-
1
-
-
85059762330
-
A guide to deep learning in healthcare
-
Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med 2019;25:24–9.
-
(2019)
Nat Med
, vol.25
, pp. 24-29
-
-
Esteva, A.1
Robicquet, A.2
Ramsundar, B.3
Kuleshov, V.4
DePristo, M.5
Chou, K.6
-
2
-
-
85062890886
-
Clinical applications of machine learning algorithms: beyond the black box
-
Watson DS, Krutzinna J, Bruce IN, Griffiths CE, McInnes IB, Barnes MR, et al. Clinical applications of machine learning algorithms: beyond the black box. BMJ 2019;364:l886.
-
(2019)
BMJ
, vol.364
, pp. l886
-
-
Watson, D.S.1
Krutzinna, J.2
Bruce, I.N.3
Griffiths, C.E.4
McInnes, I.B.5
Barnes, M.R.6
-
3
-
-
85059735798
-
The practical implementation of artificial intelligence technologies in medicine
-
He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med 2019;25:30–6.
-
(2019)
Nat Med
, vol.25
, pp. 30-36
-
-
He, J.1
Baxter, S.L.2
Xu, J.3
Xu, J.4
Zhou, X.5
Zhang, K.6
-
4
-
-
85065730206
-
US food and drug administration
-
(accessed July 19, 2019)
-
Artificial Intelligence and Machine Learning in Software as a Medical Device. US Food and Drug Administration n.d. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device#whatis (accessed July 19, 2023).
-
(2019)
-
-
Artificial Intelligence and Machine Learning in Software as a Medical Device1
-
5
-
-
84959128138
-
Innovation in the pharmaceutical industry: new estimates of R&D costs
-
DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics 2016;47:20–33. doi:10.1016/j.jhealeco.2016.01.012.
-
(2016)
J Health Econ
, vol.47
, pp. 20-33
-
-
DiMasi, J.A.1
Grabowski, H.G.2
Hansen, R.W.3
-
6
-
-
85061969204
-
Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators
-
Merk D, Grisoni F, Friedrich L, Schneider G. Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators. Communications Chemistry 2018;1. doi:10.1038/s42004-018-0068-1.
-
(2018)
Commun Chem
, vol.1
-
-
Merk, D.1
Grisoni, F.2
Friedrich, L.3
Schneider, G.4
-
7
-
-
85042111944
-
Generative recurrent networks for de novo drug design
-
Gupta A, Müller AT, Huisman BJH, Fuchs JA, Schneider P, Schneider G. Generative Recurrent Networks for De Novo Drug Design. Molecular Informatics 2018;37:1700111. doi:10.1002/minf.201700111.
-
(2018)
Mol Inform
, vol.37
, pp. 1700111
-
-
Gupta, A.1
Müller, A.T.2
Huisman, B.J.H.3
Fuchs, J.A.4
Schneider, P.5
Schneider, G.6
-
8
-
-
85050805805
-
Deep reinforcement learning for de novo drug design
-
Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Science Advances 2018;4:eaap7885. doi:10.1126/sciadv.aap7885.
-
(2018)
Sci Adv
, vol.4
, pp. eaap7885
-
-
Popova, M.1
Isayev, O.2
Tropsha, A.3
-
9
-
-
85044660186
-
Planning chemical syntheses with deep neural networks and symbolic AI
-
Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018;555:604–10.
-
(2018)
Nature
, vol.555
, pp. 604-610
-
-
Segler, M.H.S.1
Preuss, M.2
Waller, M.P.3
-
10
-
-
85028933960
-
Molecular de-novo design through deep reinforcement learning
-
Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de-novo design through deep reinforcement learning. J Cheminform 2017;9:48.
-
(2017)
J Chem
, vol.9
, pp. 48
-
-
Olivecrona, M.1
Blaschke, T.2
Engkvist, O.3
Chen, H.4
-
11
-
-
85072265966
-
Prioritizing small molecule as candidates for drug repositioning using machine learning
-
Shameer K, Johnson K, Glicksberg BS, Hodos R, Readhead B, Tomlinson MS, et al. Prioritizing Small Molecule as Candidates for Drug Repositioning using Machine Learning n.d. doi:10.1101/331975.
-
(2018)
-
-
Shameer, K.1
Johnson, K.2
Glicksberg, B.S.3
Hodos, R.4
Readhead, B.5
Tomlinson, M.S.6
-
12
-
-
84884590180
-
Big pharma screening collections: more of the same or unique libraries? The AstraZeneca–Bayer pharma AG case
-
Kogej T, Blomberg N, Greasley PJ, Mundt S, Vainio MJ, Schamberger J, et al. Big pharma screening collections: more of the same or unique libraries? The AstraZeneca–Bayer Pharma AG case. Drug Discovery Today 2013;18:1014–24. doi:10.1016/j.drudis.2012.10.011.
-
(2013)
Drug Discov Today
, vol.18
, pp. 1014-1024
-
-
Kogej, T.1
Blomberg, N.2
Greasley, P.J.3
Mundt, S.4
Vainio, M.J.5
Schamberger, J.6
-
13
-
-
33845867934
-
A cluster-based strategy for assessing the overlap between large chemical libraries and its application to a recent acquisition
-
Engels MFM, Gibbs AC, Jaeger EP, Verbinnen D, Lobanov VS, Agrafiotis DK. A cluster-based strategy for assessing the overlap between large chemical libraries and its application to a recent acquisition. J Chem Inf Model 2006;46:2651–60.
-
(2006)
J Chem Inf Model
, vol.46
, pp. 2651-2660
-
-
Engels, M.F.M.1
Gibbs, A.C.2
Jaeger, E.P.3
Verbinnen, D.4
Lobanov, V.S.5
Agrafiotis, D.K.6
-
14
-
-
79959732195
-
Rendezvous in chemical space? Comparing the small molecule compound libraries of Bayer and Schering
-
Schamberger J, Grimm M, Steinmeyer A, Hillisch A. Rendezvous in chemical space? Comparing the small molecule compound libraries of Bayer and Schering. Drug Discov Today 2011;16:636–41.
-
(2011)
Drug Discov Today
, vol.16
, pp. 636-641
-
-
Schamberger, J.1
Grimm, M.2
Steinmeyer, A.3
Hillisch, A.4
-
15
-
-
84992195793
-
Combenefit: an interactive platform for the analysis and visualization of drug combinations
-
Di Veroli GY, Fornari C, Wang D, Mollard S, Bramhall JL, Richards FM, et al. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics 2016;32:2866–8.
-
(2016)
Bioinformatics
, vol.32
, pp. 2866-2868
-
-
Di Veroli, G.Y.1
Fornari, C.2
Wang, D.3
Mollard, S.4
Bramhall, J.L.5
Richards, F.M.6
-
16
-
-
84880072796
-
Drug repositioning: a machine-learning approach through data integration
-
Napolitano F, Zhao Y, Moreira VM, Tagliaferri R, Kere J, D'’Amato M, et al. Drug repositioning: a machine-learning approach through data integration. J Cheminform 2013;5:30.
-
(2013)
J Chem
, vol.5
, pp. 30
-
-
Napolitano, F.1
Zhao, Y.2
Moreira, V.M.3
Tagliaferri, R.4
Kere, J.5
D'Amato, M.6
-
17
-
-
85019574450
-
Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning
-
Shameer K, Glicksberg BS, Hodos R, Johnson KW, Badgeley MA, Readhead B, et al. Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning. Briefings in Bioinformatics 2018;19:656–78. doi:10.1093/bib/bbw136.
-
(2018)
Brief Bioinform
, vol.19
, pp. 656-678
-
-
Shameer, K.1
Glicksberg, B.S.2
Hodos, R.3
Johnson, K.W.4
Badgeley, M.A.5
Readhead, B.6
-
18
-
-
84891767304
-
DrugBank 4.0: shedding new light on drug metabolism
-
Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 2014;42:D1091–7.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D1091-D1097
-
-
Law, V.1
Knox, C.2
Djoumbou, Y.3
Jewison, T.4
Guo, A.C.5
Liu, Y.6
-
19
-
-
84906549588
-
A community effort to assess and improve drug sensitivity prediction algorithms
-
Costello JC, Heiser LM, Georgii E, Gönen M, Menden MP, Wang NJ, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol 2014;32:1202–12.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1202-1212
-
-
Costello, J.C.1
Heiser, L.M.2
Georgii, E.3
Gönen, M.4
Menden, M.P.5
Wang, N.J.6
-
20
-
-
85067453487
-
Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
-
Menden MP, Wang D, Mason MJ, Szalai B, Bulusu KC, Guan Y, et al. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat Commun 2019;10:2674.
-
(2019)
Nat Commun
, vol.10
, pp. 2674
-
-
Menden, M.P.1
Wang, D.2
Mason, M.J.3
Szalai, B.4
Bulusu, K.C.5
Guan, Y.6
-
21
-
-
84982218412
-
Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
-
Yu K-H, Zhang C, Berry GJ, Altman RB, Ré C, Rubin DL, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun 2016;7:12474.
-
(2016)
Nat Commun
, vol.7
, pp. 12474
-
-
Yu, K.-H.1
Zhang, C.2
Berry, G.J.3
Altman, R.B.4
Ré, C.5
Rubin, D.L.6
-
22
-
-
85053661755
-
Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning
-
Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, et al. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nature Medicine 2018;24:1559–67. doi:10.1038/s41591-018-0177-5.
-
(2018)
Nat Med
, vol.24
, pp. 1559-1567
-
-
Coudray, N.1
Ocampo, P.S.2
Sakellaropoulos, T.3
Narula, N.4
Snuderl, M.5
Fenyö, D.6
-
23
-
-
85060821631
-
Label-free classification of cells based on supervised machine learning of subcellular structures
-
Ozaki Y, Yamada H, Kikuchi H, Hirotsu A, Murakami T, Matsumoto T, et al. Label-free classification of cells based on supervised machine learning of subcellular structures. PLoS One 2019;14:e0211347.
-
(2019)
PLoS One
, vol.14
-
-
Ozaki, Y.1
Yamada, H.2
Kikuchi, H.3
Hirotsu, A.4
Murakami, T.5
Matsumoto, T.6
-
24
-
-
85064552971
-
Leveraging machine vision in cell-based diagnostics to do more with less
-
Doan M, Carpenter AE. Leveraging machine vision in cell-based diagnostics to do more with less. Nature Materials 2019;18:414–8. doi:10.1038/s41563-019-0339-y.
-
(2019)
Nat Mater
, vol.18
, pp. 414-418
-
-
Doan, M.1
Carpenter, A.E.2
-
25
-
-
85042602612
-
Repurposing high-throughput image assays enables biological activity prediction for drug discovery
-
611–8.e3
-
Simm J, Klambauer G, Arany A, Steijaert M, Wegner JK, Gustin E, et al. Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery. Cell Chem Biol 2018;25:611–8.e3.
-
(2018)
Cell Chem Biol
, vol.25
-
-
Simm, J.1
Klambauer, G.2
Arany, A.3
Steijaert, M.4
Wegner, J.K.5
Gustin, E.6
-
26
-
-
85062832105
-
Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks
-
Hofmarcher M, Rumetshofer E, Clevert D-A, Hochreiter S, Klambauer G. Accurate Prediction of Biological Assays with High-Throughput Microscopy Images and Convolutional Networks. J Chem Inf Model 2019;59:1163–71.
-
(2019)
J Chem Inf Model
, vol.59
, pp. 1163-1171
-
-
Hofmarcher, M.1
Rumetshofer, E.2
Clevert, D.-A.3
Hochreiter, S.4
Klambauer, G.5
-
27
-
-
85065730623
-
Label-free identification of white blood cells using machine learning
-
Nassar M, Doan M, Filby A, Wolkenhauer O, Fogg DK, Piasecka J, et al. Label-Free Identification of White Blood Cells Using Machine Learning. Cytometry Part A 2019. doi:10.1002/cyto.a.23794.
-
(2019)
Cytometry A
-
-
Nassar, M.1
Doan, M.2
Filby, A.3
Wolkenhauer, O.4
Fogg, D.K.5
Piasecka, J.6
-
28
-
-
85089606203
-
Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer
-
Nagpal K, Foote D, Liu Y, Chen P-HC, Wulczyn E, Tan F, et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digit Med 2019;2:48.
-
(2019)
NPJ Digit Med
, vol.2
, pp. 48
-
-
Nagpal, K.1
Foote, D.2
Liu, Y.3
Chen, P.-H.C.4
Wulczyn, E.5
Tan, F.6
-
29
-
-
85043363915
-
Measuring multiple parameters of CD8+ tumor-infiltrating lymphocytes in human cancers by image analysis
-
Steele KE, Tan TH, Korn R, Dacosta K, Brown C, Kuziora M, et al. Measuring multiple parameters of CD8+ tumor-infiltrating lymphocytes in human cancers by image analysis. J Immunother Cancer 2018;6:20.
-
(2018)
J Immunother Cancer
, vol.6
, pp. 20
-
-
Steele, K.E.1
Tan, T.H.2
Korn, R.3
Dacosta, K.4
Brown, C.5
Kuziora, M.6
-
30
-
-
84946230833
-
Harnessing connectivity in a large-scale small-molecule sensitivity dataset
-
Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, Coletti ME, et al. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discov 2015;5:1210–23.
-
(2015)
Cancer Discov
, vol.5
, pp. 1210-1223
-
-
Seashore-Ludlow, B.1
Rees, M.G.2
Cheah, J.H.3
Cokol, M.4
Price, E.V.5
Coletti, M.E.6
-
31
-
-
85049199748
-
-
National Cancer Institute (Accessed 24 June 2019)
-
The Cancer Genome Atlas. National Cancer Institute 2018. https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga (accessed June 24, 2019).
-
(2018)
The cancer genome atlas
-
-
-
33
-
-
84859169877
-
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
-
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012;483:603–7.
-
(2012)
Nature
, vol.483
, pp. 603-607
-
-
Barretina, J.1
Caponigro, G.2
Stransky, N.3
Venkatesan, K.4
Margolin, A.A.5
Kim, S.6
-
34
-
-
85032020563
-
Molecular signatures for tumor classification: an analysis of the cancer genome atlas data
-
Mamatjan Y, Agnihotri S, Goldenberg A, Tonge P, Mansouri S, Zadeh G, et al. Molecular Signatures for Tumor Classification: An Analysis of The Cancer Genome Atlas Data. J Mol Diagn 2017;19:881–91.
-
(2017)
J Mol Diagn
, vol.19
, pp. 881-891
-
-
Mamatjan, Y.1
Agnihotri, S.2
Goldenberg, A.3
Tonge, P.4
Mansouri, S.5
Zadeh, G.6
-
35
-
-
85127431078
-
Scalable and accurate deep learning with electronic health records
-
Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep learning with electronic health records. Npj Digital Medicine 2018;1:18.
-
(2018)
Npj Digit Med
, vol.1
, pp. 18
-
-
Rajkomar, A.1
Oren, E.2
Chen, K.3
Dai, A.M.4
Hajaj, N.5
Hardt, M.6
-
37
-
-
84877092892
-
Phase II trial of MEK inhibitor selumetinib (AZD6244, ARRY-142886) in patients with BRAFV600E/K-mutated melanoma
-
Catalanotti F, Solit DB, Pulitzer MP, Berger MF, Scott SN, Iyriboz T, et al. Phase II trial of MEK inhibitor selumetinib (AZD6244, ARRY-142886) in patients with BRAFV600E/K-mutated melanoma. Clin Cancer Res 2013;19:2257–64.
-
(2013)
Clin Cancer Res
, vol.19
, pp. 2257-2264
-
-
Catalanotti, F.1
Solit, D.B.2
Pulitzer, M.P.3
Berger, M.F.4
Scott, S.N.5
Iyriboz, T.6
-
38
-
-
85072266834
-
Infinium HumanMethylation450K BeadChip documentation
-
(Accessed 29 July 2019)
-
Infinium HumanMethylation450K BeadChip Documentation n.d. http://emea.support.illumina.com/array/array_kits/infinium_humanmethylation450_beadchip_kit/documentation.html (accessed July 29, 2019).
-
(2019)
-
-
-
39
-
-
84859187259
-
Systematic identification of genomic markers of drug sensitivity in cancer cells
-
Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012;483:570–5.
-
(2012)
Nature
, vol.483
, pp. 570-575
-
-
Garnett, M.J.1
Edelman, E.J.2
Heidorn, S.J.3
Greenman, C.D.4
Dastur, A.5
Lau, K.W.6
-
40
-
-
85065525804
-
Next-generation characterization of the Cancer Cell Line Encyclopedia
-
Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 2019;569:503–8.
-
(2019)
Nature
, vol.569
, pp. 503-508
-
-
Ghandi, M.1
Huang, F.W.2
Jané-Valbuena, J.3
Kryukov, G.V.4
Lo, C.C.5
McDonald, E.R.6
-
41
-
-
85064233743
-
Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens
-
Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, Migliardi G, et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 2019;568:511–6. doi:10.1038/s41586-019-1103-9.
-
(2019)
Nature
, vol.568
, pp. 511-516
-
-
Behan, F.M.1
Iorio, F.2
Picco, G.3
Gonçalves, E.4
Beaver, C.M.5
Migliardi, G.6
-
42
-
-
84963614599
-
High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines
-
Yu C, Mannan AM, Yvone GM, Ross KN, Zhang Y-L, Marton MA, et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat Biotechnol 2016;34:419–23.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 419-423
-
-
Yu, C.1
Mannan, A.M.2
Yvone, G.M.3
Ross, K.N.4
Zhang, Y.-L.5
Marton, M.A.6
-
43
-
-
85020687117
-
Intertumoral heterogeneity within medulloblastoma subgroups
-
737–54.e6
-
Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, et al. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 2017;31:737–54.e6.
-
(2017)
Cancer Cell
, vol.31
-
-
Cavalli, F.M.G.1
Remke, M.2
Rampasek, L.3
Peacock, J.4
Shih, D.J.H.5
Luu, B.6
-
44
-
-
70449331456
-
Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
-
Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 2009;25:2906–12.
-
(2009)
Bioinformatics
, vol.25
, pp. 2906-2912
-
-
Shen, R.1
Olshen, A.B.2
Ladanyi, M.3
-
45
-
-
84877028141
-
Comprehensive molecular portraits of human breast tumours
-
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61–70.
-
(2012)
Nature
, vol.490
, pp. 61-70
-
-
Cancer Genome Atlas Network1
-
46
-
-
85072265789
-
Multiple kernel learning for integrative consensus clustering of genomic datasets
-
Cabassi A, Kirk PDW. Multiple kernel learning for integrative consensus clustering of genomic datasets 2019.
-
(2019)
-
-
Cabassi, A.1
Kirk, P.D.W.2
-
47
-
-
85048591696
-
Affinity network fusion and semi-supervised learning for cancer patient clustering
-
Ma T, Zhang A. Affinity network fusion and semi-supervised learning for cancer patient clustering. Methods 2018;145:16–24.
-
(2018)
Methods
, vol.145
, pp. 16-24
-
-
Ma, T.1
Zhang, A.2
-
48
-
-
85032615447
-
Clusternomics: integrative context-dependent clustering for heterogeneous datasets
-
Gabasova E, Reid J, Wernisch L. Clusternomics: Integrative context-dependent clustering for heterogeneous datasets. PLoS Comput Biol 2017;13:e1005781.
-
(2017)
PLoS Comput Biol
, vol.13
-
-
Gabasova, E.1
Reid, J.2
Wernisch, L.3
-
49
-
-
84885617335
-
Bayesian consensus clustering
-
Lock EF, Dunson DB. Bayesian consensus clustering. Bioinformatics 2013;29:2610–6.
-
(2013)
Bioinformatics
, vol.29
, pp. 2610-2616
-
-
Lock, E.F.1
Dunson, D.B.2
-
50
-
-
84870796415
-
Bayesian correlated clustering to integrate multiple datasets
-
Kirk P, Griffin JE, Savage RS, Ghahramani Z, Wild DL. Bayesian correlated clustering to integrate multiple datasets. Bioinformatics 2012;28:3290–7.
-
(2012)
Bioinformatics
, vol.28
, pp. 3290-3297
-
-
Kirk, P.1
Griffin, J.E.2
Savage, R.S.3
Ghahramani, Z.4
Wild, D.L.5
-
51
-
-
84895516704
-
Similarity network fusion for aggregating data types on a genomic scale
-
Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 2014;11:333–7.
-
(2014)
Nat Methods
, vol.11
, pp. 333-337
-
-
Wang, B.1
Mezlini, A.M.2
Demir, F.3
Fiume, M.4
Tu, Z.5
Brudno, M.6
-
52
-
-
85052884253
-
Decoding the genomics of abdominal aortic aneurysm
-
1361–72.e10
-
Li J, Pan C, Zhang S, Spin JM, Deng A, Leung LLK, et al. Decoding the Genomics of Abdominal Aortic Aneurysm. Cell 2018;174:1361–72.e10. doi:10.1016/j.cell.2018.07.021.
-
(2018)
Cell
, vol.174
-
-
Li, J.1
Pan, C.2
Zhang, S.3
Spin, J.M.4
Deng, A.5
Leung, L.L.K.6
-
53
-
-
85057295708
-
Found in translation: a machine learning model for mouse-to-human inference
-
Normand R, Du W, Briller M, Gaujoux R, Starosvetsky E, Ziv-Kenet A, et al. Found In Translation: a machine learning model for mouse-to-human inference. Nat Methods 2018;15:1067–73.
-
(2018)
Nat Methods
, vol.15
, pp. 1067-1073
-
-
Normand, R.1
Du, W.2
Briller, M.3
Gaujoux, R.4
Starosvetsky, E.5
Ziv-Kenet, A.6
-
54
-
-
85072265854
-
PRECISE: A domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors
-
Mourragui S, Loog M, Reinders MJT, Wessels LFA. PRECISE: A domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors n.d. doi:10.1101/536797.
-
(2019)
-
-
Mourragui, S.1
Loog, M.2
van de Wiel, M.A.3
Reinders, M.J.T.4
Wessels, L.F.A.5
-
55
-
-
84957536145
-
Bringing model-based prediction to oncology clinical practice: a review of pharmacometrics principles and applications
-
Buil-Bruna N, López-Picazo J-M, Martín-Algarra S, Trocóniz IF. Bringing Model-Based Prediction to Oncology Clinical Practice: A Review of Pharmacometrics Principles and Applications. Oncologist 2016;21:220–32.
-
(2016)
Oncologist
, vol.21
, pp. 220-232
-
-
Buil-Bruna, N.1
López-Picazo, J.-M.2
Martín-Algarra, S.3
Trocóniz, I.F.4
-
56
-
-
85038641397
-
Health informatics tools to improve utilization of laboratory tests
-
Aziz HA, Alshekhabobakr HM. Health Informatics Tools to Improve Utilization of Laboratory Tests. Lab Med 2017;48:e30–5.
-
(2017)
Lab Med
, vol.48
, pp. e30-e35
-
-
Aziz, H.A.1
Alshekhabobakr, H.M.2
-
57
-
-
85056257275
-
Machine learning in medicine: addressing ethical challenges
-
Vayena E, Blasimme A, Cohen IG. Machine learning in medicine: Addressing ethical challenges. PLoS Med 2018;15:e1002689.
-
(2018)
PLoS Med
, vol.15
-
-
Vayena, E.1
Blasimme, A.2
Cohen, I.G.3
-
58
-
-
85066447729
-
PPCD: privacy-preserving clinical decision with cloud support
-
Ma H, Guo X, Ping Y, Wang B, Yang Y, Zhang Z, et al. PPCD: Privacy-preserving clinical decision with cloud support. PLoS One 2019;14:e0217349.
-
(2019)
PLoS One
, vol.14
-
-
Ma, H.1
Guo, X.2
Ping, Y.3
Wang, B.4
Yang, Y.5
Zhang, Z.6
-
59
-
-
85041905529
-
Ethics in artificial intelligence: introduction to the special issue
-
Dignum V. Ethics in artificial intelligence: introduction to the special issue. Ethics Inf Technol 2018;20:1–3.
-
(2018)
Ethics Inf Technol
, vol.20
, pp. 1-3
-
-
Dignum, V.1
-
60
-
-
85092429576
-
The reproducibility crisis in the age of digital medicine
-
Stupple A, Singerman D, Celi LA. The reproducibility crisis in the age of digital medicine. Npj Digital Medicine 2019;2:2.
-
(2019)
Npj Digit Med
, vol.2
, pp. 2
-
-
Stupple, A.1
Singerman, D.2
Celi, L.A.3
-
61
-
-
85060005791
-
The PLOS ONE collection on machine learning in health and biomedicine: towards open code and open data
-
Celi LA, Citi L, Ghassemi M, Pollard TJ. The PLOS ONE collection on machine learning in health and biomedicine: Towards open code and open data. PLoS One 2019;14:e0210232.
-
(2019)
PLoS One
, vol.14
-
-
Celi, L.A.1
Citi, L.2
Ghassemi, M.3
Pollard, T.J.4
-
62
-
-
85054648327
-
Explainable machine-learning predictions for the prevention of hypoxaemia during surgery
-
Lundberg SM, Nair B, Vavilala MS, Horibe M, Eisses MJ, Adams T, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering 2018;2:749–60. doi:10.1038/s41551-018-0304-0.
-
(2018)
Nat Biomed Eng
, vol.2
, pp. 749-760
-
-
Lundberg, S.M.1
Nair, B.2
Vavilala, M.S.3
Horibe, M.4
Eisses, M.J.5
Adams, T.6
-
63
-
-
85033371689
-
Methods for interpreting and understanding deep neural networks
-
Montavon G, Samek W, Müller K-R. Methods for interpreting and understanding deep neural networks. Digital Signal Processing 2018;73:1–15. doi:10.1016/j.dsp.2017.10.011.
-
(2018)
Digit Signal Proc
, vol.73
, pp. 1-15
-
-
Montavon, G.1
Samek, W.2
Müller, K.-R.3
-
65
-
-
85033379573
-
Network dissection: Quantifying interpretability of deep visual representations
-
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
Bau D, Zhou B, Khosla A, Oliva A, Torralba A. Network Dissection: Quantifying Interpretability of Deep Visual Representations. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017. doi:10.1109/cvpr.2017.354.
-
(2017)
-
-
Bau, D.1
Zhou, B.2
Khosla, A.3
Oliva, A.4
Torralba, A.5
-
66
-
-
85066352605
-
Taking human out of learning applications: A survey on automated machine learning
-
Yao Q, Wang M, Chen Y, Dai W, Yi-Qi H, Yu-Feng L, et al. Taking Human out of Learning Applications: A Survey on Automated Machine Learning 2018.
-
(2018)
-
-
Yao, Q.1
Wang, M.2
Chen, Y.3
Dai, W.4
Yi-Qi, H.5
Yu-Feng, L.6
-
67
-
-
85040290232
-
TPOT: a tree-based pipeline optimization tool for automating machine learning
-
Olson RS, Moore JH. TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning. Automated Machine Learning 2019:151–60. doi:10.1007/978-3-030-05318-5_8.
-
(2019)
Auto Mach Learn
, pp. 151-160
-
-
Olson, R.S.1
Moore, J.H.2
-
68
-
-
85072266607
-
Auto-keras: An efficient neural architecture search system
-
Jin H, Song Q, Hu X. Auto-Keras: An Efficient Neural Architecture Search System 2018.
-
(2018)
-
-
Jin, H.1
Song, Q.2
Hu, X.3
-
70
-
-
84981765197
-
Computer-assisted synthetic planning: the end of the beginning
-
Szymkuć S, Gajewska EP, Klucznik T, Molga K, Dittwald P, Startek M, et al. Computer-Assisted Synthetic Planning: The End of the Beginning. Angew Chem Int Ed Engl 2016;55:5904–37.
-
(2016)
Angew Chem Int Ed Engl
, vol.55
, pp. 5904-5937
-
-
Szymkuć, S.1
Gajewska, E.P.2
Klucznik, T.3
Molga, K.4
Dittwald, P.5
Startek, M.6
|