메뉴 건너뛰기




Volumn 11, Issue 1, 2018, Pages

Phenotype-driven gene prioritization for rare diseases using graph convolution on heterogeneous networks

Author keywords

Gene prioritization; Graph convolution; Heterogeneous networks; Rare diseases

Indexed keywords

ARTICLE; DISEASE ASSOCIATION; GENE IDENTIFICATION; GENE ONTOLOGY; GENE STRUCTURE; GENETIC ALGORITHM; GENETIC ANALYSIS; GENETIC ASSOCIATION; GENETIC HETEROGENEITY; HUMAN; PHENOTYPE; PRIORITY JOURNAL; RARE DISEASE; SIGNAL TRANSDUCTION; SPECTRAL KARYOTYPING; WHOLE EXOME SEQUENCING; BIOLOGY; COMPUTER GRAPHICS; GENETICS; PROCEDURES;

EID: 85049666228     PISSN: None     EISSN: 17558794     Source Type: Journal    
DOI: 10.1186/s12920-018-0372-8     Document Type: Article
Times cited : (34)

References (44)
  • 2
    • 84939151435 scopus 로고    scopus 로고
    • Phenotype-driven strategies for exome prioritization of human Mendelian disease genes
    • Smedley D, Robinson P. Phenotype-driven strategies for exome prioritization of human Mendelian disease genes. Genome Med. 2014; 7:81.
    • (2014) Genome Med , vol.7 , pp. 81
    • Smedley, D.1    Robinson, P.2
  • 5
    • 84940611109 scopus 로고    scopus 로고
    • Phenolyzer: Phenotype-based prioritization of candidate genes for human diseases
    • 26192085 4718403
    • Yang H, Robinson P, Wang K. Phenolyzer: phenotype-based prioritization of candidate genes for human diseases. Nat Methods. 2015; 12(9):841-3.
    • (2015) Nat Methods , vol.12 , Issue.9 , pp. 841-843
    • Yang, H.1    Robinson, P.2    Wang, K.3
  • 6
    • 85002273553 scopus 로고    scopus 로고
    • PCAN: Phenotype consensus analysis to support disease-gene association
    • 27923364 5142268
    • Godard P, Page M. PCAN: phenotype consensus analysis to support disease-gene association. BMC Bioinformatics. 2016; 17:518.
    • (2016) BMC Bioinformatics , vol.17 , pp. 518
    • Godard, P.1    Page, M.2
  • 7
    • 84956744263 scopus 로고    scopus 로고
    • A visual and curatorial approach to clinical variant prioritization and disease gene discovery in genome-wide diagnostics
    • 26838676 4736244
    • James R, Campbell I, Chen E, Boone P, Rao M, Bainbridge M, Lupski J, Yang Y, Eng C, Posey J, et al. A visual and curatorial approach to clinical variant prioritization and disease gene discovery in genome-wide diagnostics. Genome Med. 2016; 8:13.
    • (2016) Genome Med , vol.8 , pp. 13
    • James, R.1    Campbell, I.2    Chen, E.3    Boone, P.4    Rao, M.5    Bainbridge, M.6    Lupski, J.7    Yang, Y.8    Eng, C.9    Posey, J.10
  • 9
    • 84950262401 scopus 로고    scopus 로고
    • OVA: Integrating molecular and physical phenotype data from multiple biomedical domain ontologies with variant filtering for enhanced variant prioritization
    • 26272982 4653395
    • Antanaviciute A, Watson C, Harrison S, Lascelles C, Crinnion L, Markham A, Bonthron D, Carr I. OVA: integrating molecular and physical phenotype data from multiple biomedical domain ontologies with variant filtering for enhanced variant prioritization. Bioinformatics. 2015; 31(23):3822-9.
    • (2015) Bioinformatics , vol.31 , Issue.23 , pp. 3822-3829
    • Antanaviciute, A.1    Watson, C.2    Harrison, S.3    Lascelles, C.4    Crinnion, L.5    Markham, A.6    Bonthron, D.7    Carr, I.8
  • 10
    • 84898743768 scopus 로고    scopus 로고
    • Phevor combines multiple biomedical ontologies for accurate identification of disease-causing alleles in single individuals and small nuclear families
    • 24702956 3980410
    • Singleton M, Guthery S, Voelkerding K, Chen K, Kennedy B, Margraf R, Durtschi J, Eilbeck K, Reese M, Jorde L, et al. Phevor combines multiple biomedical ontologies for accurate identification of disease-causing alleles in single individuals and small nuclear families. Am J Hum Genet. 2014; 94(4):599-610.
    • (2014) Am J Hum Genet , vol.94 , Issue.4 , pp. 599-610
    • Singleton, M.1    Guthery, S.2    Voelkerding, K.3    Chen, K.4    Kennedy, B.5    Margraf, R.6    Durtschi, J.7    Eilbeck, K.8    Reese, M.9    Jorde, L.10
  • 11
    • 84921633944 scopus 로고    scopus 로고
    • Phen-Gen: Combining phenotype and genotype to analyze rare disorders
    • 25086502
    • Javed A, Agrawal S, Ng P. Phen-Gen: combining phenotype and genotype to analyze rare disorders. Nat Methods. 2014; 11(9):935-7.
    • (2014) Nat Methods , vol.11 , Issue.9 , pp. 935-937
    • Javed, A.1    Agrawal, S.2    Ng, P.3
  • 13
    • 85041287168 scopus 로고    scopus 로고
    • Leveraging network analytics to infer patient syndrome and identify causal genes in rare disease cases
    • 28812537 5558185
    • Krämer A, Shah S, Rebres RA, Tang S, Richards DR. Leveraging network analytics to infer patient syndrome and identify causal genes in rare disease cases. BMC Genomics. 2017; 18(5):551.
    • (2017) BMC Genomics , vol.18 , Issue.5 , pp. 551
    • Krämer, A.1    Shah, S.2    Rebres, R.A.3    Tang, S.4    Richards, D.R.5
  • 15
    • 84866683906 scopus 로고    scopus 로고
    • Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization
    • Guney E, Oliva B. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization. PloS ONE. 2011; 7(9):e43557.
    • (2011) PloS ONE , vol.7 , Issue.9 , pp. e43557
    • Guney, E.1    Oliva, B.2
  • 17
    • 43249114206 scopus 로고    scopus 로고
    • Network-based global inference of human disease genes
    • 18463613 2424293
    • Wu X, Jiang R, Zhang M, Li S. Network-based global inference of human disease genes. Mol Syst Biol. 2008; 4:189.
    • (2008) Mol Syst Biol , vol.4 , pp. 189
    • Wu, X.1    Jiang, R.2    Zhang, M.3    Li, S.4
  • 18
    • 76749134818 scopus 로고    scopus 로고
    • Associating Genes and Protein Complexes with Disease via Network Propagation
    • 20090828 2797085
    • Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating Genes and Protein Complexes with Disease via Network Propagation. PLoS Comput Biol. 2010; 6:e1000641.
    • (2010) PLoS Comput Biol , vol.6 , pp. e1000641
    • Vanunu, O.1    Magger, O.2    Ruppin, E.3    Shlomi, T.4    Sharan, R.5
  • 19
    • 77952808324 scopus 로고    scopus 로고
    • Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network
    • 20215462
    • Li Y, Patra J. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network. Bioinformatics. 2010; 26(9):1219-24.
    • (2010) Bioinformatics , vol.26 , Issue.9 , pp. 1219-1224
    • Li, Y.1    Patra, J.2
  • 20
    • 84864123907 scopus 로고    scopus 로고
    • Reconstructing disease phenome-genome association by bi-random walk
    • Xie M, Hwang T, Kuang R. Reconstructing disease phenome-genome association by bi-random walk. Bioinformatics. 2012; 1(02):1-8.
    • (2012) Bioinformatics , vol.1 , Issue.2 , pp. 1-8
    • Xie, M.1    Hwang, T.2    Kuang, R.3
  • 21
    • 79959486836 scopus 로고    scopus 로고
    • Uncover disease genes by maximizing information flow in the phenome-interactome network
    • 21685067 3117332
    • Chen Y, Jiang T, Jiang R. Uncover disease genes by maximizing information flow in the phenome-interactome network. Bioinformatics. 2011; 27(13):i167-76.
    • (2011) Bioinformatics , vol.27 , Issue.13 , pp. i167-i176
    • Chen, Y.1    Jiang, T.2    Jiang, R.3
  • 24
    • 85086180249 scopus 로고    scopus 로고
    • Semi-supervised classification with graph convolutional networks
    • Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. ICLR. 2017. https://arXiv:1609.02907.
    • (2017) ICLR
    • Kipf, T.N.1    Welling, M.2
  • 26
    • 84941044607 scopus 로고    scopus 로고
    • Genenames.org: The HGNC resources in 2015
    • 25361968
    • Gray K, Yates B, Seal R, Wright M, Bruford E. Genenames.org: the HGNC resources in 2015. Nucleic Acids Res. 2015; 43(Database issue):D1079.
    • (2015) Nucleic Acids Res , vol.43 , Issue.DATABASE ISSUE , pp. D1079
    • Gray, K.1    Yates, B.2    Seal, R.3    Wright, M.4    Bruford, E.5
  • 29
    • 84922593366 scopus 로고    scopus 로고
    • HPOSim: An R package for phenotypic similarity measure and enrichment analysis based on the human phenotype ontology
    • Deng Y, Gao L, Wang B, Guo X. HPOSim: an R package for phenotypic similarity measure and enrichment analysis based on the human phenotype ontology. PloS ONE. 2014; 10(2):e0115692.
    • (2014) PloS ONE , vol.10 , Issue.2 , pp. e0115692
    • Deng, Y.1    Gao, L.2    Wang, B.3    Guo, X.4
  • 31
    • 0003436550 scopus 로고    scopus 로고
    • McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD). 2017. World Wide Web
    • McKusick V. Online Mendelian Inheritance in Man, OMIM. McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD). 2017. World Wide Web URL: https://www.ncbi.nlm.nih.gov/omim.
    • Online Mendelian Inheritance in Man, OMIM
    • McKusick, V.1
  • 32
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • 7063747
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982; 143:29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 34
    • 84975063087 scopus 로고    scopus 로고
    • Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency
    • 26562225
    • Bone W, Washington N, Buske O, Adams D, Davis J, Draper D, Flynn E, Girdea M, Godfrey R, Golas G, et al. Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency. Genet Med. 2016; 18(6):608-17.
    • (2016) Genet Med , vol.18 , Issue.6 , pp. 608-617
    • Bone, W.1    Washington, N.2    Buske, O.3    Adams, D.4    Davis, J.5    Draper, D.6    Flynn, E.7    Girdea, M.8    Godfrey, R.9    Golas, G.10
  • 37
    • 85049678063 scopus 로고    scopus 로고
    • Graph Convolution Network
    • Graph Convolution Network. [https://github.com/tkipf/gcn].
  • 38
    • 85049688810 scopus 로고    scopus 로고
    • AUC Implementation
    • AUC Implementation. [https://sourceforge.net/projects/birw].
  • 39
    • 84941103725 scopus 로고    scopus 로고
    • Disease Ontology 2015 update: An expanded and updated database of human diseases for linking biomedical knowledge through disease data
    • 25348409
    • Kibbe W, Arze C, Felix V, Mitraka E, Bolton E, Fu G, Mungall C, Binder J, Malone J, Vasant D, et al. Disease Ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data. Nucleic Acids Res. 2015; 43(D1):D1071-8.
    • (2015) Nucleic Acids Res , vol.43 , Issue.D1 , pp. D1071-D1078
    • Kibbe, W.1    Arze, C.2    Felix, V.3    Mitraka, E.4    Bolton, E.5    Fu, G.6    Mungall, C.7    Binder, J.8    Malone, J.9    Vasant, D.10
  • 41
    • 84946735654 scopus 로고    scopus 로고
    • Gene ontology consortium: Going forward
    • Gene Ontology Consortium
    • Gene Ontology Consortium. Gene ontology consortium: going forward. Nucleic Acids Res. 2015; 43(D1):D1049-56.
    • (2015) Nucleic Acids Res , vol.43 , Issue.D1 , pp. D1049-D1056
  • 43
    • 68149165614 scopus 로고    scopus 로고
    • Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm
    • 19561590
    • Kumar P, Henikoff S, Ng P. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009; 4(7):1073-81.
    • (2009) Nat Protoc , vol.4 , Issue.7 , pp. 1073-1081
    • Kumar, P.1    Henikoff, S.2    Ng, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.