메뉴 건너뛰기




Volumn 593, Issue 17, 2019, Pages 2466-2487

Maintaining order: COG complex controls Golgi trafficking, processing, and sorting

Author keywords

COG complex; glycosylation; Golgi; SNARE; tethers; vesicular trafficking

Indexed keywords

CONSERVED OLIGOMERIC GOLGI COMPLEX; GLYCAN; GLYCOLIPID; PROTEINS BY CELLULAR COMPONENT; UNCLASSIFIED DRUG;

EID: 85070843218     PISSN: 00145793     EISSN: 18733468     Source Type: Journal    
DOI: 10.1002/1873-3468.13570     Document Type: Review
Times cited : (58)

References (183)
  • 1
    • 69949183624 scopus 로고    scopus 로고
    • Conserved functions of membrane active GTPases in coated vesicle formation
    • Pucadyil TJ and Schmid SL (2009) Conserved functions of membrane active GTPases in coated vesicle formation. Science 325, 1217–1220.
    • (2009) Science , vol.325 , pp. 1217-1220
    • Pucadyil, T.J.1    Schmid, S.L.2
  • 2
    • 0037136560 scopus 로고    scopus 로고
    • Structure of the Sec23/24–Sar1 pre-budding complex of the COPII vesicle coat
    • Bi X, Corpina RA and Goldberg J (2002) Structure of the Sec23/24–Sar1 pre-budding complex of the COPII vesicle coat. Nature 419, 271.
    • (2002) Nature , vol.419 , pp. 271
    • Bi, X.1    Corpina, R.A.2    Goldberg, J.3
  • 3
  • 5
    • 34247623568 scopus 로고    scopus 로고
    • Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle
    • Cai H, Reinisch K and Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12, 671–682.
    • (2007) Dev Cell , vol.12 , pp. 671-682
    • Cai, H.1    Reinisch, K.2    Ferro-Novick, S.3
  • 6
    • 0038726917 scopus 로고    scopus 로고
    • ER-to-Golgi transport: COP I and COP II function (Review)
    • Duden R (2003) ER-to-Golgi transport: COP I and COP II function (Review). Mol Membr Biol 20, 197–207.
    • (2003) Mol Membr Biol , vol.20 , pp. 197-207
    • Duden, R.1
  • 7
    • 69249213354 scopus 로고    scopus 로고
    • The COPI system: molecular mechanisms and function
    • Beck R, Ravet M, Wieland FT and Cassel D (2009) The COPI system: molecular mechanisms and function. FEBS Lett 583, 2701–2709.
    • (2009) FEBS Lett , vol.583 , pp. 2701-2709
    • Beck, R.1    Ravet, M.2    Wieland, F.T.3    Cassel, D.4
  • 8
    • 30844453760 scopus 로고    scopus 로고
    • Life of a clathrin coat: insights from clathrin and AP structures
    • Edeling MA, Smith C and Owen D (2006) Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol 7, 32.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 32
    • Edeling, M.A.1    Smith, C.2    Owen, D.3
  • 9
    • 78651066551 scopus 로고    scopus 로고
    • COPII-mediated vesicle formation at a glance
    • Jensen D and Schekman R (2011) COPII-mediated vesicle formation at a glance. J Cell Sci 124, 1–4.
    • (2011) J Cell Sci , vol.124 , pp. 1-4
    • Jensen, D.1    Schekman, R.2
  • 11
    • 84955173009 scopus 로고    scopus 로고
    • Forty years of clathrin-coated vesicles
    • Robinson MS (2015) Forty years of clathrin-coated vesicles. Traffic 16, 1210–1238.
    • (2015) Traffic , vol.16 , pp. 1210-1238
    • Robinson, M.S.1
  • 13
    • 59649120867 scopus 로고    scopus 로고
    • Structural characterization of Tip20p and Dsl1p, subunits of the Dsl1p vesicle tethering complex
    • Tripathi A, Ren Y, Jeffrey PD and Hughson FM (2009) Structural characterization of Tip20p and Dsl1p, subunits of the Dsl1p vesicle tethering complex. Nat Struct Mol Biol 16, 114–123.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 114-123
    • Tripathi, A.1    Ren, Y.2    Jeffrey, P.D.3    Hughson, F.M.4
  • 14
    • 14744272136 scopus 로고    scopus 로고
    • Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells
    • Zolov SN and Lupashin VV (2005) Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol 168, 747–759.
    • (2005) J Cell Biol , vol.168 , pp. 747-759
    • Zolov, S.N.1    Lupashin, V.V.2
  • 15
    • 77955061381 scopus 로고    scopus 로고
    • Transport vesicle uncoating: it's later than you think
    • Trahey M and Hay JC (2010) Transport vesicle uncoating: it's later than you think. F1000 Biol Rep 2, 47.
    • (2010) F1000 Biol Rep , vol.2 , pp. 47
    • Trahey, M.1    Hay, J.C.2
  • 17
    • 68049105101 scopus 로고    scopus 로고
    • Rab GTPases as coordinators of vesicle traffic
    • Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10, 513.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 513
    • Stenmark, H.1
  • 18
    • 78751656754 scopus 로고    scopus 로고
    • Role of Rab GTPases in membrane traffic and cell physiology
    • Hutagalung AH and Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91, 119–149.
    • (2011) Physiol Rev , vol.91 , pp. 119-149
    • Hutagalung, A.H.1    Novick, P.J.2
  • 19
    • 33747066132 scopus 로고    scopus 로고
    • Rabs and their effectors: achieving specificity in membrane traffic
    • Grosshans BL, Ortiz D and Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA 103, 11821–11827.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 11821-11827
    • Grosshans, B.L.1    Ortiz, D.2    Novick, P.3
  • 20
    • 0043162027 scopus 로고    scopus 로고
    • Long coiled-coil proteins and membrane traffic
    • Gillingham AK and Munro S (2003) Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta 1641, 71–85.
    • (2003) Biochim Biophys Acta , vol.1641 , pp. 71-85
    • Gillingham, A.K.1    Munro, S.2
  • 21
    • 85043368012 scopus 로고    scopus 로고
    • The Golgin family of coiled-coil tethering proteins
    • Witkos TM and Lowe M (2015) The Golgin family of coiled-coil tethering proteins. Front Cell Dev Biol 3, 86.
    • (2015) Front Cell Dev Biol , vol.3 , pp. 86
    • Witkos, T.M.1    Lowe, M.2
  • 22
    • 85043375557 scopus 로고    scopus 로고
    • At the ends of their tethers! How coiled-coil proteins capture vesicles at the Golgi
    • Gillingham AK (2017) At the ends of their tethers! How coiled-coil proteins capture vesicles at the Golgi. Biochem Soc Trans 46, 43–50.
    • (2017) Biochem Soc Trans , vol.46 , pp. 43-50
    • Gillingham, A.K.1
  • 23
    • 0036629335 scopus 로고    scopus 로고
    • Vesicle tethering complexes in membrane traffic
    • Whyte JR and Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115, 2627–2637.
    • (2002) J Cell Sci , vol.115 , pp. 2627-2637
    • Whyte, J.R.1    Munro, S.2
  • 24
    • 33644816187 scopus 로고    scopus 로고
    • Role of tethering factors in secretory membrane traffic
    • Sztul E and Lupashin V (2006) Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 290, C11–C26.
    • (2006) Am J Physiol Cell Physiol , vol.290 , pp. C11-C26
    • Sztul, E.1    Lupashin, V.2
  • 25
    • 78049368534 scopus 로고    scopus 로고
    • Tethering factors as organizers of intracellular vesicular traffic
    • Yu IM and Hughson FM (2010) Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 26, 137–156.
    • (2010) Annu Rev Cell Dev Biol , vol.26 , pp. 137-156
    • Yu, I.M.1    Hughson, F.M.2
  • 26
    • 85014847875 scopus 로고    scopus 로고
    • Bridging the gap between glycosylation and vesicle traffic
    • Fisher P and Ungar D (2016) Bridging the gap between glycosylation and vesicle traffic. Front Cell Dev Biol 4, 15.
    • (2016) Front Cell Dev Biol , vol.4 , pp. 15
    • Fisher, P.1    Ungar, D.2
  • 27
    • 78149306025 scopus 로고    scopus 로고
    • Multisubunit tethering complexes and their role in membrane fusion
    • Brocker C, Engelbrecht-Vandre S and Ungermann C (2010) Multisubunit tethering complexes and their role in membrane fusion. Curr Biol 20, R943–R952.
    • (2010) Curr Biol , vol.20 , pp. R943-R952
    • Brocker, C.1    Engelbrecht-Vandre, S.2    Ungermann, C.3
  • 28
    • 85069162684 scopus 로고    scopus 로고
    • The physiological functions of the golgin vesicle tethering proteins
    • Lowe M (2019) The physiological functions of the golgin vesicle tethering proteins. Front Cell Dev Biol 7, 94.
    • (2019) Front Cell Dev Biol , vol.7 , pp. 94
    • Lowe, M.1
  • 30
    • 84968796233 scopus 로고    scopus 로고
    • Protein flexibility is required for vesicle tethering at the Golgi
    • Cheung PY, Limouse C, Mabuchi H and Pfeffer SR (2015) Protein flexibility is required for vesicle tethering at the Golgi. Elife 4, e12790.
    • (2015) Elife , vol.4
    • Cheung, P.Y.1    Limouse, C.2    Mabuchi, H.3    Pfeffer, S.R.4
  • 31
    • 84865305431 scopus 로고    scopus 로고
    • Structures and mechanisms of vesicle coat components and multisubunit tethering complexes
    • Jackson LP, Kummel D, Reinisch KM and Owen DJ (2012) Structures and mechanisms of vesicle coat components and multisubunit tethering complexes. Curr Opin Cell Biol 24, 475–483.
    • (2012) Curr Opin Cell Biol , vol.24 , pp. 475-483
    • Jackson, L.P.1    Kummel, D.2    Reinisch, K.M.3    Owen, D.J.4
  • 32
    • 1542409030 scopus 로고    scopus 로고
    • The specificity of SNARE-dependent fusion is encoded in the SNARE motif
    • Paumet F, Rahimian V and Rothman JE (2004) The specificity of SNARE-dependent fusion is encoded in the SNARE motif. Proc Natl Acad Sci USA 101, 3376–3380.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 3376-3380
    • Paumet, F.1    Rahimian, V.2    Rothman, J.E.3
  • 33
    • 20444407298 scopus 로고    scopus 로고
    • SNAREs and traffic
    • Hong W (2005) SNAREs and traffic. Biochim Biophys Acta 1744, 120–144.
    • (2005) Biochim Biophys Acta , vol.1744 , pp. 120-144
    • Hong, W.1
  • 34
    • 33747622293 scopus 로고    scopus 로고
    • SNAREs–engines for membrane fusion
    • Jahn R and Scheller RH (2006) SNAREs–engines for membrane fusion. Nat Rev Mol Cell Biol 7, 631–643.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 631-643
    • Jahn, R.1    Scheller, R.H.2
  • 35
    • 84890884015 scopus 로고    scopus 로고
    • Tethering the assembly of SNARE complexes
    • Hong W and Lev S (2014) Tethering the assembly of SNARE complexes. Trends Cell Biol 24, 35–43.
    • (2014) Trends Cell Biol , vol.24 , pp. 35-43
    • Hong, W.1    Lev, S.2
  • 36
    • 0032430423 scopus 로고    scopus 로고
    • Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs
    • Fasshauer D, Sutton RB, Brunger AT and Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci USA 95, 15781–15786.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 15781-15786
    • Fasshauer, D.1    Sutton, R.B.2    Brunger, A.T.3    Jahn, R.4
  • 39
    • 0034946048 scopus 로고    scopus 로고
    • Three SNARE complexes cooperate to mediate membrane fusion
    • Hua Y and Scheller RH (2001) Three SNARE complexes cooperate to mediate membrane fusion. Proc Natl Acad Sci USA 98, 8065–8070.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 8065-8070
    • Hua, Y.1    Scheller, R.H.2
  • 40
    • 52549098624 scopus 로고    scopus 로고
    • Membrane fusion: SNAREs and regulation
    • Malsam J, Kreye S and Sollner TH (2008) Membrane fusion: SNAREs and regulation. Cell Mol Life Sci 65, 2814–2832.
    • (2008) Cell Mol Life Sci , vol.65 , pp. 2814-2832
    • Malsam, J.1    Kreye, S.2    Sollner, T.H.3
  • 41
    • 33845987734 scopus 로고    scopus 로고
    • Selective activation of cognate SNAREpins by Sec1/Munc18 proteins
    • Shen J, Tareste DC, Paumet F, Rothman JE and Melia TJ (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128, 183–195.
    • (2007) Cell , vol.128 , pp. 183-195
    • Shen, J.1    Tareste, D.C.2    Paumet, F.3    Rothman, J.E.4    Melia, T.J.5
  • 42
    • 84870232182 scopus 로고    scopus 로고
    • The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices–guilty as charged?
    • Rizo J and Sudhof TC (2012) The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices–guilty as charged? Annu Rev Cell Dev Biol 28, 279–308.
    • (2012) Annu Rev Cell Dev Biol , vol.28 , pp. 279-308
    • Rizo, J.1    Sudhof, T.C.2
  • 43
    • 58849092285 scopus 로고    scopus 로고
    • Membrane fusion: grappling with SNARE and SM proteins
    • Sudhof TC and Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477.
    • (2009) Science , vol.323 , pp. 474-477
    • Sudhof, T.C.1    Rothman, J.E.2
  • 44
    • 84964795519 scopus 로고    scopus 로고
    • Recent advances in deciphering the structure and molecular mechanism of the AAA+ ATPase N-ethylmaleimide-sensitive factor (NSF)
    • Zhao M and Brunger AT (2016) Recent advances in deciphering the structure and molecular mechanism of the AAA+ ATPase N-ethylmaleimide-sensitive factor (NSF). J Mol Biol 428, 1912–1926.
    • (2016) J Mol Biol , vol.428 , pp. 1912-1926
    • Zhao, M.1    Brunger, A.T.2
  • 45
    • 84937394649 scopus 로고    scopus 로고
    • The synaptic vesicle release machinery
    • Rizo J and Xu J (2015) The synaptic vesicle release machinery. Annu Rev Biophys 44, 339–367.
    • (2015) Annu Rev Biophys , vol.44 , pp. 339-367
    • Rizo, J.1    Xu, J.2
  • 46
    • 79957561279 scopus 로고    scopus 로고
    • Organization of the synthesis of glycolipid oligosaccharides in the Golgi complex
    • Maccioni HJF, Quiroga R and Spessott W (2011) Organization of the synthesis of glycolipid oligosaccharides in the Golgi complex. FEBS Lett 585, 1691–1698.
    • (2011) FEBS Lett , vol.585 , pp. 1691-1698
    • Maccioni, H.J.F.1    Quiroga, R.2    Spessott, W.3
  • 47
    • 84862728161 scopus 로고    scopus 로고
    • Vertebrate protein glycosylation: diversity, synthesis and function
    • Moremen KW, Tiemeyer M and Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13, 448–462.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 448-462
    • Moremen, K.W.1    Tiemeyer, M.2    Nairn, A.V.3
  • 48
    • 33745381312 scopus 로고    scopus 로고
    • Genetic defects in the human glycome
    • Freeze HH (2006) Genetic defects in the human glycome. Nat Rev Genet 7, 537.
    • (2006) Nat Rev Genet , vol.7 , pp. 537
    • Freeze, H.H.1
  • 49
  • 50
    • 80053060999 scopus 로고    scopus 로고
    • Structures, biosynthesis, and functions of gangliosides – an overview
    • Yu RK, Tsai YT, Ariga T and Yanagisawa M (2011) Structures, biosynthesis, and functions of gangliosides – an overview. J Oleo Sci 60, 537–544.
    • (2011) J Oleo Sci , vol.60 , pp. 537-544
    • Yu, R.K.1    Tsai, Y.T.2    Ariga, T.3    Yanagisawa, M.4
  • 51
    • 84861487204 scopus 로고    scopus 로고
    • Golgi membrane dynamics and lipid metabolism
    • Bankaitis VA, Garcia-Mata R and Mousley CJ (2012) Golgi membrane dynamics and lipid metabolism. Curr Biol 22, R414–R424.
    • (2012) Curr Biol , vol.22 , pp. R414-R424
    • Bankaitis, V.A.1    Garcia-Mata, R.2    Mousley, C.J.3
  • 53
    • 84979017473 scopus 로고    scopus 로고
    • COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex
    • Willett R, Blackburn JB, Climer L, Pokrovskaya I, Kudlyk T, Wang W and Lupashin V (2016) COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex. Sci Rep 6, 29139.
    • (2016) Sci Rep , vol.6 , pp. 29139
    • Willett, R.1    Blackburn, J.B.2    Climer, L.3    Pokrovskaya, I.4    Kudlyk, T.5    Wang, W.6    Lupashin, V.7
  • 54
    • 23044502309 scopus 로고    scopus 로고
    • Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex
    • Fotso P, Koryakina Y, Pavliv O, Tsiomenko AB and Lupashin VV (2005) Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J Biol Chem 280, 27613–27623.
    • (2005) J Biol Chem , vol.280 , pp. 27613-27623
    • Fotso, P.1    Koryakina, Y.2    Pavliv, O.3    Tsiomenko, A.B.4    Lupashin, V.V.5
  • 55
    • 25444466999 scopus 로고    scopus 로고
    • Genetic analysis of the subunit organization and function of the conserved oligomeric golgi (COG) complex: studies of COG5- and COG7-deficient mammalian cells
    • Oka T, Vasile E, Penman M, Novina CD, Dykxhoorn DM, Ungar D, Hughson FM and Krieger M (2005) Genetic analysis of the subunit organization and function of the conserved oligomeric golgi (COG) complex: studies of COG5- and COG7-deficient mammalian cells. J Biol Chem 280, 32736–32745.
    • (2005) J Biol Chem , vol.280 , pp. 32736-32745
    • Oka, T.1    Vasile, E.2    Penman, M.3    Novina, C.D.4    Dykxhoorn, D.M.5    Ungar, D.6    Hughson, F.M.7    Krieger, M.8
  • 56
    • 78549285917 scopus 로고    scopus 로고
    • Molecular organization of the COG vesicle tethering complex
    • Lees JA, Yip CK, Walz T and Hughson FM (2010) Molecular organization of the COG vesicle tethering complex. Nat Struct Mol Biol 17, 1292–1297.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 1292-1297
    • Lees, J.A.1    Yip, C.K.2    Walz, T.3    Hughson, F.M.4
  • 57
    • 25444486756 scopus 로고    scopus 로고
    • Subunit architecture of the conserved oligomeric Golgi complex
    • Ungar D, Oka T, Vasile E, Krieger M and Hughson FM (2005) Subunit architecture of the conserved oligomeric Golgi complex. J Biol Chem 280, 32729–32735.
    • (2005) J Biol Chem , vol.280 , pp. 32729-32735
    • Ungar, D.1    Oka, T.2    Vasile, E.3    Krieger, M.4    Hughson, F.M.5
  • 59
    • 33748174648 scopus 로고    scopus 로고
    • IntraGolgi distribution of the conserved oligomeric Golgi (COG) complex
    • Vasile E, Oka T, Ericsson M, Nakamura N and Krieger M (2006) IntraGolgi distribution of the conserved oligomeric Golgi (COG) complex. Exp Cell Res 312, 3132–3141.
    • (2006) Exp Cell Res , vol.312 , pp. 3132-3141
    • Vasile, E.1    Oka, T.2    Ericsson, M.3    Nakamura, N.4    Krieger, M.5
  • 60
    • 84982792097 scopus 로고    scopus 로고
    • Arabidopsis COG complex subunits COG3 and COG8 modulate Golgi morphology, vesicle trafficking homeostasis and are essential for pollen tube growth
    • Tan X, Cao K, Liu F, Li Y, Li P, Gao C, Ding Y, Lan Z, Shi Z, Rui Q et al. (2016) Arabidopsis COG complex subunits COG3 and COG8 modulate Golgi morphology, vesicle trafficking homeostasis and are essential for pollen tube growth. PLoS Genet 12, e1006140.
    • (2016) PLoS Genet , vol.12
    • Tan, X.1    Cao, K.2    Liu, F.3    Li, Y.4    Li, P.5    Gao, C.6    Ding, Y.7    Lan, Z.8    Shi, Z.9    Rui, Q.10
  • 61
    • 77954557058 scopus 로고    scopus 로고
    • Comparative analyses of the conserved oligomeric Golgi (COG) complex in vertebrates
    • Quental R, Azevedo L, Matthiesen R and Amorim A (2010) Comparative analyses of the conserved oligomeric Golgi (COG) complex in vertebrates. BMC Evol Biol 10, 212.
    • (2010) BMC Evol Biol , vol.10 , pp. 212
    • Quental, R.1    Azevedo, L.2    Matthiesen, R.3    Amorim, A.4
  • 62
    • 33847648364 scopus 로고    scopus 로고
    • Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins
    • Koumandou VL, Dacks JB, Coulson RM and Field MC (2007) Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol Biol 7, 29.
    • (2007) BMC Evol Biol , vol.7 , pp. 29
    • Koumandou, V.L.1    Dacks, J.B.2    Coulson, R.M.3    Field, M.C.4
  • 63
    • 0029843493 scopus 로고    scopus 로고
    • The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae
    • TerBush DR, Maurice T, Roth D and Novick P (1996) The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J 15, 6483–6494.
    • (1996) EMBO J , vol.15 , pp. 6483-6494
    • TerBush, D.R.1    Maurice, T.2    Roth, D.3    Novick, P.4
  • 66
    • 0035489304 scopus 로고    scopus 로고
    • The SeC34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic
    • Whyte JRC and Munro S (2001) The SeC34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 1, 527–537.
    • (2001) Dev Cell , vol.1 , pp. 527-537
    • Whyte, J.R.C.1    Munro, S.2
  • 67
    • 67651160303 scopus 로고    scopus 로고
    • Remote homology between Munc13 MUN domain and vesicle tethering complexes
    • Pei J, Ma C, Rizo J and Grishin NV (2009) Remote homology between Munc13 MUN domain and vesicle tethering complexes. J Mol Biol 391, 509–517.
    • (2009) J Mol Biol , vol.391 , pp. 509-517
    • Pei, J.1    Ma, C.2    Rizo, J.3    Grishin, N.V.4
  • 68
    • 85059764100 scopus 로고    scopus 로고
    • Munc18 and Munc13 serve as a functional template to orchestrate neuronal SNARE complex assembly
    • Wang S, Li Y, Gong J, Ye S, Yang X, Zhang R and Ma C (2019) Munc18 and Munc13 serve as a functional template to orchestrate neuronal SNARE complex assembly. Nat Commun 10, 69.
    • (2019) Nat Commun , vol.10 , pp. 69
    • Wang, S.1    Li, Y.2    Gong, J.3    Ye, S.4    Yang, X.5    Zhang, R.6    Ma, C.7
  • 69
    • 84887478931 scopus 로고    scopus 로고
    • The Golgi puppet master: COG complex at center stage of membrane trafficking interactions
    • Willett R, Ungar D and Lupashin V (2013) The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem Cell Biol 140, 271–283.
    • (2013) Histochem Cell Biol , vol.140 , pp. 271-283
    • Willett, R.1    Ungar, D.2    Lupashin, V.3
  • 70
    • 0030050828 scopus 로고    scopus 로고
    • New mutants of Saccharomyces cerevisiae affected in the transport of proteins from the endoplasmic reticulum to the Golgi complex
    • Wuestehube LJ, Duden R, Eun A, Hamamoto S, Korn P, Ram R and Schekman R (1996) New mutants of Saccharomyces cerevisiae affected in the transport of proteins from the endoplasmic reticulum to the Golgi complex. Genetics 142, 393–406.
    • (1996) Genetics , vol.142 , pp. 393-406
    • Wuestehube, L.J.1    Duden, R.2    Eun, A.3    Hamamoto, S.4    Korn, P.5    Ram, R.6    Schekman, R.7
  • 71
    • 33645131266 scopus 로고    scopus 로고
    • COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation
    • Shestakova A, Zolov S and Lupashin V (2006) COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 7, 191–204.
    • (2006) Traffic , vol.7 , pp. 191-204
    • Shestakova, A.1    Zolov, S.2    Lupashin, V.3
  • 72
    • 84889604245 scopus 로고    scopus 로고
    • Dissecting functions of the conserved oligomeric Golgi tethering complex using a cell-free assay
    • Cottam NP, Wilson KM, Ng BG, Korner C, Freeze HH and Ungar D (2014) Dissecting functions of the conserved oligomeric Golgi tethering complex using a cell-free assay. Traffic 15, 12–21.
    • (2014) Traffic , vol.15 , pp. 12-21
    • Cottam, N.P.1    Wilson, K.M.2    Ng, B.G.3    Korner, C.4    Freeze, H.H.5    Ungar, D.6
  • 73
    • 0021126647 scopus 로고
    • Receptor-mediated endocytosis of low density lipoprotein: somatic cell mutants define multiple genes required for expression of surface- receptor activity
    • Kingsley DM and Krieger M (1984) Receptor-mediated endocytosis of low density lipoprotein: somatic cell mutants define multiple genes required for expression of surface- receptor activity. Proc Natl Acad Sci USA 81, 5454–5458.
    • (1984) Proc Natl Acad Sci USA , vol.81 , pp. 5454-5458
    • Kingsley, D.M.1    Krieger, M.2
  • 74
    • 0022455528 scopus 로고
    • Three types of low density lipoprotein receptor-deficient mutant have pleiotropic defects in the synthesis of N-linked, O-linked, and lipid-linked carbohydrate chains
    • Kingsley DM, Kozarsky KF, Segal M and Krieger M (1986) Three types of low density lipoprotein receptor-deficient mutant have pleiotropic defects in the synthesis of N-linked, O-linked, and lipid-linked carbohydrate chains. J Cell Biol 102, 1576–1585.
    • (1986) J Cell Biol , vol.102 , pp. 1576-1585
    • Kingsley, D.M.1    Kozarsky, K.F.2    Segal, M.3    Krieger, M.4
  • 75
    • 0032734240 scopus 로고    scopus 로고
    • The yeast GRD20 gene is required for protein sorting in the trans-Golgi network/endosomal system and for polarization of the actin cytoskeleton
    • Spelbrink RG and Nothwehr SF (1999) The yeast GRD20 gene is required for protein sorting in the trans-Golgi network/endosomal system and for polarization of the actin cytoskeleton. Mol Biol Cell 10, 4263–4281.
    • (1999) Mol Biol Cell , vol.10 , pp. 4263-4281
    • Spelbrink, R.G.1    Nothwehr, S.F.2
  • 76
    • 0035999979 scopus 로고    scopus 로고
    • Identification of Sec36p, Sec37p, and Sec38p: components of yeast complex that contains Sec34p and Sec35p
    • Ram RJ, Li B and Kaiser CA (2002) Identification of Sec36p, Sec37p, and Sec38p: components of yeast complex that contains Sec34p and Sec35p. Mol Biol Cell 13, 1484–1500.
    • (2002) Mol Biol Cell , vol.13 , pp. 1484-1500
    • Ram, R.J.1    Li, B.2    Kaiser, C.A.3
  • 77
    • 0037071543 scopus 로고    scopus 로고
    • The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins
    • Suvorova ES, Duden R and Lupashin VV (2002) The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J Cell Biol 157, 631–643.
    • (2002) J Cell Biol , vol.157 , pp. 631-643
    • Suvorova, E.S.1    Duden, R.2    Lupashin, V.V.3
  • 78
    • 84869498236 scopus 로고    scopus 로고
    • Mutations in Cog7 affect Golgi structure, meiotic cytokinesis and sperm development during Drosophila spermatogenesis
    • Belloni G, Sechi S, Riparbelli MG, Fuller MT, Callaini G and Giansanti MG (2012) Mutations in Cog7 affect Golgi structure, meiotic cytokinesis and sperm development during Drosophila spermatogenesis. J Cell Sci 125, 5441–5452.
    • (2012) J Cell Sci , vol.125 , pp. 5441-5452
    • Belloni, G.1    Sechi, S.2    Riparbelli, M.G.3    Fuller, M.T.4    Callaini, G.5    Giansanti, M.G.6
  • 80
    • 32244443956 scopus 로고    scopus 로고
    • The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C. elegans
    • Kubota Y, Sano M, Goda S, Suzuki N and Nishiwaki K (2006) The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C. elegans. Development 133, 263–273.
    • (2006) Development , vol.133 , pp. 263-273
    • Kubota, Y.1    Sano, M.2    Goda, S.3    Suzuki, N.4    Nishiwaki, K.5
  • 81
    • 84860361402 scopus 로고    scopus 로고
    • The conserved oligomeric Golgi complex is required for fucosylation of N-glycans in Caenorhabditis elegans
    • Struwe WB and Reinhold VN (2012) The conserved oligomeric Golgi complex is required for fucosylation of N-glycans in Caenorhabditis elegans. Glycobiology 22, 863–875.
    • (2012) Glycobiology , vol.22 , pp. 863-875
    • Struwe, W.B.1    Reinhold, V.N.2
  • 82
    • 44449096760 scopus 로고    scopus 로고
    • EMBRYO YELLOW gene, encoding a subunit of the conserved oligomeric Golgi complex, is required for appropriate cell expansion and meristem organization in Arabidopsis thaliana
    • Ishikawa T, Machida C, Yoshioka Y, Ueda T, Nakano A and Machida Y (2008) EMBRYO YELLOW gene, encoding a subunit of the conserved oligomeric Golgi complex, is required for appropriate cell expansion and meristem organization in Arabidopsis thaliana. Genes Cells 13, 521–535.
    • (2008) Genes Cells , vol.13 , pp. 521-535
    • Ishikawa, T.1    Machida, C.2    Yoshioka, Y.3    Ueda, T.4    Nakano, A.5    Machida, Y.6
  • 83
    • 84874735462 scopus 로고    scopus 로고
    • The conserved oligomeric Golgi complex is involved in penetration resistance of barley to the barley powdery mildew fungus
    • Ostertag M, Stammler J, Douchkov D, Eichmann R and Hückelhoven R (2013) The conserved oligomeric Golgi complex is involved in penetration resistance of barley to the barley powdery mildew fungus. Mol Plant Pathol 14, 230–240.
    • (2013) Mol Plant Pathol , vol.14 , pp. 230-240
    • Ostertag, M.1    Stammler, J.2    Douchkov, D.3    Eichmann, R.4    Hückelhoven, R.5
  • 84
    • 2342467375 scopus 로고    scopus 로고
    • The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins
    • Oka T, Ungar D, Hughson FM and Krieger M (2004) The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins. Mol Biol Cell 15, 2423–2435.
    • (2004) Mol Biol Cell , vol.15 , pp. 2423-2435
    • Oka, T.1    Ungar, D.2    Hughson, F.M.3    Krieger, M.4
  • 85
    • 78651310761 scopus 로고    scopus 로고
    • Defective GM3 synthesis in Cog2 null mutant CHO cells associates to mislocalization of lactosylceramide sialyltransferase in the Golgi complex
    • Spessott W, Uliana A and Maccioni HJ (2010) Defective GM3 synthesis in Cog2 null mutant CHO cells associates to mislocalization of lactosylceramide sialyltransferase in the Golgi complex. Neurochem Res 35, 2161–2167.
    • (2010) Neurochem Res , vol.35 , pp. 2161-2167
    • Spessott, W.1    Uliana, A.2    Maccioni, H.J.3
  • 86
    • 78650657539 scopus 로고    scopus 로고
    • Cog2 null mutant CHO cells show defective sphingomyelin synthesis
    • Spessott W, Uliana A and Maccioni HJ (2010) Cog2 null mutant CHO cells show defective sphingomyelin synthesis. J Biol Chem 285, 41472–41482.
    • (2010) J Biol Chem , vol.285 , pp. 41472-41482
    • Spessott, W.1    Uliana, A.2    Maccioni, H.J.3
  • 90
    • 84867232722 scopus 로고    scopus 로고
    • A conserved N-terminal arginine-motif in GOLPH3-family proteins mediates binding to coatomer
    • Tu L, Chen L and Banfield DK (2012) A conserved N-terminal arginine-motif in GOLPH3-family proteins mediates binding to coatomer. Traffic 13, 1496–1507.
    • (2012) Traffic , vol.13 , pp. 1496-1507
    • Tu, L.1    Chen, L.2    Banfield, D.K.3
  • 91
    • 84909983113 scopus 로고    scopus 로고
    • Golgi phosphoprotein 3 triggers signal-mediated incorporation of glycosyltransferases into coatomer-coated (COPI) vesicles
    • Eckert ES, Reckmann I, Hellwig A, Rohling S, El-Battari A, Wieland FT and Popoff V (2014) Golgi phosphoprotein 3 triggers signal-mediated incorporation of glycosyltransferases into coatomer-coated (COPI) vesicles. J Biol Chem 289, 31319–31329.
    • (2014) J Biol Chem , vol.289 , pp. 31319-31329
    • Eckert, E.S.1    Reckmann, I.2    Hellwig, A.3    Rohling, S.4    El-Battari, A.5    Wieland, F.T.6    Popoff, V.7
  • 94
    • 12244268655 scopus 로고    scopus 로고
    • The Drosophila Cog5 homologue is required for cytokinesis, cell elongation, and assembly of specialized Golgi architecture during spermatogenesis
    • Farkas RM, Giansanti MG, Gatti M and Fuller MT (2003) The Drosophila Cog5 homologue is required for cytokinesis, cell elongation, and assembly of specialized Golgi architecture during spermatogenesis. Mol Biol Cell 14, 190–200.
    • (2003) Mol Biol Cell , vol.14 , pp. 190-200
    • Farkas, R.M.1    Giansanti, M.G.2    Gatti, M.3    Fuller, M.T.4
  • 95
    • 36849029786 scopus 로고    scopus 로고
    • Deficiencies in subunits of the conserved oligomeric Golgi (COG) complex define a novel group of congenital disorders of glycosylation
    • Zeevaert R, Foulquier F, Jaeken J and Matthijs G (2008) Deficiencies in subunits of the conserved oligomeric Golgi (COG) complex define a novel group of congenital disorders of glycosylation. Mol Genet Metab 93, 15–21.
    • (2008) Mol Genet Metab , vol.93 , pp. 15-21
    • Zeevaert, R.1    Foulquier, F.2    Jaeken, J.3    Matthijs, G.4
  • 103
    • 84883654492 scopus 로고    scopus 로고
    • Deficiency of the Cog8 subunit in normal and CDG-derived cells impairs the assembly of the COG and Golgi SNARE complexes
    • Laufman O, Freeze HH, Hong W and Lev S (2013) Deficiency of the Cog8 subunit in normal and CDG-derived cells impairs the assembly of the COG and Golgi SNARE complexes. Traffic 14, 1065–1077.
    • (2013) Traffic , vol.14 , pp. 1065-1077
    • Laufman, O.1    Freeze, H.H.2    Hong, W.3    Lev, S.4
  • 107
    • 85020740370 scopus 로고    scopus 로고
    • Further delineation of COG8-CDG: a case with novel compound heterozygous mutations diagnosed by targeted exome sequencing
    • Yang A, Cho SY, Jang JH, Kim J, Kim SZ, Lee BH, Yoo HW and Jin DK (2017) Further delineation of COG8-CDG: a case with novel compound heterozygous mutations diagnosed by targeted exome sequencing. Clin Chim Acta 471, 191–195.
    • (2017) Clin Chim Acta , vol.471 , pp. 191-195
    • Yang, A.1    Cho, S.Y.2    Jang, J.H.3    Kim, J.4    Kim, S.Z.5    Lee, B.H.6    Yoo, H.W.7    Jin, D.K.8
  • 108
    • 85060784316 scopus 로고    scopus 로고
    • The first case of antenatal presentation in COG8-congenital disorder of glycosylation with a novel splice site mutation and an extended phenotype
    • Arora V, Puri RD, Bhai P, Sharma N, Bijarnia-Mahay S, Dimri N, Baijal A, Saxena R and Verma I (2019) The first case of antenatal presentation in COG8-congenital disorder of glycosylation with a novel splice site mutation and an extended phenotype. Am J Med Genet A 179, 480–485.
    • (2019) Am J Med Genet A , vol.179 , pp. 480-485
    • Arora, V.1    Puri, R.D.2    Bhai, P.3    Sharma, N.4    Bijarnia-Mahay, S.5    Dimri, N.6    Baijal, A.7    Saxena, R.8    Verma, I.9
  • 109
    • 70349165974 scopus 로고    scopus 로고
    • COG defects, birth and rise!
    • Foulquier F (2009) COG defects, birth and rise! Biochim Biophys Acta 1792, 896–902.
    • (2009) Biochim Biophys Acta , vol.1792 , pp. 896-902
    • Foulquier, F.1
  • 111
    • 79958798009 scopus 로고    scopus 로고
    • How Golgi glycosylation meets and needs trafficking: the case of the COG complex
    • Reynders E, Foulquier F, Annaert W and Matthijs G (2011) How Golgi glycosylation meets and needs trafficking: the case of the COG complex. Glycobiology 21, 853–863.
    • (2011) Glycobiology , vol.21 , pp. 853-863
    • Reynders, E.1    Foulquier, F.2    Annaert, W.3    Matthijs, G.4
  • 112
    • 84946559140 scopus 로고    scopus 로고
    • Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function
    • Climer LK, Dobretsov M and Lupashin V (2015) Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function. Front Neurosci 9, 405.
    • (2015) Front Neurosci , vol.9 , pp. 405
    • Climer, L.K.1    Dobretsov, M.2    Lupashin, V.3
  • 114
    • 85045847114 scopus 로고    scopus 로고
    • Conserved oligomeric Golgi and neuronal vesicular trafficking
    • Ulloa-Aguirre A, Tao Y-X, eds), Springer, Cham
    • Climer LK, Hendrix RD and Lupashin VV (2018) Conserved oligomeric Golgi and neuronal vesicular trafficking. In Handbook of Experimental Pharmacology (Ulloa-Aguirre A and Tao Y-X, eds), pp. 227–247. Springer, Cham.
    • (2018) Handbook of Experimental Pharmacology , pp. 227-247
    • Climer, L.K.1    Hendrix, R.D.2    Lupashin, V.V.3
  • 115
    • 85054014584 scopus 로고    scopus 로고
    • A recurrent de novo heterozygous COG4 substitution leads to Saul-Wilson syndrome, disrupted vesicular trafficking, and altered proteoglycan glycosylation
    • Ferreira CR, Xia ZJ, Clement A, Parry DA, Davids M, Taylan F, Sharma P, Turgeon CT, Blanco-Sanchez B, Ng BG et al. (2018) A recurrent de novo heterozygous COG4 substitution leads to Saul-Wilson syndrome, disrupted vesicular trafficking, and altered proteoglycan glycosylation. Am J Hum Genet 103, 553–567.
    • (2018) Am J Hum Genet , vol.103 , pp. 553-567
    • Ferreira, C.R.1    Xia, Z.J.2    Clement, A.3    Parry, D.A.4    Davids, M.5    Taylan, F.6    Sharma, P.7    Turgeon, C.T.8    Blanco-Sanchez, B.9    Ng, B.G.10
  • 116
    • 81855168333 scopus 로고    scopus 로고
    • Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery
    • Pokrovskaya ID, Willett R, Smith RD, Morelle W, Kudlyk T and Lupashin VV (2011) Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 21, 1554–1569.
    • (2011) Glycobiology , vol.21 , pp. 1554-1569
    • Pokrovskaya, I.D.1    Willett, R.2    Smith, R.D.3    Morelle, W.4    Kudlyk, T.5    Lupashin, V.V.6
  • 117
    • 84880494649 scopus 로고    scopus 로고
    • Fluorescent microscopy as a tool to elucidate dysfunction and mislocalization of Golgi glycosyltransferases in COG complex depleted mammalian cells
    • Willett RA, Pokrovskaya ID and Lupashin VV (2013) Fluorescent microscopy as a tool to elucidate dysfunction and mislocalization of Golgi glycosyltransferases in COG complex depleted mammalian cells. Methods Mol Biol 1022, 61–72.
    • (2013) Methods Mol Biol , vol.1022 , pp. 61-72
    • Willett, R.A.1    Pokrovskaya, I.D.2    Lupashin, V.V.3
  • 118
    • 79958830701 scopus 로고    scopus 로고
    • Differential effects of lobe A and lobe B of the Conserved Oligomeric Golgi complex on the stability of {beta}1,4-galactosyltransferase 1 and {alpha}2,6-sialyltransferase 1
    • Peanne R, Legrand D, Duvet S, Mir AM, Matthijs G, Rohrer J and Foulquier F (2011) Differential effects of lobe A and lobe B of the Conserved Oligomeric Golgi complex on the stability of {beta}1,4-galactosyltransferase 1 and {alpha}2,6-sialyltransferase 1. Glycobiology 21, 864–876.
    • (2011) Glycobiology , vol.21 , pp. 864-876
    • Peanne, R.1    Legrand, D.2    Duvet, S.3    Mir, A.M.4    Matthijs, G.5    Rohrer, J.6    Foulquier, F.7
  • 119
    • 37249008781 scopus 로고    scopus 로고
    • Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability
    • Shestakova A, Suvorova E, Pavliv O, Khaidakova G and Lupashin V (2007) Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J Cell Biol 179, 1179–1192.
    • (2007) J Cell Biol , vol.179 , pp. 1179-1192
    • Shestakova, A.1    Suvorova, E.2    Pavliv, O.3    Khaidakova, G.4    Lupashin, V.5
  • 120
    • 70350378203 scopus 로고    scopus 로고
    • The COG complex, Rab6 and COPI define a novel Golgi retrograde trafficking pathway that is exploited by SubAB toxin
    • Smith RD, Willett R, Kudlyk T, Pokrovskaya I, Paton AW, Paton JC and Lupashin VV (2009) The COG complex, Rab6 and COPI define a novel Golgi retrograde trafficking pathway that is exploited by SubAB toxin. Traffic 10, 1502–1517.
    • (2009) Traffic , vol.10 , pp. 1502-1517
    • Smith, R.D.1    Willett, R.2    Kudlyk, T.3    Pokrovskaya, I.4    Paton, A.W.5    Paton, J.C.6    Lupashin, V.V.7
  • 122
    • 34948888155 scopus 로고    scopus 로고
    • Rab6 regulates both ZW10/RINT-1 and conserved oligomeric Golgi complex-dependent Golgi trafficking and homeostasis
    • Sun Y, Shestakova A, Hunt L, Sehgal S, Lupashin V and Storrie B (2007) Rab6 regulates both ZW10/RINT-1 and conserved oligomeric Golgi complex-dependent Golgi trafficking and homeostasis. Mol Biol Cell 18, 4129–4142.
    • (2007) Mol Biol Cell , vol.18 , pp. 4129-4142
    • Sun, Y.1    Shestakova, A.2    Hunt, L.3    Sehgal, S.4    Lupashin, V.5    Storrie, B.6
  • 123
    • 67651166603 scopus 로고    scopus 로고
    • Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing
    • Laufman O, Kedan A, Hong W and Lev S (2009) Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing. EMBO J 28, 2006–2017.
    • (2009) EMBO J , vol.28 , pp. 2006-2017
    • Laufman, O.1    Kedan, A.2    Hong, W.3    Lev, S.4
  • 125
    • 80052572363 scopus 로고    scopus 로고
    • The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport
    • Laufman O, Hong W and Lev S (2011) The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport. J Cell Biol 194, 459–472.
    • (2011) J Cell Biol , vol.194 , pp. 459-472
    • Laufman, O.1    Hong, W.2    Lev, S.3
  • 126
    • 84884475631 scopus 로고    scopus 로고
    • A new role for RINT-1 in SNARE complex assembly at the trans-Golgi network in coordination with the COG complex
    • Arasaki K, Takagi D, Furuno A, Sohda M, Misumi Y, Wakana Y, Inoue H and Tagaya M (2013) A new role for RINT-1 in SNARE complex assembly at the trans-Golgi network in coordination with the COG complex. Mol Biol Cell 24, 2907–2917.
    • (2013) Mol Biol Cell , vol.24 , pp. 2907-2917
    • Arasaki, K.1    Takagi, D.2    Furuno, A.3    Sohda, M.4    Misumi, Y.5    Wakana, Y.6    Inoue, H.7    Tagaya, M.8
  • 127
    • 84872045592 scopus 로고    scopus 로고
    • COG6 interacts with a subset of the Golgi SNAREs and is important for the Golgi complex integrity
    • Kudlyk T, Willett R, Pokrovskaya ID and Lupashin V (2013) COG6 interacts with a subset of the Golgi SNAREs and is important for the Golgi complex integrity. Traffic 14, 194–204.
    • (2013) Traffic , vol.14 , pp. 194-204
    • Kudlyk, T.1    Willett, R.2    Pokrovskaya, I.D.3    Lupashin, V.4
  • 128
    • 84924083459 scopus 로고    scopus 로고
    • Multipronged interaction of the COG complex with intracellular membranes
    • Willett R, Pokrovskaya I, Kudlyk T and Lupashin V (2014) Multipronged interaction of the COG complex with intracellular membranes. Cell Logist 4, e27888.
    • (2014) Cell Logist , vol.4
    • Willett, R.1    Pokrovskaya, I.2    Kudlyk, T.3    Lupashin, V.4
  • 130
    • 84979048532 scopus 로고    scopus 로고
    • COG complex complexities: detailed characterization of a complete set of HEK293T cells lacking individual COG subunits
    • Bailey Blackburn J, Pokrovskaya I, Fisher P, Ungar D and Lupashin VV (2016) COG complex complexities: detailed characterization of a complete set of HEK293T cells lacking individual COG subunits. Front Cell Dev Biol 4, 23.
    • (2016) Front Cell Dev Biol , vol.4 , pp. 23
    • Bailey Blackburn, J.1    Pokrovskaya, I.2    Fisher, P.3    Ungar, D.4    Lupashin, V.V.5
  • 131
    • 84987722769 scopus 로고    scopus 로고
    • Creating knockouts of conserved oligomeric Golgi complex subunits using CRISPR-mediated gene editing paired with a selection strategy based on glycosylation defects associated with impaired COG complex function
    • Blackburn JB and Lupashin VV (2016) Creating knockouts of conserved oligomeric Golgi complex subunits using CRISPR-mediated gene editing paired with a selection strategy based on glycosylation defects associated with impaired COG complex function. Methods Mol Biol 1496, 145–161.
    • (2016) Methods Mol Biol , vol.1496 , pp. 145-161
    • Blackburn, J.B.1    Lupashin, V.V.2
  • 132
    • 85070794571 scopus 로고    scopus 로고
    • Role of the COG complex in protein glycosylation and Golgi/endo-lysosomal trafficking
    • Blackburn J, Pokrovskaya I and Lupashin V (2018) Role of the COG complex in protein glycosylation and Golgi/endo-lysosomal trafficking. Febs Open Bio 8, 47.
    • (2018) Febs Open Bio , vol.8 , pp. 47
    • Blackburn, J.1    Pokrovskaya, I.2    Lupashin, V.3
  • 133
    • 85045948828 scopus 로고    scopus 로고
    • More than just sugars: conserved oligomeric Golgi complex deficiency causes glycosylation-independent cellular defects
    • Blackburn JB, Kudlyk T, Pokrovskaya I and Lupashin VV (2018) More than just sugars: conserved oligomeric Golgi complex deficiency causes glycosylation-independent cellular defects. Traffic 19, 463–480.
    • (2018) Traffic , vol.19 , pp. 463-480
    • Blackburn, J.B.1    Kudlyk, T.2    Pokrovskaya, I.3    Lupashin, V.V.4
  • 135
    • 84873630243 scopus 로고    scopus 로고
    • Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF)
    • Miller VJ, Sharma P, Kudlyk TA, Frost L, Rofe AP, Watson IJ, Duden R, Lowe M, Lupashin VV and Ungar D (2013) Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF). J Biol Chem 288, 4229–4240.
    • (2013) J Biol Chem , vol.288 , pp. 4229-4240
    • Miller, V.J.1    Sharma, P.2    Kudlyk, T.A.3    Frost, L.4    Rofe, A.P.5    Watson, I.J.6    Duden, R.7    Lowe, M.8    Lupashin, V.V.9    Ungar, D.10
  • 136
    • 0032491437 scopus 로고    scopus 로고
    • Purification and characterization of a novel 13 S hetero-oligomeric protein complex that stimulates in vitro Golgi transport
    • Walter DM, Paul KS and Waters MG (1998) Purification and characterization of a novel 13 S hetero-oligomeric protein complex that stimulates in vitro Golgi transport. J Biol Chem 273, 29565–29576.
    • (1998) J Biol Chem , vol.273 , pp. 29565-29576
    • Walter, D.M.1    Paul, K.S.2    Waters, M.G.3
  • 137
    • 84937137200 scopus 로고    scopus 로고
    • The HOPS/class C Vps complex tethers membranes by binding to one Rab GTPase in each apposed membrane
    • Ho R and Stroupe C (2015) The HOPS/class C Vps complex tethers membranes by binding to one Rab GTPase in each apposed membrane. Mol Biol Cell 26, 2655–2663.
    • (2015) Mol Biol Cell , vol.26 , pp. 2655-2663
    • Ho, R.1    Stroupe, C.2
  • 138
    • 84891620157 scopus 로고    scopus 로고
    • Subunit organisation of in vitro reconstituted HOPS and CORVET multisubunit membrane tethering complexes
    • Guo Z, Johnston W, Kovtun O, Mureev S, Brocker C, Ungermann C and Alexandrov K (2013) Subunit organisation of in vitro reconstituted HOPS and CORVET multisubunit membrane tethering complexes. PLoS One 8, e81534.
    • (2013) PLoS One , vol.8
    • Guo, Z.1    Johnston, W.2    Kovtun, O.3    Mureev, S.4    Brocker, C.5    Ungermann, C.6    Alexandrov, K.7
  • 139
    • 85051000867 scopus 로고    scopus 로고
    • Detailed analysis of the interaction of yeast COG complex
    • Ishii M, Lupashin VV and Nakano A (2018) Detailed analysis of the interaction of yeast COG complex. Cell Struct Funct 43, 119–127.
    • (2018) Cell Struct Funct , vol.43 , pp. 119-127
    • Ishii, M.1    Lupashin, V.V.2    Nakano, A.3
  • 140
    • 84877912314 scopus 로고    scopus 로고
    • The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes
    • Laufman O, Hong W and Lev S (2013) The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes. J Cell Sci 126, 1506–1516.
    • (2013) J Cell Sci , vol.126 , pp. 1506-1516
    • Laufman, O.1    Hong, W.2    Lev, S.3
  • 141
    • 84924026487 scopus 로고    scopus 로고
    • Expression of functional Myc-tagged conserved oligomeric Golgi (COG) subcomplexes in mammalian cells
    • Willett RA, Kudlyk TA and Lupashin VV (2015) Expression of functional Myc-tagged conserved oligomeric Golgi (COG) subcomplexes in mammalian cells. Methods Mol Biol 1270, 167–177.
    • (2015) Methods Mol Biol , vol.1270 , pp. 167-177
    • Willett, R.A.1    Kudlyk, T.A.2    Lupashin, V.V.3
  • 144
    • 46749156739 scopus 로고    scopus 로고
    • Large scale screening for novel rab effectors reveals unexpected broad Rab binding specificity
    • Fukuda M, Kanno E, Ishibashi K and Itoh T (2008) Large scale screening for novel rab effectors reveals unexpected broad Rab binding specificity. Mol Cell Proteomics 7, 1031–1042.
    • (2008) Mol Cell Proteomics , vol.7 , pp. 1031-1042
    • Fukuda, M.1    Kanno, E.2    Ishibashi, K.3    Itoh, T.4
  • 146
    • 85043606068 scopus 로고    scopus 로고
    • Two subunits of the exocyst, Sec3p and Exo70p, can function exclusively on the plasma membrane
    • Liu D, Li X, Shen D and Novick P (2018) Two subunits of the exocyst, Sec3p and Exo70p, can function exclusively on the plasma membrane. Mol Biol Cell 29, 736–750.
    • (2018) Mol Biol Cell , vol.29 , pp. 736-750
    • Liu, D.1    Li, X.2    Shen, D.3    Novick, P.4
  • 147
    • 0347695021 scopus 로고    scopus 로고
    • Dsl1p, an essential component of the Golgi-endoplasmic reticulum retrieval system in yeast, uses the same sequence motif to interact with different subunits of the COPI vesicle coat
    • Andag U and Schmitt HD (2003) Dsl1p, an essential component of the Golgi-endoplasmic reticulum retrieval system in yeast, uses the same sequence motif to interact with different subunits of the COPI vesicle coat. J Biol Chem 278, 51722–51734.
    • (2003) J Biol Chem , vol.278 , pp. 51722-51734
    • Andag, U.1    Schmitt, H.D.2
  • 148
    • 69949175597 scopus 로고    scopus 로고
    • A link between ER tethering and COP-I vesicle uncoating
    • Zink S, Wenzel D, Wurm CA and Schmitt HD (2009) A link between ER tethering and COP-I vesicle uncoating. Dev Cell 17, 403–416.
    • (2009) Dev Cell , vol.17 , pp. 403-416
    • Zink, S.1    Wenzel, D.2    Wurm, C.A.3    Schmitt, H.D.4
  • 149
    • 84984869262 scopus 로고    scopus 로고
    • ER arrival sites for COPI vesicles localize to hotspots of membrane trafficking
    • Schroter S, Beckmann S and Schmitt HD (2016) ER arrival sites for COPI vesicles localize to hotspots of membrane trafficking. EMBO J 35, 1935–1955.
    • (2016) EMBO J , vol.35 , pp. 1935-1955
    • Schroter, S.1    Beckmann, S.2    Schmitt, H.D.3
  • 150
    • 0033977912 scopus 로고    scopus 로고
    • The involvement of Helix pomatia lectin (HPA) binding N-acetylgalactosamine glycans in cancer progression
    • Brooks SA (2000) The involvement of Helix pomatia lectin (HPA) binding N-acetylgalactosamine glycans in cancer progression. Histol Histopathol 15, 143–158.
    • (2000) Histol Histopathol , vol.15 , pp. 143-158
    • Brooks, S.A.1
  • 151
    • 70349319578 scopus 로고    scopus 로고
    • Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network
    • Perez-Victoria FJ and Bonifacino JS (2009) Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network. Mol Cell Biol 29, 5251–5263.
    • (2009) Mol Cell Biol , vol.29 , pp. 5251-5263
    • Perez-Victoria, F.J.1    Bonifacino, J.S.2
  • 153
    • 85026306172 scopus 로고    scopus 로고
    • The Arl3 and Arl1 GTPases co-operate with Cog8 to regulate selective autophagy via Atg9 trafficking
    • Wang IH, Chen YJ, Hsu JW and Lee FJ (2017) The Arl3 and Arl1 GTPases co-operate with Cog8 to regulate selective autophagy via Atg9 trafficking. Traffic 18, 580–589.
    • (2017) Traffic , vol.18 , pp. 580-589
    • Wang, I.H.1    Chen, Y.J.2    Hsu, J.W.3    Lee, F.J.4
  • 155
    • 85028031149 scopus 로고    scopus 로고
    • A Brucella type IV effector targets the COG tethering complex to remodel host secretory traffic and promote intracellular replication
    • e7
    • Miller CN, Smith EP, Cundiff JA, Knodler LA, Bailey Blackburn J, Lupashin V and Celli J (2017) A Brucella type IV effector targets the COG tethering complex to remodel host secretory traffic and promote intracellular replication. Cell Host Microbe 22, 317–329 e7.
    • (2017) Cell Host Microbe , vol.22 , pp. 317-329
    • Miller, C.N.1    Smith, E.P.2    Cundiff, J.A.3    Knodler, L.A.4    Bailey Blackburn, J.5    Lupashin, V.6    Celli, J.7
  • 156
    • 85065051542 scopus 로고    scopus 로고
    • Unique features in the intracellular transport of typhoid toxin revealed by a genome-wide screen
    • Chang SJ, Jin SC, Jiao X and Galan JE (2019) Unique features in the intracellular transport of typhoid toxin revealed by a genome-wide screen. PLoS Pathog 15, e1007704.
    • (2019) PLoS Pathog , vol.15
    • Chang, S.J.1    Jin, S.C.2    Jiao, X.3    Galan, J.E.4
  • 157
    • 84908148692 scopus 로고    scopus 로고
    • Target silencing of components of the conserved oligomeric Golgi complex impairs HIV-1 replication
    • Liu S, Dominska-Ngowe M and Dykxhoorn DM (2014) Target silencing of components of the conserved oligomeric Golgi complex impairs HIV-1 replication. Virus Res 192, 92–102.
    • (2014) Virus Res , vol.192 , pp. 92-102
    • Liu, S.1    Dominska-Ngowe, M.2    Dykxhoorn, D.M.3
  • 161
    • 0032101225 scopus 로고    scopus 로고
    • Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking
    • VanRheenen SM, Cao XC, Lupashin VV, Barlowe C and Waters MG (1998) Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking. J Cell Biol 141, 1107–1119.
    • (1998) J Cell Biol , vol.141 , pp. 1107-1119
    • VanRheenen, S.M.1    Cao, X.C.2    Lupashin, V.V.3    Barlowe, C.4    Waters, M.G.5
  • 162
    • 0036200146 scopus 로고    scopus 로고
    • The Rab GTPase Ypt1p and tethering factors couple protein sorting at the ER to vesicle targeting to the Golgi apparatus
    • Morsomme P and Riezman H (2002) The Rab GTPase Ypt1p and tethering factors couple protein sorting at the ER to vesicle targeting to the Golgi apparatus. Dev Cell 2, 307–317.
    • (2002) Dev Cell , vol.2 , pp. 307-317
    • Morsomme, P.1    Riezman, H.2
  • 163
    • 4544237449 scopus 로고    scopus 로고
    • Retrograde transport of the mannosyltransferase Och1p to the early Golgi requires a component of the COG transport complex
    • Bruinsma P, Spelbrink RG and Nothwehr SF (2004) Retrograde transport of the mannosyltransferase Och1p to the early Golgi requires a component of the COG transport complex. J Biol Chem 279, 39814–39823.
    • (2004) J Biol Chem , vol.279 , pp. 39814-39823
    • Bruinsma, P.1    Spelbrink, R.G.2    Nothwehr, S.F.3
  • 167
    • 33645569027 scopus 로고    scopus 로고
    • Zebrafish fat-free is required for intestinal lipid absorption and Golgi apparatus structure
    • Ho SY, Lorent K, Pack M and Farber SA (2006) Zebrafish fat-free is required for intestinal lipid absorption and Golgi apparatus structure. Cell Metab 3, 289–300.
    • (2006) Cell Metab , vol.3 , pp. 289-300
    • Ho, S.Y.1    Lorent, K.2    Pack, M.3    Farber, S.A.4
  • 168
    • 0024208746 scopus 로고
    • A new class mutation of low density lipoprotein receptor with altered carbohydrate chains
    • Shite S, Seguchi T, Yoshida T, Kohno K, Ono M and Kuwano M (1988) A new class mutation of low density lipoprotein receptor with altered carbohydrate chains. J Biol Chem 263, 19286–19289.
    • (1988) J Biol Chem , vol.263 , pp. 19286-19289
    • Shite, S.1    Seguchi, T.2    Yoshida, T.3    Kohno, K.4    Ono, M.5    Kuwano, M.6
  • 169
    • 0028027799 scopus 로고
    • LDLC encodes a brefeldin A-sensitive, peripheral Golgi protein required for normal Golgi function
    • Podos SD, Reddy P, Ashkenas J and Krieger M (1994) LDLC encodes a brefeldin A-sensitive, peripheral Golgi protein required for normal Golgi function. J Cell Biol 127, 679–691.
    • (1994) J Cell Biol , vol.127 , pp. 679-691
    • Podos, S.D.1    Reddy, P.2    Ashkenas, J.3    Krieger, M.4
  • 171
    • 85053338058 scopus 로고    scopus 로고
    • Defective mucin-type glycosylation on alpha-dystroglycan in COG-deficient cells increases its susceptibility to bacterial proteases
    • Yu SH, Zhao P, Prabhakar PK, Sun T, Beedle A, Boons GJ, Moremen KW, Wells L and Steet R (2018) Defective mucin-type glycosylation on alpha-dystroglycan in COG-deficient cells increases its susceptibility to bacterial proteases. J Biol Chem 293, 14534–14544.
    • (2018) J Biol Chem , vol.293 , pp. 14534-14544
    • Yu, S.H.1    Zhao, P.2    Prabhakar, P.K.3    Sun, T.4    Beedle, A.5    Boons, G.J.6    Moremen, K.W.7    Wells, L.8    Steet, R.9
  • 172
  • 173
    • 84926616856 scopus 로고    scopus 로고
    • Congenital disorders of glycosylation with emphasis on cerebellar involvement
    • Barone R, Fiumara A and Jaeken J (2014) Congenital disorders of glycosylation with emphasis on cerebellar involvement. Semin Neurol 34, 357–366.
    • (2014) Semin Neurol , vol.34 , pp. 357-366
    • Barone, R.1    Fiumara, A.2    Jaeken, J.3
  • 176
    • 77956096967 scopus 로고    scopus 로고
    • Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation
    • Lubbehusen J, Thiel C, Rind N, Ungar D, Prinsen BH, de Koning TJ, van Hasselt PM and Korner C (2010) Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation. Hum Mol Genet 19, 3623–3633.
    • (2010) Hum Mol Genet , vol.19 , pp. 3623-3633
    • Lubbehusen, J.1    Thiel, C.2    Rind, N.3    Ungar, D.4    Prinsen, B.H.5    de Koning, T.J.6    van Hasselt, P.M.7    Korner, C.8
  • 180
    • 33745372525 scopus 로고    scopus 로고
    • COG-7-deficient human fibroblasts exhibit altered recycling of Golgi proteins
    • Steet R and Kornfeld S (2006) COG-7-deficient human fibroblasts exhibit altered recycling of Golgi proteins. Mol Biol Cell 17, 2312–2321.
    • (2006) Mol Biol Cell , vol.17 , pp. 2312-2321
    • Steet, R.1    Kornfeld, S.2
  • 181
  • 182
    • 84858022403 scopus 로고    scopus 로고
    • Quantitative proteomic and genetic analyses of the schizophrenia susceptibility factor dysbindin identify novel roles of the biogenesis of lysosome-related organelles complex 1
    • Gokhale A, Larimore J, Werner E, So L, Moreno-De-Luca A, Lese-Martin C, Lupashin VV, Smith Y and Faundez V (2012) Quantitative proteomic and genetic analyses of the schizophrenia susceptibility factor dysbindin identify novel roles of the biogenesis of lysosome-related organelles complex 1. J Neurosci 32, 3697–3711.
    • (2012) J Neurosci , vol.32 , pp. 3697-3711
    • Gokhale, A.1    Larimore, J.2    Werner, E.3    So, L.4    Moreno-De-Luca, A.5    Lese-Martin, C.6    Lupashin, V.V.7    Smith, Y.8    Faundez, V.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.