol Cell
, vol.22
, pp. 2564-2578
-
-
Luo, L.1
Hannemann, M.2
Koenig, S.3
Hegermann, J.4
Ailion, M.5
Cho, M.K.6
Sasidharan, N.7
Zweckstetter, M.8
Rensing, S.A.9
Eimer, S.10
-
94
-
-
12244268655
-
The Drosophila Cog5 homologue is required for cytokinesis, cell elongation, and assembly of specialized Golgi architecture during spermatogenesis
-
Farkas RM, Giansanti MG, Gatti M and Fuller MT (2003) The Drosophila Cog5 homologue is required for cytokinesis, cell elongation, and assembly of specialized Golgi architecture during spermatogenesis. Mol Biol Cell 14, 190–200.
-
(2003)
Mol Biol Cell
, vol.14
, pp. 190-200
-
-
Farkas, R.M.1
Giansanti, M.G.2
Gatti, M.3
Fuller, M.T.4
-
95
-
-
36849029786
-
Deficiencies in subunits of the conserved oligomeric Golgi (COG) complex define a novel group of congenital disorders of glycosylation
-
Zeevaert R, Foulquier F, Jaeken J and Matthijs G (2008) Deficiencies in subunits of the conserved oligomeric Golgi (COG) complex define a novel group of congenital disorders of glycosylation. Mol Genet Metab 93, 15–21.
-
(2008)
Mol Genet Metab
, vol.93
, pp. 15-21
-
-
Zeevaert, R.1
Foulquier, F.2
Jaeken, J.3
Matthijs, G.4
-
96
-
-
2442696341
-
Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder
-
Wu X, Steet RA, Bohorov O, Bakker J, Newell J, Krieger M, Spaapen L, Kornfeld S and Freeze HH (2004) Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med 10, 518–523.
-
(2004)
Nat Med
, vol.10
, pp. 518-523
-
-
Wu, X.1
Steet, R.A.2
Bohorov, O.3
Bakker, J.4
Newell, J.5
Krieger, M.6
Spaapen, L.7
Kornfeld, S.8
Freeze, H.H.9
-
97
-
-
25144464491
-
Clinical and biochemical presentation of siblings with COG-7 deficiency, a lethal multiple O- and N-glycosylation disorder
-
Spaapen LJM, Bakker JA, van der Meer SB, Sijstermans HJ, Steet RA, Wevers RA and Jaeken J (2005) Clinical and biochemical presentation of siblings with COG-7 deficiency, a lethal multiple O- and N-glycosylation disorder. J Inherit Metab Dis 28, 707–714.
-
(2005)
J Inherit Metab Dis
, vol.28
, pp. 707-714
-
-
Spaapen, L.J.M.1
Bakker, J.A.2
van der Meer, S.B.3
Sijstermans, H.J.4
Steet, R.A.5
Wevers, R.A.6
Jaeken, J.7
-
98
-
-
33644853797
-
Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II
-
Foulquier F, Vasile E, Schollen E, Callewaert N, Raemaekers T, Quelhas D, Jaeken J, Mills P, Winchester B, Krieger M et al. (2006) Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc Natl Acad Sci USA 103, 3764–3769.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 3764-3769
-
-
Foulquier, F.1
Vasile, E.2
Schollen, E.3
Callewaert, N.4
Raemaekers, T.5
Quelhas, D.6
Jaeken, J.7
Mills, P.8
Winchester, B.9
Krieger, M.10
-
99
-
-
34249730324
-
A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1-Cog8 interaction in COG complex formation
-
Foulquier F, Ungar D, Reynders E, Zeevaert R, Mills P, Garcia-Silva MT, Briones P, Winchester B, Morelle W, Krieger M et al. (2007) A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1-Cog8 interaction in COG complex formation. Hum Mol Genet 16, 717–730.
-
(2007)
Hum Mol Genet
, vol.16
, pp. 717-730
-
-
Foulquier, F.1
Ungar, D.2
Reynders, E.3
Zeevaert, R.4
Mills, P.5
Garcia-Silva, M.T.6
Briones, P.7
Winchester, B.8
Morelle, W.9
Krieger, M.10
-
100
-
-
34447330452
-
COG8 deficiency causes new congenital disorder of glycosylation type IIh
-
Kranz C, Ng BG, Sun L, Sharma V, Eklund EA, Miura Y, Ungar D, Lupashin V, Winkel RD, Cipollo JF et al. (2007) COG8 deficiency causes new congenital disorder of glycosylation type IIh. Hum Mol Genet 16, 731–741.
-
(2007)
Hum Mol Genet
, vol.16
, pp. 731-741
-
-
Kranz, C.1
Ng, B.G.2
Sun, L.3
Sharma, V.4
Eklund, E.A.5
Miura, Y.6
Ungar, D.7
Lupashin, V.8
Winkel, R.D.9
Cipollo, J.F.10
-
101
-
-
34248657552
-
Molecular and clinical characterization of a Moroccan Cog7 deficient patient
-
Ng BG, Kranz C, Hagebeuk EEO, Duran M, Abeling N, Wuyts B, Ungar D, Lupashin V, Hartdorff CM, Poll-The BT et al. (2007) Molecular and clinical characterization of a Moroccan Cog7 deficient patient. Mol Genet Metab 91, 201–204.
-
(2007)
Mol Genet Metab
, vol.91
, pp. 201-204
-
-
Ng, B.G.1
Kranz, C.2
Hagebeuk, E.E.O.3
Duran, M.4
Abeling, N.5
Wuyts, B.6
Ungar, D.7
Lupashin, V.8
Hartdorff, C.M.9
Poll-The, B.T.10
-
102
-
-
68749117665
-
Golgi function and dysfunction in the first COG4-deficient CDG type II patient
-
Reynders E, Foulquier F, Leao Teles E, Quelhas D, Morelle W, Rabouille C, Annaert W and Matthijs G (2009) Golgi function and dysfunction in the first COG4-deficient CDG type II patient. Hum Mol Genet 18, 3244–3256.
-
(2009)
Hum Mol Genet
, vol.18
, pp. 3244-3256
-
-
Reynders, E.1
Foulquier, F.2
Leao Teles, E.3
Quelhas, D.4
Morelle, W.5
Rabouille, C.6
Annaert, W.7
Matthijs, G.8
-
103
-
-
84883654492
-
Deficiency of the Cog8 subunit in normal and CDG-derived cells impairs the assembly of the COG and Golgi SNARE complexes
-
Laufman O, Freeze HH, Hong W and Lev S (2013) Deficiency of the Cog8 subunit in normal and CDG-derived cells impairs the assembly of the COG and Golgi SNARE complexes. Traffic 14, 1065–1077.
-
(2013)
Traffic
, vol.14
, pp. 1065-1077
-
-
Laufman, O.1
Freeze, H.H.2
Hong, W.3
Lev, S.4
-
104
-
-
84926657074
-
Mutations in COG2 encoding a subunit of the conserved oligomeric Golgi complex cause a congenital disorder of glycosylation
-
Kodera H, Ando N, Yuasa I, Wada Y, Tsurusaki Y, Nakashima M, Miyake N, Saitoh S, Matsumoto N and Saitsu H (2015) Mutations in COG2 encoding a subunit of the conserved oligomeric Golgi complex cause a congenital disorder of glycosylation. Clin Genet 87, 455–460.
-
(2015)
Clin Genet
, vol.87
, pp. 455-460
-
-
Kodera, H.1
Ando, N.2
Yuasa, I.3
Wada, Y.4
Tsurusaki, Y.5
Nakashima, M.6
Miyake, N.7
Saitoh, S.8
Matsumoto, N.9
Saitsu, H.10
-
105
-
-
85026311330
-
Congenital disorders of glycosylation: the Saudi experience
-
Alsubhi S, Alhashem A, Faqeih E, Alfadhel M, Alfaifi A, Altuwaijri W, Alsahli S, Aldhalaan H, Alkuraya FS, Hundallah K et al. (2017) Congenital disorders of glycosylation: the Saudi experience. Am J Med Genet A 173, 2614–2621.
-
(2017)
Am J Med Genet A
, vol.173
, pp. 2614-2621
-
-
Alsubhi, S.1
Alhashem, A.2
Faqeih, E.3
Alfadhel, M.4
Alfaifi, A.5
Altuwaijri, W.6
Alsahli, S.7
Aldhalaan, H.8
Alkuraya, F.S.9
Hundallah, K.10
-
106
-
-
85042309382
-
Congenital disorders of glycosylation (CDG): Quo vadis?
-
Péanne R, de Lonlay P, Foulquier F, Kornak U, Lefeber DJ, Morava E, Pérez B, Seta N, Thiel C, Van Schaftingen E et al. (2017) Congenital disorders of glycosylation (CDG): Quo vadis? Eur J Med Genet 61, 643–663.
-
(2017)
Eur J Med Genet
, vol.61
, pp. 643-663
-
-
Péanne, R.1
de Lonlay, P.2
Foulquier, F.3
Kornak, U.4
Lefeber, D.J.5
Morava, E.6
Pérez, B.7
Seta, N.8
Thiel, C.9
Van Schaftingen, E.10
-
107
-
-
85020740370
-
Further delineation of COG8-CDG: a case with novel compound heterozygous mutations diagnosed by targeted exome sequencing
-
Yang A, Cho SY, Jang JH, Kim J, Kim SZ, Lee BH, Yoo HW and Jin DK (2017) Further delineation of COG8-CDG: a case with novel compound heterozygous mutations diagnosed by targeted exome sequencing. Clin Chim Acta 471, 191–195.
-
(2017)
Clin Chim Acta
, vol.471
, pp. 191-195
-
-
Yang, A.1
Cho, S.Y.2
Jang, J.H.3
Kim, J.4
Kim, S.Z.5
Lee, B.H.6
Yoo, H.W.7
Jin, D.K.8
-
108
-
-
85060784316
-
The first case of antenatal presentation in COG8-congenital disorder of glycosylation with a novel splice site mutation and an extended phenotype
-
Arora V, Puri RD, Bhai P, Sharma N, Bijarnia-Mahay S, Dimri N, Baijal A, Saxena R and Verma I (2019) The first case of antenatal presentation in COG8-congenital disorder of glycosylation with a novel splice site mutation and an extended phenotype. Am J Med Genet A 179, 480–485.
-
(2019)
Am J Med Genet A
, vol.179
, pp. 480-485
-
-
Arora, V.1
Puri, R.D.2
Bhai, P.3
Sharma, N.4
Bijarnia-Mahay, S.5
Dimri, N.6
Baijal, A.7
Saxena, R.8
Verma, I.9
-
109
-
-
70349165974
-
COG defects, birth and rise!
-
Foulquier F (2009) COG defects, birth and rise! Biochim Biophys Acta 1792, 896–902.
-
(2009)
Biochim Biophys Acta
, vol.1792
, pp. 896-902
-
-
Foulquier, F.1
-
110
-
-
70350690698
-
Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation
-
Paesold-Burda P, Maag C, Troxler H, Foulquier F, Kleinert P, Schnabel S, Baumgartner M and Hennet T (2009) Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. Hum Mol Genet 18, 4350–4356.
-
(2009)
Hum Mol Genet
, vol.18
, pp. 4350-4356
-
-
Paesold-Burda, P.1
Maag, C.2
Troxler, H.3
Foulquier, F.4
Kleinert, P.5
Schnabel, S.6
Baumgartner, M.7
Hennet, T.8
-
111
-
-
79958798009
-
How Golgi glycosylation meets and needs trafficking: the case of the COG complex
-
Reynders E, Foulquier F, Annaert W and Matthijs G (2011) How Golgi glycosylation meets and needs trafficking: the case of the COG complex. Glycobiology 21, 853–863.
-
(2011)
Glycobiology
, vol.21
, pp. 853-863
-
-
Reynders, E.1
Foulquier, F.2
Annaert, W.3
Matthijs, G.4
-
112
-
-
84946559140
-
Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function
-
Climer LK, Dobretsov M and Lupashin V (2015) Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function. Front Neurosci 9, 405.
-
(2015)
Front Neurosci
, vol.9
, pp. 405
-
-
Climer, L.K.1
Dobretsov, M.2
Lupashin, V.3
-
113
-
-
85009921397
-
Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature
-
Marques-da-Silva D, Dos Reis Ferreira V, Monticelli M, Janeiro P, Videira PA, Witters P, Jaeken J and Cassiman D (2017) Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature. J Inherit Metab Dis 40, 195–207.
-
(2017)
J Inherit Metab Dis
, vol.40
, pp. 195-207
-
-
Marques-da-Silva, D.1
Dos Reis Ferreira, V.2
Monticelli, M.3
Janeiro, P.4
Videira, P.A.5
Witters, P.6
Jaeken, J.7
Cassiman, D.8
-
114
-
-
85045847114
-
Conserved oligomeric Golgi and neuronal vesicular trafficking
-
Ulloa-Aguirre A, Tao Y-X, eds), Springer, Cham
-
Climer LK, Hendrix RD and Lupashin VV (2018) Conserved oligomeric Golgi and neuronal vesicular trafficking. In Handbook of Experimental Pharmacology (Ulloa-Aguirre A and Tao Y-X, eds), pp. 227–247. Springer, Cham.
-
(2018)
Handbook of Experimental Pharmacology
, pp. 227-247
-
-
Climer, L.K.1
Hendrix, R.D.2
Lupashin, V.V.3
-
115
-
-
85054014584
-
A recurrent de novo heterozygous COG4 substitution leads to Saul-Wilson syndrome, disrupted vesicular trafficking, and altered proteoglycan glycosylation
-
Ferreira CR, Xia ZJ, Clement A, Parry DA, Davids M, Taylan F, Sharma P, Turgeon CT, Blanco-Sanchez B, Ng BG et al. (2018) A recurrent de novo heterozygous COG4 substitution leads to Saul-Wilson syndrome, disrupted vesicular trafficking, and altered proteoglycan glycosylation. Am J Hum Genet 103, 553–567.
-
(2018)
Am J Hum Genet
, vol.103
, pp. 553-567
-
-
Ferreira, C.R.1
Xia, Z.J.2
Clement, A.3
Parry, D.A.4
Davids, M.5
Taylan, F.6
Sharma, P.7
Turgeon, C.T.8
Blanco-Sanchez, B.9
Ng, B.G.10
-
116
-
-
81855168333
-
Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery
-
Pokrovskaya ID, Willett R, Smith RD, Morelle W, Kudlyk T and Lupashin VV (2011) Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 21, 1554–1569.
-
(2011)
Glycobiology
, vol.21
, pp. 1554-1569
-
-
Pokrovskaya, I.D.1
Willett, R.2
Smith, R.D.3
Morelle, W.4
Kudlyk, T.5
Lupashin, V.V.6
-
117
-
-
84880494649
-
Fluorescent microscopy as a tool to elucidate dysfunction and mislocalization of Golgi glycosyltransferases in COG complex depleted mammalian cells
-
Willett RA, Pokrovskaya ID and Lupashin VV (2013) Fluorescent microscopy as a tool to elucidate dysfunction and mislocalization of Golgi glycosyltransferases in COG complex depleted mammalian cells. Methods Mol Biol 1022, 61–72.
-
(2013)
Methods Mol Biol
, vol.1022
, pp. 61-72
-
-
Willett, R.A.1
Pokrovskaya, I.D.2
Lupashin, V.V.3
-
118
-
-
79958830701
-
Differential effects of lobe A and lobe B of the Conserved Oligomeric Golgi complex on the stability of {beta}1,4-galactosyltransferase 1 and {alpha}2,6-sialyltransferase 1
-
Peanne R, Legrand D, Duvet S, Mir AM, Matthijs G, Rohrer J and Foulquier F (2011) Differential effects of lobe A and lobe B of the Conserved Oligomeric Golgi complex on the stability of {beta}1,4-galactosyltransferase 1 and {alpha}2,6-sialyltransferase 1. Glycobiology 21, 864–876.
-
(2011)
Glycobiology
, vol.21
, pp. 864-876
-
-
Peanne, R.1
Legrand, D.2
Duvet, S.3
Mir, A.M.4
Matthijs, G.5
Rohrer, J.6
Foulquier, F.7
-
119
-
-
37249008781
-
Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability
-
Shestakova A, Suvorova E, Pavliv O, Khaidakova G and Lupashin V (2007) Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J Cell Biol 179, 1179–1192.
-
(2007)
J Cell Biol
, vol.179
, pp. 1179-1192
-
-
Shestakova, A.1
Suvorova, E.2
Pavliv, O.3
Khaidakova, G.4
Lupashin, V.5
-
120
-
-
70350378203
-
The COG complex, Rab6 and COPI define a novel Golgi retrograde trafficking pathway that is exploited by SubAB toxin
-
Smith RD, Willett R, Kudlyk T, Pokrovskaya I, Paton AW, Paton JC and Lupashin VV (2009) The COG complex, Rab6 and COPI define a novel Golgi retrograde trafficking pathway that is exploited by SubAB toxin. Traffic 10, 1502–1517.
-
(2009)
Traffic
, vol.10
, pp. 1502-1517
-
-
Smith, R.D.1
Willett, R.2
Kudlyk, T.3
Pokrovskaya, I.4
Paton, A.W.5
Paton, J.C.6
Lupashin, V.V.7
-
121
-
-
34247482798
-
The interaction of two tethering factors, p115 and COG complex, is required for Golgi integrity
-
Sohda M, Misumi Y, Yoshimura S, Nakamura N, Fusano T, Ogata S, Sakisaka S and Ikehara Y (2007) The interaction of two tethering factors, p115 and COG complex, is required for Golgi integrity. Traffic 8, 270–284.
-
(2007)
Traffic
, vol.8
, pp. 270-284
-
-
Sohda, M.1
Misumi, Y.2
Yoshimura, S.3
Nakamura, N.4
Fusano, T.5
Ogata, S.6
Sakisaka, S.7
Ikehara, Y.8
-
122
-
-
34948888155
-
Rab6 regulates both ZW10/RINT-1 and conserved oligomeric Golgi complex-dependent Golgi trafficking and homeostasis
-
Sun Y, Shestakova A, Hunt L, Sehgal S, Lupashin V and Storrie B (2007) Rab6 regulates both ZW10/RINT-1 and conserved oligomeric Golgi complex-dependent Golgi trafficking and homeostasis. Mol Biol Cell 18, 4129–4142.
-
(2007)
Mol Biol Cell
, vol.18
, pp. 4129-4142
-
-
Sun, Y.1
Shestakova, A.2
Hunt, L.3
Sehgal, S.4
Lupashin, V.5
Storrie, B.6
-
123
-
-
67651166603
-
Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing
-
Laufman O, Kedan A, Hong W and Lev S (2009) Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing. EMBO J 28, 2006–2017.
-
(2009)
EMBO J
, vol.28
, pp. 2006-2017
-
-
Laufman, O.1
Kedan, A.2
Hong, W.3
Lev, S.4
-
124
-
-
78349291116
-
Interaction of Golgin-84 with the COG complex mediates the intra-Golgi retrograde transport
-
Sohda M, Misumi Y, Yamamoto A, Nakamura N, Ogata S, Sakisaka S, Hirose S, Ikehara Y and Oda K (2010) Interaction of Golgin-84 with the COG complex mediates the intra-Golgi retrograde transport. Traffic 11, 1552–1566.
-
(2010)
Traffic
, vol.11
, pp. 1552-1566
-
-
Sohda, M.1
Misumi, Y.2
Yamamoto, A.3
Nakamura, N.4
Ogata, S.5
Sakisaka, S.6
Hirose, S.7
Ikehara, Y.8
Oda, K.9
-
125
-
-
80052572363
-
The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport
-
Laufman O, Hong W and Lev S (2011) The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport. J Cell Biol 194, 459–472.
-
(2011)
J Cell Biol
, vol.194
, pp. 459-472
-
-
Laufman, O.1
Hong, W.2
Lev, S.3
-
126
-
-
84884475631
-
A new role for RINT-1 in SNARE complex assembly at the trans-Golgi network in coordination with the COG complex
-
Arasaki K, Takagi D, Furuno A, Sohda M, Misumi Y, Wakana Y, Inoue H and Tagaya M (2013) A new role for RINT-1 in SNARE complex assembly at the trans-Golgi network in coordination with the COG complex. Mol Biol Cell 24, 2907–2917.
-
(2013)
Mol Biol Cell
, vol.24
, pp. 2907-2917
-
-
Arasaki, K.1
Takagi, D.2
Furuno, A.3
Sohda, M.4
Misumi, Y.5
Wakana, Y.6
Inoue, H.7
Tagaya, M.8
-
127
-
-
84872045592
-
COG6 interacts with a subset of the Golgi SNAREs and is important for the Golgi complex integrity
-
Kudlyk T, Willett R, Pokrovskaya ID and Lupashin V (2013) COG6 interacts with a subset of the Golgi SNAREs and is important for the Golgi complex integrity. Traffic 14, 194–204.
-
(2013)
Traffic
, vol.14
, pp. 194-204
-
-
Kudlyk, T.1
Willett, R.2
Pokrovskaya, I.D.3
Lupashin, V.4
-
128
-
-
84924083459
-
Multipronged interaction of the COG complex with intracellular membranes
-
Willett R, Pokrovskaya I, Kudlyk T and Lupashin V (2014) Multipronged interaction of the COG complex with intracellular membranes. Cell Logist 4, e27888.
-
(2014)
Cell Logist
, vol.4
-
-
Willett, R.1
Pokrovskaya, I.2
Kudlyk, T.3
Lupashin, V.4
-
129
-
-
84875886094
-
COG complexes form spatial landmarks for distinct SNARE complexes
-
Willett R, Kudlyk T, Pokrovskaya I, Schonherr R, Ungar D, Duden R and Lupashin V (2013) COG complexes form spatial landmarks for distinct SNARE complexes. Nat Commun 4, 1553.
-
(2013)
Nat Commun
, vol.4
, pp. 1553
-
-
Willett, R.1
Kudlyk, T.2
Pokrovskaya, I.3
Schonherr, R.4
Ungar, D.5
Duden, R.6
Lupashin, V.7
-
130
-
-
84979048532
-
COG complex complexities: detailed characterization of a complete set of HEK293T cells lacking individual COG subunits
-
Bailey Blackburn J, Pokrovskaya I, Fisher P, Ungar D and Lupashin VV (2016) COG complex complexities: detailed characterization of a complete set of HEK293T cells lacking individual COG subunits. Front Cell Dev Biol 4, 23.
-
(2016)
Front Cell Dev Biol
, vol.4
, pp. 23
-
-
Bailey Blackburn, J.1
Pokrovskaya, I.2
Fisher, P.3
Ungar, D.4
Lupashin, V.V.5
-
131
-
-
84987722769
-
Creating knockouts of conserved oligomeric Golgi complex subunits using CRISPR-mediated gene editing paired with a selection strategy based on glycosylation defects associated with impaired COG complex function
-
Blackburn JB and Lupashin VV (2016) Creating knockouts of conserved oligomeric Golgi complex subunits using CRISPR-mediated gene editing paired with a selection strategy based on glycosylation defects associated with impaired COG complex function. Methods Mol Biol 1496, 145–161.
-
(2016)
Methods Mol Biol
, vol.1496
, pp. 145-161
-
-
Blackburn, J.B.1
Lupashin, V.V.2
-
132
-
-
85070794571
-
Role of the COG complex in protein glycosylation and Golgi/endo-lysosomal trafficking
-
Blackburn J, Pokrovskaya I and Lupashin V (2018) Role of the COG complex in protein glycosylation and Golgi/endo-lysosomal trafficking. Febs Open Bio 8, 47.
-
(2018)
Febs Open Bio
, vol.8
, pp. 47
-
-
Blackburn, J.1
Pokrovskaya, I.2
Lupashin, V.3
-
133
-
-
85045948828
-
More than just sugars: conserved oligomeric Golgi complex deficiency causes glycosylation-independent cellular defects
-
Blackburn JB, Kudlyk T, Pokrovskaya I and Lupashin VV (2018) More than just sugars: conserved oligomeric Golgi complex deficiency causes glycosylation-independent cellular defects. Traffic 19, 463–480.
-
(2018)
Traffic
, vol.19
, pp. 463-480
-
-
Blackburn, J.B.1
Kudlyk, T.2
Pokrovskaya, I.3
Lupashin, V.V.4
-
134
-
-
85070811505
-
Defects in COG-mediated Golgi trafficking alter endo-lysosomal system in human cells
-
D'Souza Z, Blackburn JB, Kudlyk T, Pokrovskaya ID and Lupashin VV (2019) Defects in COG-mediated Golgi trafficking alter endo-lysosomal system in human cells. Front Cell Dev Biol 7, 118.
-
(2019)
Front Cell Dev Biol
, vol.7
, pp. 118
-
-
D'Souza, Z.1
Blackburn, J.B.2
Kudlyk, T.3
Pokrovskaya, I.D.4
Lupashin, V.V.5
-
135
-
-
84873630243
-
Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF)
-
Miller VJ, Sharma P, Kudlyk TA, Frost L, Rofe AP, Watson IJ, Duden R, Lowe M, Lupashin VV and Ungar D (2013) Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF). J Biol Chem 288, 4229–4240.
-
(2013)
J Biol Chem
, vol.288
, pp. 4229-4240
-
-
Miller, V.J.1
Sharma, P.2
Kudlyk, T.A.3
Frost, L.4
Rofe, A.P.5
Watson, I.J.6
Duden, R.7
Lowe, M.8
Lupashin, V.V.9
Ungar, D.10
-
136
-
-
0032491437
-
Purification and characterization of a novel 13 S hetero-oligomeric protein complex that stimulates in vitro Golgi transport
-
Walter DM, Paul KS and Waters MG (1998) Purification and characterization of a novel 13 S hetero-oligomeric protein complex that stimulates in vitro Golgi transport. J Biol Chem 273, 29565–29576.
-
(1998)
J Biol Chem
, vol.273
, pp. 29565-29576
-
-
Walter, D.M.1
Paul, K.S.2
Waters, M.G.3
-
137
-
-
84937137200
-
The HOPS/class C Vps complex tethers membranes by binding to one Rab GTPase in each apposed membrane
-
Ho R and Stroupe C (2015) The HOPS/class C Vps complex tethers membranes by binding to one Rab GTPase in each apposed membrane. Mol Biol Cell 26, 2655–2663.
-
(2015)
Mol Biol Cell
, vol.26
, pp. 2655-2663
-
-
Ho, R.1
Stroupe, C.2
-
138
-
-
84891620157
-
Subunit organisation of in vitro reconstituted HOPS and CORVET multisubunit membrane tethering complexes
-
Guo Z, Johnston W, Kovtun O, Mureev S, Brocker C, Ungermann C and Alexandrov K (2013) Subunit organisation of in vitro reconstituted HOPS and CORVET multisubunit membrane tethering complexes. PLoS One 8, e81534.
-
(2013)
PLoS One
, vol.8
-
-
Guo, Z.1
Johnston, W.2
Kovtun, O.3
Mureev, S.4
Brocker, C.5
Ungermann, C.6
Alexandrov, K.7
-
139
-
-
85051000867
-
Detailed analysis of the interaction of yeast COG complex
-
Ishii M, Lupashin VV and Nakano A (2018) Detailed analysis of the interaction of yeast COG complex. Cell Struct Funct 43, 119–127.
-
(2018)
Cell Struct Funct
, vol.43
, pp. 119-127
-
-
Ishii, M.1
Lupashin, V.V.2
Nakano, A.3
-
140
-
-
84877912314
-
The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes
-
Laufman O, Hong W and Lev S (2013) The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes. J Cell Sci 126, 1506–1516.
-
(2013)
J Cell Sci
, vol.126
, pp. 1506-1516
-
-
Laufman, O.1
Hong, W.2
Lev, S.3
-
141
-
-
84924026487
-
Expression of functional Myc-tagged conserved oligomeric Golgi (COG) subcomplexes in mammalian cells
-
Willett RA, Kudlyk TA and Lupashin VV (2015) Expression of functional Myc-tagged conserved oligomeric Golgi (COG) subcomplexes in mammalian cells. Methods Mol Biol 1270, 167–177.
-
(2015)
Methods Mol Biol
, vol.1270
, pp. 167-177
-
-
Willett, R.A.1
Kudlyk, T.A.2
Lupashin, V.V.3
-
142
-
-
0346154744
-
Ral GTPases regulate exocyst assembly through dual subunit interactions
-
Moskalenko S, Tong C, Rosse C, Mirey G, Formstecher E, Daviet L, Camonis J and White MA (2003) Ral GTPases regulate exocyst assembly through dual subunit interactions. J Biol Chem 278, 51743–51748.
-
(2003)
J Biol Chem
, vol.278
, pp. 51743-51748
-
-
Moskalenko, S.1
Tong, C.2
Rosse, C.3
Mirey, G.4
Formstecher, E.5
Daviet, L.6
Camonis, J.7
White, M.A.8
-
143
-
-
85057595473
-
Exocyst dynamics during vesicle tethering and fusion
-
Ahmed SM, Nishida-Fukuda H, Li Y, McDonald WH, Gradinaru CC and Macara IG (2018) Exocyst dynamics during vesicle tethering and fusion. Nat Commun 9, 5140.
-
(2018)
Nat Commun
, vol.9
, pp. 5140
-
-
Ahmed, S.M.1
Nishida-Fukuda, H.2
Li, Y.3
McDonald, W.H.4
Gradinaru, C.C.5
Macara, I.G.6
-
144
-
-
46749156739
-
Large scale screening for novel rab effectors reveals unexpected broad Rab binding specificity
-
Fukuda M, Kanno E, Ishibashi K and Itoh T (2008) Large scale screening for novel rab effectors reveals unexpected broad Rab binding specificity. Mol Cell Proteomics 7, 1031–1042.
-
(2008)
Mol Cell Proteomics
, vol.7
, pp. 1031-1042
-
-
Fukuda, M.1
Kanno, E.2
Ishibashi, K.3
Itoh, T.4
-
146
-
-
85043606068
-
Two subunits of the exocyst, Sec3p and Exo70p, can function exclusively on the plasma membrane
-
Liu D, Li X, Shen D and Novick P (2018) Two subunits of the exocyst, Sec3p and Exo70p, can function exclusively on the plasma membrane. Mol Biol Cell 29, 736–750.
-
(2018)
Mol Biol Cell
, vol.29
, pp. 736-750
-
-
Liu, D.1
Li, X.2
Shen, D.3
Novick, P.4
-
147
-
-
0347695021
-
Dsl1p, an essential component of the Golgi-endoplasmic reticulum retrieval system in yeast, uses the same sequence motif to interact with different subunits of the COPI vesicle coat
-
Andag U and Schmitt HD (2003) Dsl1p, an essential component of the Golgi-endoplasmic reticulum retrieval system in yeast, uses the same sequence motif to interact with different subunits of the COPI vesicle coat. J Biol Chem 278, 51722–51734.
-
(2003)
J Biol Chem
, vol.278
, pp. 51722-51734
-
-
Andag, U.1
Schmitt, H.D.2
-
148
-
-
69949175597
-
A link between ER tethering and COP-I vesicle uncoating
-
Zink S, Wenzel D, Wurm CA and Schmitt HD (2009) A link between ER tethering and COP-I vesicle uncoating. Dev Cell 17, 403–416.
-
(2009)
Dev Cell
, vol.17
, pp. 403-416
-
-
Zink, S.1
Wenzel, D.2
Wurm, C.A.3
Schmitt, H.D.4
-
149
-
-
84984869262
-
ER arrival sites for COPI vesicles localize to hotspots of membrane trafficking
-
Schroter S, Beckmann S and Schmitt HD (2016) ER arrival sites for COPI vesicles localize to hotspots of membrane trafficking. EMBO J 35, 1935–1955.
-
(2016)
EMBO J
, vol.35
, pp. 1935-1955
-
-
Schroter, S.1
Beckmann, S.2
Schmitt, H.D.3
-
150
-
-
0033977912
-
The involvement of Helix pomatia lectin (HPA) binding N-acetylgalactosamine glycans in cancer progression
-
Brooks SA (2000) The involvement of Helix pomatia lectin (HPA) binding N-acetylgalactosamine glycans in cancer progression. Histol Histopathol 15, 143–158.
-
(2000)
Histol Histopathol
, vol.15
, pp. 143-158
-
-
Brooks, S.A.1
-
151
-
-
70349319578
-
Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network
-
Perez-Victoria FJ and Bonifacino JS (2009) Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network. Mol Cell Biol 29, 5251–5263.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 5251-5263
-
-
Perez-Victoria, F.J.1
Bonifacino, J.S.2
-
152
-
-
75749135725
-
The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy
-
Yen WL, Shintani T, Nair U, Cao Y, Richardson BC, Li Z, Hughson FM, Baba M and Klionsky DJ (2010) The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Biol 188, 101–114.
-
(2010)
J Cell Biol
, vol.188
, pp. 101-114
-
-
Yen, W.L.1
Shintani, T.2
Nair, U.3
Cao, Y.4
Richardson, B.C.5
Li, Z.6
Hughson, F.M.7
Baba, M.8
Klionsky, D.J.9
-
153
-
-
85026306172
-
The Arl3 and Arl1 GTPases co-operate with Cog8 to regulate selective autophagy via Atg9 trafficking
-
Wang IH, Chen YJ, Hsu JW and Lee FJ (2017) The Arl3 and Arl1 GTPases co-operate with Cog8 to regulate selective autophagy via Atg9 trafficking. Traffic 18, 580–589.
-
(2017)
Traffic
, vol.18
, pp. 580-589
-
-
Wang, I.H.1
Chen, Y.J.2
Hsu, J.W.3
Lee, F.J.4
-
154
-
-
84859892605
-
Chlamydia trachomatis hijacks intra-Golgi COG complex-dependent vesicle trafficking pathway
-
Pokrovskaya ID, Szwedo JW, Goodwin A, Lupashina TV, Nagarajan UM and Lupashin VV (2012) Chlamydia trachomatis hijacks intra-Golgi COG complex-dependent vesicle trafficking pathway. Cell Microbiol 14, 656–668.
-
(2012)
Cell Microbiol
, vol.14
, pp. 656-668
-
-
Pokrovskaya, I.D.1
Szwedo, J.W.2
Goodwin, A.3
Lupashina, T.V.4
Nagarajan, U.M.5
Lupashin, V.V.6
-
155
-
-
85028031149
-
A Brucella type IV effector targets the COG tethering complex to remodel host secretory traffic and promote intracellular replication
-
e7
-
Miller CN, Smith EP, Cundiff JA, Knodler LA, Bailey Blackburn J, Lupashin V and Celli J (2017) A Brucella type IV effector targets the COG tethering complex to remodel host secretory traffic and promote intracellular replication. Cell Host Microbe 22, 317–329 e7.
-
(2017)
Cell Host Microbe
, vol.22
, pp. 317-329
-
-
Miller, C.N.1
Smith, E.P.2
Cundiff, J.A.3
Knodler, L.A.4
Bailey Blackburn, J.5
Lupashin, V.6
Celli, J.7
-
156
-
-
85065051542
-
Unique features in the intracellular transport of typhoid toxin revealed by a genome-wide screen
-
Chang SJ, Jin SC, Jiao X and Galan JE (2019) Unique features in the intracellular transport of typhoid toxin revealed by a genome-wide screen. PLoS Pathog 15, e1007704.
-
(2019)
PLoS Pathog
, vol.15
-
-
Chang, S.J.1
Jin, S.C.2
Jiao, X.3
Galan, J.E.4
-
157
-
-
84908148692
-
Target silencing of components of the conserved oligomeric Golgi complex impairs HIV-1 replication
-
Liu S, Dominska-Ngowe M and Dykxhoorn DM (2014) Target silencing of components of the conserved oligomeric Golgi complex impairs HIV-1 replication. Virus Res 192, 92–102.
-
(2014)
Virus Res
, vol.192
, pp. 92-102
-
-
Liu, S.1
Dominska-Ngowe, M.2
Dykxhoorn, D.M.3
-
158
-
-
85020434746
-
Genome-wide screening uncovers the significance of N-sulfation of heparan sulfate as a host cell factor for chikungunya virus infection
-
Tanaka A, Tumkosit U, Nakamura S, Motooka D, Kishishita N, Priengprom T, Sa-Ngasang A, Kinoshita T, Takeda N and Maeda Y (2017) Genome-wide screening uncovers the significance of N-sulfation of heparan sulfate as a host cell factor for chikungunya virus infection. J Virol 91, e00432–17.
-
(2017)
J Virol
, vol.91
, pp. e00432-e00417
-
-
Tanaka, A.1
Tumkosit, U.2
Nakamura, S.3
Motooka, D.4
Kishishita, N.5
Priengprom, T.6
Sa-Ngasang, A.7
Kinoshita, T.8
Takeda, N.9
Maeda, Y.10
-
159
-
-
84921476297
-
A combined proteomics/genomics approach links hepatitis C virus infection with nonsense-mediated mRNA decay
-
Ramage HR, Kumar GR, Verschueren E, Johnson JR, Von Dollen J, Johnson T, Newton B, Shah P, Horner J, Krogan NJ et al. (2015) A combined proteomics/genomics approach links hepatitis C virus infection with nonsense-mediated mRNA decay. Mol Cell 57, 329–340.
-
(2015)
Mol Cell
, vol.57
, pp. 329-340
-
-
Ramage, H.R.1
Kumar, G.R.2
Verschueren, E.3
Johnson, J.R.4
Von Dollen, J.5
Johnson, T.6
Newton, B.7
Shah, P.8
Horner, J.9
Krogan, N.J.10
-
160
-
-
85003706344
-
Identification of zika virus and dengue virus dependency factors using functional genomics
-
Savidis G, McDougall WM, Meraner P, Perreira JM, Portmann JM, Trincucci G, John SP, Aker AM, Renzette N, Robbins DR et al. (2016) Identification of zika virus and dengue virus dependency factors using functional genomics. Cell Rep 16, 232–246.
-
(2016)
Cell Rep
, vol.16
, pp. 232-246
-
-
Savidis, G.1
McDougall, W.M.2
Meraner, P.3
Perreira, J.M.4
Portmann, J.M.5
Trincucci, G.6
John, S.P.7
Aker, A.M.8
Renzette, N.9
Robbins, D.R.10
-
161
-
-
0032101225
-
Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking
-
VanRheenen SM, Cao XC, Lupashin VV, Barlowe C and Waters MG (1998) Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking. J Cell Biol 141, 1107–1119.
-
(1998)
J Cell Biol
, vol.141
, pp. 1107-1119
-
-
VanRheenen, S.M.1
Cao, X.C.2
Lupashin, V.V.3
Barlowe, C.4
Waters, M.G.5
-
162
-
-
0036200146
-
The Rab GTPase Ypt1p and tethering factors couple protein sorting at the ER to vesicle targeting to the Golgi apparatus
-
Morsomme P and Riezman H (2002) The Rab GTPase Ypt1p and tethering factors couple protein sorting at the ER to vesicle targeting to the Golgi apparatus. Dev Cell 2, 307–317.
-
(2002)
Dev Cell
, vol.2
, pp. 307-317
-
-
Morsomme, P.1
Riezman, H.2
-
163
-
-
4544237449
-
Retrograde transport of the mannosyltransferase Och1p to the early Golgi requires a component of the COG transport complex
-
Bruinsma P, Spelbrink RG and Nothwehr SF (2004) Retrograde transport of the mannosyltransferase Och1p to the early Golgi requires a component of the COG transport complex. J Biol Chem 279, 39814–39823.
-
(2004)
J Biol Chem
, vol.279
, pp. 39814-39823
-
-
Bruinsma, P.1
Spelbrink, R.G.2
Nothwehr, S.F.3
-
164
-
-
84908621408
-
Mutations in proteins of the conserved oligomeric Golgi complex affect polarity, cell wall structure, and glycosylation in the filamentous fungus Aspergillus nidulans
-
Gremillion SK, Harris SD, Jackson-Hayes L, Kaminskyj SG, Loprete DM, Gauthier AC, Mercer S, Ravita AJ and Hill TW (2014) Mutations in proteins of the conserved oligomeric Golgi complex affect polarity, cell wall structure, and glycosylation in the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 73, 69–82.
-
(2014)
Fungal Genet Biol
, vol.73
, pp. 69-82
-
-
Gremillion, S.K.1
Harris, S.D.2
Jackson-Hayes, L.3
Kaminskyj, S.G.4
Loprete, D.M.5
Gauthier, A.C.6
Mercer, S.7
Ravita, A.J.8
Hill, T.W.9
-
165
-
-
85052477647
-
Genetic dissection of the secretory route followed by a fungal extracellular glycosyl hydrolase
-
Hernandez-Gonzalez M, Pantazopoulou A, Spanoudakis D, Seegers CLC and Penalva MA (2018) Genetic dissection of the secretory route followed by a fungal extracellular glycosyl hydrolase. Mol Microbiol 109, 781–800.
-
(2018)
Mol Microbiol
, vol.109
, pp. 781-800
-
-
Hernandez-Gonzalez, M.1
Pantazopoulou, A.2
Spanoudakis, D.3
Seegers, C.L.C.4
Penalva, M.A.5
-
166
-
-
84879857014
-
COG5-CDG: expanding the clinical spectrum
-
Rymen D, Keldermans L, Race V, Regal L, Deconinck N, Dionisi-Vici C, Fung CW, Sturiale L, Rosnoblet C, Foulquier F et al. (2012) COG5-CDG: expanding the clinical spectrum. Orphanet J Rare Dis 7, 94.
-
(2012)
Orphanet J Rare Dis
, vol.7
, pp. 94
-
-
Rymen, D.1
Keldermans, L.2
Race, V.3
Regal, L.4
Deconinck, N.5
Dionisi-Vici, C.6
Fung, C.W.7
Sturiale, L.8
Rosnoblet, C.9
Foulquier, F.10
-
167
-
-
33645569027
-
Zebrafish fat-free is required for intestinal lipid absorption and Golgi apparatus structure
-
Ho SY, Lorent K, Pack M and Farber SA (2006) Zebrafish fat-free is required for intestinal lipid absorption and Golgi apparatus structure. Cell Metab 3, 289–300.
-
(2006)
Cell Metab
, vol.3
, pp. 289-300
-
-
Ho, S.Y.1
Lorent, K.2
Pack, M.3
Farber, S.A.4
-
168
-
-
0024208746
-
A new class mutation of low density lipoprotein receptor with altered carbohydrate chains
-
Shite S, Seguchi T, Yoshida T, Kohno K, Ono M and Kuwano M (1988) A new class mutation of low density lipoprotein receptor with altered carbohydrate chains. J Biol Chem 263, 19286–19289.
-
(1988)
J Biol Chem
, vol.263
, pp. 19286-19289
-
-
Shite, S.1
Seguchi, T.2
Yoshida, T.3
Kohno, K.4
Ono, M.5
Kuwano, M.6
-
169
-
-
0028027799
-
LDLC encodes a brefeldin A-sensitive, peripheral Golgi protein required for normal Golgi function
-
Podos SD, Reddy P, Ashkenas J and Krieger M (1994) LDLC encodes a brefeldin A-sensitive, peripheral Golgi protein required for normal Golgi function. J Cell Biol 127, 679–691.
-
(1994)
J Cell Biol
, vol.127
, pp. 679-691
-
-
Podos, S.D.1
Reddy, P.2
Ashkenas, J.3
Krieger, M.4
-
170
-
-
0033514373
-
Expression cloning of LDLB, a gene essential for normal Golgi function and assembly of the ldlCp complex
-
Chatterton JE, Hirsch D, Schwartz JJ, Bickel PE, Rosenberg RD, Lodish HF and Krieger M (1999) Expression cloning of LDLB, a gene essential for normal Golgi function and assembly of the ldlCp complex. Proc Natl Acad Sci USA 96, 915–920.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 915-920
-
-
Chatterton, J.E.1
Hirsch, D.2
Schwartz, J.J.3
Bickel, P.E.4
Rosenberg, R.D.5
Lodish, H.F.6
Krieger, M.7
-
171
-
-
85053338058
-
Defective mucin-type glycosylation on alpha-dystroglycan in COG-deficient cells increases its susceptibility to bacterial proteases
-
Yu SH, Zhao P, Prabhakar PK, Sun T, Beedle A, Boons GJ, Moremen KW, Wells L and Steet R (2018) Defective mucin-type glycosylation on alpha-dystroglycan in COG-deficient cells increases its susceptibility to bacterial proteases. J Biol Chem 293, 14534–14544.
-
(2018)
J Biol Chem
, vol.293
, pp. 14534-14544
-
-
Yu, S.H.1
Zhao, P.2
Prabhakar, P.K.3
Sun, T.4
Beedle, A.5
Boons, G.J.6
Moremen, K.W.7
Wells, L.8
Steet, R.9
-
172
-
-
85042415509
-
Glycans modify mesenchymal stem cell differentiation to impact on the function of resulting osteoblasts
-
Wilson KM, Jagger AM, Walker M, Seinkmane E, Fox JM, Kroger R, Genever P and Ungar D (2018) Glycans modify mesenchymal stem cell differentiation to impact on the function of resulting osteoblasts. J Cell Sci 131, jcs209452.
-
(2018)
J Cell Sci
, vol.131
, pp. jcs209452
-
-
Wilson, K.M.1
Jagger, A.M.2
Walker, M.3
Seinkmane, E.4
Fox, J.M.5
Kroger, R.6
Genever, P.7
Ungar, D.8
-
173
-
-
84926616856
-
Congenital disorders of glycosylation with emphasis on cerebellar involvement
-
Barone R, Fiumara A and Jaeken J (2014) Congenital disorders of glycosylation with emphasis on cerebellar involvement. Semin Neurol 34, 357–366.
-
(2014)
Semin Neurol
, vol.34
, pp. 357-366
-
-
Barone, R.1
Fiumara, A.2
Jaeken, J.3
-
174
-
-
84914698589
-
COG5-CDG with a mild neurohepatic presentation
-
Fung CW, Matthijs G, Sturiale L, Garozzo D, Wong KY, Wong R, Wong V and Jaeken J (2012) COG5-CDG with a mild neurohepatic presentation. JIMD Rep 3, 67–70.
-
(2012)
JIMD Rep
, vol.3
, pp. 67-70
-
-
Fung, C.W.1
Matthijs, G.2
Sturiale, L.3
Garozzo, D.4
Wong, K.Y.5
Wong, R.6
Wong, V.7
Jaeken, J.8
-
175
-
-
85021075132
-
MALDI-MS profiling of serum O-glycosylation and N-glycosylation in COG5-CDG
-
Palmigiano A, Bua RO, Barone R, Rymen D, Regal L, Deconinck N, Dionisi-Vici C, Fung CW, Garozzo D, Jaeken J et al. (2017) MALDI-MS profiling of serum O-glycosylation and N-glycosylation in COG5-CDG. J Mass Spectrom 52, 372–377.
-
(2017)
J Mass Spectrom
, vol.52
, pp. 372-377
-
-
Palmigiano, A.1
Bua, R.O.2
Barone, R.3
Rymen, D.4
Regal, L.5
Deconinck, N.6
Dionisi-Vici, C.7
Fung, C.W.8
Garozzo, D.9
Jaeken, J.10
-
176
-
-
77956096967
-
Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation
-
Lubbehusen J, Thiel C, Rind N, Ungar D, Prinsen BH, de Koning TJ, van Hasselt PM and Korner C (2010) Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation. Hum Mol Genet 19, 3623–3633.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 3623-3633
-
-
Lubbehusen, J.1
Thiel, C.2
Rind, N.3
Ungar, D.4
Prinsen, B.H.5
de Koning, T.J.6
van Hasselt, P.M.7
Korner, C.8
-
177
-
-
84901267574
-
Deficiency of subunit 6 of the conserved oligomeric Golgi complex (COG6-CDG): second patient, different phenotype
-
Huybrechts S, De Laet C, Bontems P, Rooze S, Souayah H, Sznajer Y, Sturiale L, Garozzo D, Matthijs G, Ferster A et al. (2012) Deficiency of subunit 6 of the conserved oligomeric Golgi complex (COG6-CDG): second patient, different phenotype. JIMD Rep 4, 103–108.
-
(2012)
JIMD Rep
, vol.4
, pp. 103-108
-
-
Huybrechts, S.1
De Laet, C.2
Bontems, P.3
Rooze, S.4
Souayah, H.5
Sznajer, Y.6
Sturiale, L.7
Garozzo, D.8
Matthijs, G.9
Ferster, A.10
-
178
-
-
84883197530
-
A novel syndrome of hypohidrosis and intellectual disability is linked to COG6 deficiency
-
Shaheen R, Ansari S, Alshammari MJ, Alkhalidi H, Alrukban H, Eyaid W and Alkuraya FS (2013) A novel syndrome of hypohidrosis and intellectual disability is linked to COG6 deficiency. J Med Genet 50, 431–436.
-
(2013)
J Med Genet
, vol.50
, pp. 431-436
-
-
Shaheen, R.1
Ansari, S.2
Alshammari, M.J.3
Alkhalidi, H.4
Alrukban, H.5
Eyaid, W.6
Alkuraya, F.S.7
-
179
-
-
84948716414
-
Key features and clinical variability of COG6-CDG
-
Rymen D, Winter J, Van Hasselt PM, Jaeken J, Kasapkara C, Gokcay G, Haijes H, Goyens P, Tokatli A, Thiel C et al. (2015) Key features and clinical variability of COG6-CDG. Mol Genet Metab 116, 163–170.
-
(2015)
Mol Genet Metab
, vol.116
, pp. 163-170
-
-
Rymen, D.1
Winter, J.2
Van Hasselt, P.M.3
Jaeken, J.4
Kasapkara, C.5
Gokcay, G.6
Haijes, H.7
Goyens, P.8
Tokatli, A.9
Thiel, C.10
-
180
-
-
33745372525
-
COG-7-deficient human fibroblasts exhibit altered recycling of Golgi proteins
-
Steet R and Kornfeld S (2006) COG-7-deficient human fibroblasts exhibit altered recycling of Golgi proteins. Mol Biol Cell 17, 2312–2321.
-
(2006)
Mol Biol Cell
, vol.17
, pp. 2312-2321
-
-
Steet, R.1
Kornfeld, S.2
-
181
-
-
84933033768
-
TMED6-COG8 is a novel molecular marker of TFE3 translocation renal cell carcinoma
-
Xu Y, Rao Q, Xia Q, Shi S, Shi Q, Ma H, Lu Z, Chen H and Zhou X (2015) TMED6-COG8 is a novel molecular marker of TFE3 translocation renal cell carcinoma. Int J Clin Exp Pathol 8, 2690–2699.
-
(2015)
Int J Clin Exp Pathol
, vol.8
, pp. 2690-2699
-
-
Xu, Y.1
Rao, Q.2
Xia, Q.3
Shi, S.4
Shi, Q.5
Ma, H.6
Lu, Z.7
Chen, H.8
Zhou, X.9
-
182
-
-
84858022403
-
Quantitative proteomic and genetic analyses of the schizophrenia susceptibility factor dysbindin identify novel roles of the biogenesis of lysosome-related organelles complex 1
-
Gokhale A, Larimore J, Werner E, So L, Moreno-De-Luca A, Lese-Martin C, Lupashin VV, Smith Y and Faundez V (2012) Quantitative proteomic and genetic analyses of the schizophrenia susceptibility factor dysbindin identify novel roles of the biogenesis of lysosome-related organelles complex 1. J Neurosci 32, 3697–3711.
-
(2012)
J Neurosci
, vol.32
, pp. 3697-3711
-
-
Gokhale, A.1
Larimore, J.2
Werner, E.3
So, L.4
Moreno-De-Luca, A.5
Lese-Martin, C.6
Lupashin, V.V.7
Smith, Y.8
Faundez, V.9
-
183
-
-
61349169630
-
The PI(3,5)P2 and PI(4,5)P2 interactomes
-
Catimel B, Schieber C, Condron M, Patsiouras H, Connolly L, Catimel J, Nice EC, Burgess AW and Holmes AB (2008) The PI(3,5)P2 and PI(4,5)P2 interactomes. J Proteome Res 7, 5295–5313.
-
(2008)
J Proteome Res
, vol.7
, pp. 5295-5313
-
-
Catimel, B.1
Schieber, C.2
Condron, M.3
Patsiouras, H.4
Connolly, L.5
Catimel, J.6
Nice, E.C.7
Burgess, A.W.8
Holmes, A.B.9
|