메뉴 건너뛰기




Volumn 47, Issue , 2019, Pages 607-615

Looking beyond the hype: Applied AI and machine learning in translational medicine

Author keywords

Artificial intelligence; Drug discovery; Genomic medicine; Imaging; Machine learning; Translational medicine

Indexed keywords

CHEMICAL COMPOUND;

EID: 85071139508     PISSN: None     EISSN: 23523964     Source Type: Journal    
DOI: 10.1016/j.ebiom.2019.08.027     Document Type: Review
Times cited : (98)

References (70)
  • 3
    • 85059735798 scopus 로고    scopus 로고
    • The practical implementation of artificial intelligence technologies in medicine
    • He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med 2019;25:30–6.
    • (2019) Nat Med , vol.25 , pp. 30-36
    • He, J.1    Baxter, S.L.2    Xu, J.3    Xu, J.4    Zhou, X.5    Zhang, K.6
  • 4
    • 85065730206 scopus 로고    scopus 로고
    • US food and drug administration
    • (accessed July 19, 2019)
    • Artificial Intelligence and Machine Learning in Software as a Medical Device. US Food and Drug Administration n.d. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device#whatis (accessed July 19, 2023).
    • (2019)
    • Artificial Intelligence and Machine Learning in Software as a Medical Device1
  • 5
    • 84959128138 scopus 로고    scopus 로고
    • Innovation in the pharmaceutical industry: new estimates of R&D costs
    • DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics 2016;47:20–33. doi:10.1016/j.jhealeco.2016.01.012.
    • (2016) J Health Econ , vol.47 , pp. 20-33
    • DiMasi, J.A.1    Grabowski, H.G.2    Hansen, R.W.3
  • 6
    • 85061969204 scopus 로고    scopus 로고
    • Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators
    • Merk D, Grisoni F, Friedrich L, Schneider G. Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators. Communications Chemistry 2018;1. doi:10.1038/s42004-018-0068-1.
    • (2018) Commun Chem , vol.1
    • Merk, D.1    Grisoni, F.2    Friedrich, L.3    Schneider, G.4
  • 8
    • 85050805805 scopus 로고    scopus 로고
    • Deep reinforcement learning for de novo drug design
    • Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Science Advances 2018;4:eaap7885. doi:10.1126/sciadv.aap7885.
    • (2018) Sci Adv , vol.4 , pp. eaap7885
    • Popova, M.1    Isayev, O.2    Tropsha, A.3
  • 9
    • 85044660186 scopus 로고    scopus 로고
    • Planning chemical syntheses with deep neural networks and symbolic AI
    • Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018;555:604–10.
    • (2018) Nature , vol.555 , pp. 604-610
    • Segler, M.H.S.1    Preuss, M.2    Waller, M.P.3
  • 10
    • 85028933960 scopus 로고    scopus 로고
    • Molecular de-novo design through deep reinforcement learning
    • Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de-novo design through deep reinforcement learning. J Cheminform 2017;9:48.
    • (2017) J Chem , vol.9 , pp. 48
    • Olivecrona, M.1    Blaschke, T.2    Engkvist, O.3    Chen, H.4
  • 11
    • 85072265966 scopus 로고    scopus 로고
    • Prioritizing small molecule as candidates for drug repositioning using machine learning
    • Shameer K, Johnson K, Glicksberg BS, Hodos R, Readhead B, Tomlinson MS, et al. Prioritizing Small Molecule as Candidates for Drug Repositioning using Machine Learning n.d. doi:10.1101/331975.
    • (2018)
    • Shameer, K.1    Johnson, K.2    Glicksberg, B.S.3    Hodos, R.4    Readhead, B.5    Tomlinson, M.S.6
  • 12
    • 84884590180 scopus 로고    scopus 로고
    • Big pharma screening collections: more of the same or unique libraries? The AstraZeneca–Bayer pharma AG case
    • Kogej T, Blomberg N, Greasley PJ, Mundt S, Vainio MJ, Schamberger J, et al. Big pharma screening collections: more of the same or unique libraries? The AstraZeneca–Bayer Pharma AG case. Drug Discovery Today 2013;18:1014–24. doi:10.1016/j.drudis.2012.10.011.
    • (2013) Drug Discov Today , vol.18 , pp. 1014-1024
    • Kogej, T.1    Blomberg, N.2    Greasley, P.J.3    Mundt, S.4    Vainio, M.J.5    Schamberger, J.6
  • 13
    • 33845867934 scopus 로고    scopus 로고
    • A cluster-based strategy for assessing the overlap between large chemical libraries and its application to a recent acquisition
    • Engels MFM, Gibbs AC, Jaeger EP, Verbinnen D, Lobanov VS, Agrafiotis DK. A cluster-based strategy for assessing the overlap between large chemical libraries and its application to a recent acquisition. J Chem Inf Model 2006;46:2651–60.
    • (2006) J Chem Inf Model , vol.46 , pp. 2651-2660
    • Engels, M.F.M.1    Gibbs, A.C.2    Jaeger, E.P.3    Verbinnen, D.4    Lobanov, V.S.5    Agrafiotis, D.K.6
  • 14
    • 79959732195 scopus 로고    scopus 로고
    • Rendezvous in chemical space? Comparing the small molecule compound libraries of Bayer and Schering
    • Schamberger J, Grimm M, Steinmeyer A, Hillisch A. Rendezvous in chemical space? Comparing the small molecule compound libraries of Bayer and Schering. Drug Discov Today 2011;16:636–41.
    • (2011) Drug Discov Today , vol.16 , pp. 636-641
    • Schamberger, J.1    Grimm, M.2    Steinmeyer, A.3    Hillisch, A.4
  • 17
    • 85019574450 scopus 로고    scopus 로고
    • Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning
    • Shameer K, Glicksberg BS, Hodos R, Johnson KW, Badgeley MA, Readhead B, et al. Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning. Briefings in Bioinformatics 2018;19:656–78. doi:10.1093/bib/bbw136.
    • (2018) Brief Bioinform , vol.19 , pp. 656-678
    • Shameer, K.1    Glicksberg, B.S.2    Hodos, R.3    Johnson, K.W.4    Badgeley, M.A.5    Readhead, B.6
  • 20
    • 85067453487 scopus 로고    scopus 로고
    • Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
    • Menden MP, Wang D, Mason MJ, Szalai B, Bulusu KC, Guan Y, et al. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat Commun 2019;10:2674.
    • (2019) Nat Commun , vol.10 , pp. 2674
    • Menden, M.P.1    Wang, D.2    Mason, M.J.3    Szalai, B.4    Bulusu, K.C.5    Guan, Y.6
  • 21
    • 84982218412 scopus 로고    scopus 로고
    • Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
    • Yu K-H, Zhang C, Berry GJ, Altman RB, Ré C, Rubin DL, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun 2016;7:12474.
    • (2016) Nat Commun , vol.7 , pp. 12474
    • Yu, K.-H.1    Zhang, C.2    Berry, G.J.3    Altman, R.B.4    Ré, C.5    Rubin, D.L.6
  • 22
    • 85053661755 scopus 로고    scopus 로고
    • Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning
    • Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, et al. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nature Medicine 2018;24:1559–67. doi:10.1038/s41591-018-0177-5.
    • (2018) Nat Med , vol.24 , pp. 1559-1567
    • Coudray, N.1    Ocampo, P.S.2    Sakellaropoulos, T.3    Narula, N.4    Snuderl, M.5    Fenyö, D.6
  • 23
    • 85060821631 scopus 로고    scopus 로고
    • Label-free classification of cells based on supervised machine learning of subcellular structures
    • Ozaki Y, Yamada H, Kikuchi H, Hirotsu A, Murakami T, Matsumoto T, et al. Label-free classification of cells based on supervised machine learning of subcellular structures. PLoS One 2019;14:e0211347.
    • (2019) PLoS One , vol.14
    • Ozaki, Y.1    Yamada, H.2    Kikuchi, H.3    Hirotsu, A.4    Murakami, T.5    Matsumoto, T.6
  • 24
    • 85064552971 scopus 로고    scopus 로고
    • Leveraging machine vision in cell-based diagnostics to do more with less
    • Doan M, Carpenter AE. Leveraging machine vision in cell-based diagnostics to do more with less. Nature Materials 2019;18:414–8. doi:10.1038/s41563-019-0339-y.
    • (2019) Nat Mater , vol.18 , pp. 414-418
    • Doan, M.1    Carpenter, A.E.2
  • 25
    • 85042602612 scopus 로고    scopus 로고
    • Repurposing high-throughput image assays enables biological activity prediction for drug discovery
    • 611–8.e3
    • Simm J, Klambauer G, Arany A, Steijaert M, Wegner JK, Gustin E, et al. Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery. Cell Chem Biol 2018;25:611–8.e3.
    • (2018) Cell Chem Biol , vol.25
    • Simm, J.1    Klambauer, G.2    Arany, A.3    Steijaert, M.4    Wegner, J.K.5    Gustin, E.6
  • 26
    • 85062832105 scopus 로고    scopus 로고
    • Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks
    • Hofmarcher M, Rumetshofer E, Clevert D-A, Hochreiter S, Klambauer G. Accurate Prediction of Biological Assays with High-Throughput Microscopy Images and Convolutional Networks. J Chem Inf Model 2019;59:1163–71.
    • (2019) J Chem Inf Model , vol.59 , pp. 1163-1171
    • Hofmarcher, M.1    Rumetshofer, E.2    Clevert, D.-A.3    Hochreiter, S.4    Klambauer, G.5
  • 28
    • 85089606203 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer
    • Nagpal K, Foote D, Liu Y, Chen P-HC, Wulczyn E, Tan F, et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digit Med 2019;2:48.
    • (2019) NPJ Digit Med , vol.2 , pp. 48
    • Nagpal, K.1    Foote, D.2    Liu, Y.3    Chen, P.-H.C.4    Wulczyn, E.5    Tan, F.6
  • 29
    • 85043363915 scopus 로고    scopus 로고
    • Measuring multiple parameters of CD8+ tumor-infiltrating lymphocytes in human cancers by image analysis
    • Steele KE, Tan TH, Korn R, Dacosta K, Brown C, Kuziora M, et al. Measuring multiple parameters of CD8+ tumor-infiltrating lymphocytes in human cancers by image analysis. J Immunother Cancer 2018;6:20.
    • (2018) J Immunother Cancer , vol.6 , pp. 20
    • Steele, K.E.1    Tan, T.H.2    Korn, R.3    Dacosta, K.4    Brown, C.5    Kuziora, M.6
  • 31
    • 85049199748 scopus 로고    scopus 로고
    • National Cancer Institute (Accessed 24 June 2019)
    • The Cancer Genome Atlas. National Cancer Institute 2018. https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga (accessed June 24, 2019).
    • (2018) The cancer genome atlas
  • 33
    • 84859169877 scopus 로고    scopus 로고
    • The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    • Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012;483:603–7.
    • (2012) Nature , vol.483 , pp. 603-607
    • Barretina, J.1    Caponigro, G.2    Stransky, N.3    Venkatesan, K.4    Margolin, A.A.5    Kim, S.6
  • 34
    • 85032020563 scopus 로고    scopus 로고
    • Molecular signatures for tumor classification: an analysis of the cancer genome atlas data
    • Mamatjan Y, Agnihotri S, Goldenberg A, Tonge P, Mansouri S, Zadeh G, et al. Molecular Signatures for Tumor Classification: An Analysis of The Cancer Genome Atlas Data. J Mol Diagn 2017;19:881–91.
    • (2017) J Mol Diagn , vol.19 , pp. 881-891
    • Mamatjan, Y.1    Agnihotri, S.2    Goldenberg, A.3    Tonge, P.4    Mansouri, S.5    Zadeh, G.6
  • 35
  • 37
    • 84877092892 scopus 로고    scopus 로고
    • Phase II trial of MEK inhibitor selumetinib (AZD6244, ARRY-142886) in patients with BRAFV600E/K-mutated melanoma
    • Catalanotti F, Solit DB, Pulitzer MP, Berger MF, Scott SN, Iyriboz T, et al. Phase II trial of MEK inhibitor selumetinib (AZD6244, ARRY-142886) in patients with BRAFV600E/K-mutated melanoma. Clin Cancer Res 2013;19:2257–64.
    • (2013) Clin Cancer Res , vol.19 , pp. 2257-2264
    • Catalanotti, F.1    Solit, D.B.2    Pulitzer, M.P.3    Berger, M.F.4    Scott, S.N.5    Iyriboz, T.6
  • 38
    • 85072266834 scopus 로고    scopus 로고
    • Infinium HumanMethylation450K BeadChip documentation
    • (Accessed 29 July 2019)
    • Infinium HumanMethylation450K BeadChip Documentation n.d. http://emea.support.illumina.com/array/array_kits/infinium_humanmethylation450_beadchip_kit/documentation.html (accessed July 29, 2019).
    • (2019)
  • 39
  • 41
    • 85064233743 scopus 로고    scopus 로고
    • Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens
    • Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, Migliardi G, et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 2019;568:511–6. doi:10.1038/s41586-019-1103-9.
    • (2019) Nature , vol.568 , pp. 511-516
    • Behan, F.M.1    Iorio, F.2    Picco, G.3    Gonçalves, E.4    Beaver, C.M.5    Migliardi, G.6
  • 42
    • 84963614599 scopus 로고    scopus 로고
    • High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines
    • Yu C, Mannan AM, Yvone GM, Ross KN, Zhang Y-L, Marton MA, et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat Biotechnol 2016;34:419–23.
    • (2016) Nat Biotechnol , vol.34 , pp. 419-423
    • Yu, C.1    Mannan, A.M.2    Yvone, G.M.3    Ross, K.N.4    Zhang, Y.-L.5    Marton, M.A.6
  • 44
    • 70449331456 scopus 로고    scopus 로고
    • Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
    • Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 2009;25:2906–12.
    • (2009) Bioinformatics , vol.25 , pp. 2906-2912
    • Shen, R.1    Olshen, A.B.2    Ladanyi, M.3
  • 45
    • 84877028141 scopus 로고    scopus 로고
    • Comprehensive molecular portraits of human breast tumours
    • Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61–70.
    • (2012) Nature , vol.490 , pp. 61-70
    • Cancer Genome Atlas Network1
  • 46
    • 85072265789 scopus 로고    scopus 로고
    • Multiple kernel learning for integrative consensus clustering of genomic datasets
    • Cabassi A, Kirk PDW. Multiple kernel learning for integrative consensus clustering of genomic datasets 2019.
    • (2019)
    • Cabassi, A.1    Kirk, P.D.W.2
  • 47
    • 85048591696 scopus 로고    scopus 로고
    • Affinity network fusion and semi-supervised learning for cancer patient clustering
    • Ma T, Zhang A. Affinity network fusion and semi-supervised learning for cancer patient clustering. Methods 2018;145:16–24.
    • (2018) Methods , vol.145 , pp. 16-24
    • Ma, T.1    Zhang, A.2
  • 48
    • 85032615447 scopus 로고    scopus 로고
    • Clusternomics: integrative context-dependent clustering for heterogeneous datasets
    • Gabasova E, Reid J, Wernisch L. Clusternomics: Integrative context-dependent clustering for heterogeneous datasets. PLoS Comput Biol 2017;13:e1005781.
    • (2017) PLoS Comput Biol , vol.13
    • Gabasova, E.1    Reid, J.2    Wernisch, L.3
  • 49
    • 84885617335 scopus 로고    scopus 로고
    • Bayesian consensus clustering
    • Lock EF, Dunson DB. Bayesian consensus clustering. Bioinformatics 2013;29:2610–6.
    • (2013) Bioinformatics , vol.29 , pp. 2610-2616
    • Lock, E.F.1    Dunson, D.B.2
  • 51
    • 84895516704 scopus 로고    scopus 로고
    • Similarity network fusion for aggregating data types on a genomic scale
    • Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 2014;11:333–7.
    • (2014) Nat Methods , vol.11 , pp. 333-337
    • Wang, B.1    Mezlini, A.M.2    Demir, F.3    Fiume, M.4    Tu, Z.5    Brudno, M.6
  • 52
    • 85052884253 scopus 로고    scopus 로고
    • Decoding the genomics of abdominal aortic aneurysm
    • 1361–72.e10
    • Li J, Pan C, Zhang S, Spin JM, Deng A, Leung LLK, et al. Decoding the Genomics of Abdominal Aortic Aneurysm. Cell 2018;174:1361–72.e10. doi:10.1016/j.cell.2018.07.021.
    • (2018) Cell , vol.174
    • Li, J.1    Pan, C.2    Zhang, S.3    Spin, J.M.4    Deng, A.5    Leung, L.L.K.6
  • 54
    • 85072265854 scopus 로고    scopus 로고
    • PRECISE: A domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors
    • Mourragui S, Loog M, Reinders MJT, Wessels LFA. PRECISE: A domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors n.d. doi:10.1101/536797.
    • (2019)
    • Mourragui, S.1    Loog, M.2    van de Wiel, M.A.3    Reinders, M.J.T.4    Wessels, L.F.A.5
  • 55
    • 84957536145 scopus 로고    scopus 로고
    • Bringing model-based prediction to oncology clinical practice: a review of pharmacometrics principles and applications
    • Buil-Bruna N, López-Picazo J-M, Martín-Algarra S, Trocóniz IF. Bringing Model-Based Prediction to Oncology Clinical Practice: A Review of Pharmacometrics Principles and Applications. Oncologist 2016;21:220–32.
    • (2016) Oncologist , vol.21 , pp. 220-232
    • Buil-Bruna, N.1    López-Picazo, J.-M.2    Martín-Algarra, S.3    Trocóniz, I.F.4
  • 56
    • 85038641397 scopus 로고    scopus 로고
    • Health informatics tools to improve utilization of laboratory tests
    • Aziz HA, Alshekhabobakr HM. Health Informatics Tools to Improve Utilization of Laboratory Tests. Lab Med 2017;48:e30–5.
    • (2017) Lab Med , vol.48 , pp. e30-e35
    • Aziz, H.A.1    Alshekhabobakr, H.M.2
  • 57
    • 85056257275 scopus 로고    scopus 로고
    • Machine learning in medicine: addressing ethical challenges
    • Vayena E, Blasimme A, Cohen IG. Machine learning in medicine: Addressing ethical challenges. PLoS Med 2018;15:e1002689.
    • (2018) PLoS Med , vol.15
    • Vayena, E.1    Blasimme, A.2    Cohen, I.G.3
  • 58
    • 85066447729 scopus 로고    scopus 로고
    • PPCD: privacy-preserving clinical decision with cloud support
    • Ma H, Guo X, Ping Y, Wang B, Yang Y, Zhang Z, et al. PPCD: Privacy-preserving clinical decision with cloud support. PLoS One 2019;14:e0217349.
    • (2019) PLoS One , vol.14
    • Ma, H.1    Guo, X.2    Ping, Y.3    Wang, B.4    Yang, Y.5    Zhang, Z.6
  • 59
    • 85041905529 scopus 로고    scopus 로고
    • Ethics in artificial intelligence: introduction to the special issue
    • Dignum V. Ethics in artificial intelligence: introduction to the special issue. Ethics Inf Technol 2018;20:1–3.
    • (2018) Ethics Inf Technol , vol.20 , pp. 1-3
    • Dignum, V.1
  • 60
    • 85092429576 scopus 로고    scopus 로고
    • The reproducibility crisis in the age of digital medicine
    • Stupple A, Singerman D, Celi LA. The reproducibility crisis in the age of digital medicine. Npj Digital Medicine 2019;2:2.
    • (2019) Npj Digit Med , vol.2 , pp. 2
    • Stupple, A.1    Singerman, D.2    Celi, L.A.3
  • 61
    • 85060005791 scopus 로고    scopus 로고
    • The PLOS ONE collection on machine learning in health and biomedicine: towards open code and open data
    • Celi LA, Citi L, Ghassemi M, Pollard TJ. The PLOS ONE collection on machine learning in health and biomedicine: Towards open code and open data. PLoS One 2019;14:e0210232.
    • (2019) PLoS One , vol.14
    • Celi, L.A.1    Citi, L.2    Ghassemi, M.3    Pollard, T.J.4
  • 62
    • 85054648327 scopus 로고    scopus 로고
    • Explainable machine-learning predictions for the prevention of hypoxaemia during surgery
    • Lundberg SM, Nair B, Vavilala MS, Horibe M, Eisses MJ, Adams T, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering 2018;2:749–60. doi:10.1038/s41551-018-0304-0.
    • (2018) Nat Biomed Eng , vol.2 , pp. 749-760
    • Lundberg, S.M.1    Nair, B.2    Vavilala, M.S.3    Horibe, M.4    Eisses, M.J.5    Adams, T.6
  • 63
    • 85033371689 scopus 로고    scopus 로고
    • Methods for interpreting and understanding deep neural networks
    • Montavon G, Samek W, Müller K-R. Methods for interpreting and understanding deep neural networks. Digital Signal Processing 2018;73:1–15. doi:10.1016/j.dsp.2017.10.011.
    • (2018) Digit Signal Proc , vol.73 , pp. 1-15
    • Montavon, G.1    Samek, W.2    Müller, K.-R.3
  • 65
    • 85033379573 scopus 로고    scopus 로고
    • Network dissection: Quantifying interpretability of deep visual representations
    • IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
    • Bau D, Zhou B, Khosla A, Oliva A, Torralba A. Network Dissection: Quantifying Interpretability of Deep Visual Representations. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017. doi:10.1109/cvpr.2017.354.
    • (2017)
    • Bau, D.1    Zhou, B.2    Khosla, A.3    Oliva, A.4    Torralba, A.5
  • 66
    • 85066352605 scopus 로고    scopus 로고
    • Taking human out of learning applications: A survey on automated machine learning
    • Yao Q, Wang M, Chen Y, Dai W, Yi-Qi H, Yu-Feng L, et al. Taking Human out of Learning Applications: A Survey on Automated Machine Learning 2018.
    • (2018)
    • Yao, Q.1    Wang, M.2    Chen, Y.3    Dai, W.4    Yi-Qi, H.5    Yu-Feng, L.6
  • 67
    • 85040290232 scopus 로고    scopus 로고
    • TPOT: a tree-based pipeline optimization tool for automating machine learning
    • Olson RS, Moore JH. TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning. Automated Machine Learning 2019:151–60. doi:10.1007/978-3-030-05318-5_8.
    • (2019) Auto Mach Learn , pp. 151-160
    • Olson, R.S.1    Moore, J.H.2
  • 68
    • 85072266607 scopus 로고    scopus 로고
    • Auto-keras: An efficient neural architecture search system
    • Jin H, Song Q, Hu X. Auto-Keras: An Efficient Neural Architecture Search System 2018.
    • (2018)
    • Jin, H.1    Song, Q.2    Hu, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.