메뉴 건너뛰기




Volumn 84, Issue , 2018, Pages 90-100

isGPT: An optimized model to identify sub-Golgi protein types using SVM and Random Forest based feature selection

Author keywords

Classification; Random Forest; Regression; Sub Golgi Apparatus; Support vector machine

Indexed keywords

CELL MEMBRANES; CLASSIFICATION (OF INFORMATION); DECISION TREES; FEATURE EXTRACTION; IMAGE RETRIEVAL; NEURODEGENERATIVE DISEASES; PROTEINS; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 85034849205     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2017.11.003     Document Type: Article
Times cited : (41)

References (66)
  • 1
  • 2
    • 15944404360 scopus 로고    scopus 로고
    • The cell
    • Sinauer Associates Sunderland
    • Cooper, G.M., Hausman, R.E., The cell. 2000, Sinauer Associates Sunderland.
    • (2000)
    • Cooper, G.M.1    Hausman, R.E.2
  • 3
    • 0033594080 scopus 로고    scopus 로고
    • Golgi structure in three dimensions: functional insights from the normal rat kidney cell
    • Ladinsky, M.S., Mastronarde, D.N., McIntosh, J.R., Howell, K.E., Staehelin, L.A., Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144:6 (1999), 1135–1149.
    • (1999) J Cell Biol , vol.144 , Issue.6 , pp. 1135-1149
    • Ladinsky, M.S.1    Mastronarde, D.N.2    McIntosh, J.R.3    Howell, K.E.4    Staehelin, L.A.5
  • 4
    • 69249159494 scopus 로고    scopus 로고
    • A Golgi-on-a-chip for glycan synthesis
    • Xu, D., Esko, J.D., A Golgi-on-a-chip for glycan synthesis. Nat Chem Biol 5:9 (2009), 612–613.
    • (2009) Nat Chem Biol , vol.5 , Issue.9 , pp. 612-613
    • Xu, D.1    Esko, J.D.2
  • 5
    • 0031928535 scopus 로고    scopus 로고
    • Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis
    • Hoyer, S., Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 105:4 (1998), 415–422.
    • (1998) J Neural Transm , vol.105 , Issue.4 , pp. 415-422
    • Hoyer, S.1
  • 6
    • 0035875663 scopus 로고    scopus 로고
    • Structure of Golgi α-mannosidase II: a target for inhibition of growth and metastasis of cancer cells
    • van den Elsen, J.M., Kuntz, D.A., Rose, D.R., Structure of Golgi α-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. EMBO J 20:12 (2001), 3008–3017.
    • (2001) EMBO J , vol.20 , Issue.12 , pp. 3008-3017
    • van den Elsen, J.M.1    Kuntz, D.A.2    Rose, D.R.3
  • 7
    • 77949438990 scopus 로고    scopus 로고
    • Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models
    • Su, L.J., Auluck, P.K., Outeiro, T.F., Yeger-Lotem, E., Kritzer, J.A., Tardiff, D.F., et al. Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models. Dis Models Mech 3:3-4 (2010), 194–208.
    • (2010) Dis Models Mech , vol.3 , Issue.3-4 , pp. 194-208
    • Su, L.J.1    Auluck, P.K.2    Outeiro, T.F.3    Yeger-Lotem, E.4    Kritzer, J.A.5    Tardiff, D.F.6
  • 8
    • 0023038233 scopus 로고
    • Dendritic changes in the basal nucleus of Meynert and in the diagonal band nucleus in Alzheimer's disease: a quantitative Golgi investigation
    • Arendt, T., Zveuintshva, H., Lkontovich, T., Dendritic changes in the basal nucleus of Meynert and in the diagonal band nucleus in Alzheimer's disease: a quantitative Golgi investigation. Neuroscience 19:4 (1986), 1265–1278.
    • (1986) Neuroscience , vol.19 , Issue.4 , pp. 1265-1278
    • Arendt, T.1    Zveuintshva, H.2    Lkontovich, T.3
  • 9
    • 85040961945 scopus 로고    scopus 로고
    • Techniques for treating neurodegenerative disorders by infusion of nerve growth factors into the brain. US Patent (Mar. 28 2000).
    • Elsberry DD, Rise MT. Techniques for treating neurodegenerative disorders by infusion of nerve growth factors into the brain. US Patent 6,042,579 (Mar. 28 2000).
    • Elsberry, D.D.1    Rise, M.T.2
  • 10
    • 70349323001 scopus 로고    scopus 로고
    • Golgi linked protein glycosylation and associated diseases
    • Elsevier
    • Ungar, D., Golgi linked protein glycosylation and associated diseases. Seminars in cell & developmental biology, vol. 20, 2009, Elsevier, 762–769.
    • (2009) Seminars in cell & developmental biology , vol.20 , pp. 762-769
    • Ungar, D.1
  • 11
    • 84870860627 scopus 로고    scopus 로고
    • Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features
    • Yu, D., Wu, X., Shen, H., Yang, J., Tang, Z., Qi, Y., et al. Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features. IEEE Trans Nanobiosci 11:4 (2012), 375–385.
    • (2012) IEEE Trans Nanobiosci , vol.11 , Issue.4 , pp. 375-385
    • Yu, D.1    Wu, X.2    Shen, H.3    Yang, J.4    Tang, Z.5    Qi, Y.6
  • 12
    • 84864779292 scopus 로고    scopus 로고
    • Predicting protein submitochondria locations by combining different descriptors into the general form of Chou's pseudo amino acid composition
    • Fan, G.-L., Li, Q.-Z., Predicting protein submitochondria locations by combining different descriptors into the general form of Chou's pseudo amino acid composition. Amino Acids 43:2 (2012), 545–555.
    • (2012) Amino Acids , vol.43 , Issue.2 , pp. 545-555
    • Fan, G.-L.1    Li, Q.-Z.2
  • 13
    • 84880994178 scopus 로고    scopus 로고
    • Predicting protein subchloroplast locations with both single and multiple sites via three different modes of Chou's pseudo amino acid compositions
    • Huang, C., Yuan, J.-Q., Predicting protein subchloroplast locations with both single and multiple sites via three different modes of Chou's pseudo amino acid compositions. J Theor Biol 335 (2013), 205–212.
    • (2013) J Theor Biol , vol.335 , pp. 205-212
    • Huang, C.1    Yuan, J.-Q.2
  • 14
    • 84874928986 scopus 로고    scopus 로고
    • iLoc-animal: a multi-label learning classifier for predicting subcellular localization of animal proteins
    • Lin, W.-Z., Fang, J.-A., Xiao, X., Chou, K.-C., iLoc-animal: a multi-label learning classifier for predicting subcellular localization of animal proteins. Mol BioSyst 9:4 (2013), 634–644.
    • (2013) Mol BioSyst , vol.9 , Issue.4 , pp. 634-644
    • Lin, W.-Z.1    Fang, J.-A.2    Xiao, X.3    Chou, K.-C.4
  • 16
    • 84898638339 scopus 로고    scopus 로고
    • HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins
    • Wan, S., Mak, M.-W., Kung, S.-Y., HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins. PLOS ONE, 9(3), 2014, e89545.
    • (2014) PLOS ONE , vol.9 , Issue.3 , pp. e89545
    • Wan, S.1    Mak, M.-W.2    Kung, S.-Y.3
  • 19
    • 78751550064 scopus 로고    scopus 로고
    • Identify Golgi protein types with modified mahalanobis discriminant algorithm and pseudo amino acid composition
    • Ding, H., Liu, L., Guo, F.-B., Huang, J., Lin, H., Identify Golgi protein types with modified mahalanobis discriminant algorithm and pseudo amino acid composition. Protein Pept Lett 18:1 (2011), 58–63.
    • (2011) Protein Pept Lett , vol.18 , Issue.1 , pp. 58-63
    • Ding, H.1    Liu, L.2    Guo, F.-B.3    Huang, J.4    Lin, H.5
  • 20
    • 84876306464 scopus 로고    scopus 로고
    • Prediction of Golgi-resident protein types by using feature selection technique
    • Ding, H., Guo, S.-H., Deng, E.-Z., Yuan, L.-F., Guo, F.-B., Huang, J., et al. Prediction of Golgi-resident protein types by using feature selection technique. Chemom Intell Lab Syst 124 (2013), 9–13.
    • (2013) Chemom Intell Lab Syst , vol.124 , pp. 9-13
    • Ding, H.1    Guo, S.-H.2    Deng, E.-Z.3    Yuan, L.-F.4    Guo, F.-B.5    Huang, J.6
  • 21
    • 84949870971 scopus 로고    scopus 로고
    • Predicting Golgi-resident protein types using pseudo amino acid compositions: approaches with positional specific physicochemical properties
    • Jiao, Y.-S., Du, P.-F., Predicting Golgi-resident protein types using pseudo amino acid compositions: approaches with positional specific physicochemical properties. J Theor Biol 391 (2016), 35–42.
    • (2016) J Theor Biol , vol.391 , pp. 35-42
    • Jiao, Y.-S.1    Du, P.-F.2
  • 22
    • 84965002305 scopus 로고    scopus 로고
    • Prediction of Golgi-resident protein types using general form of Chou's pseudo-amino acid compositions: approaches with minimal redundancy maximal relevance feature selection
    • Jiao, Y.-S., Du, P.-F., Prediction of Golgi-resident protein types using general form of Chou's pseudo-amino acid compositions: approaches with minimal redundancy maximal relevance feature selection. J Theor Biol 402 (2016), 38–44.
    • (2016) J Theor Biol , vol.402 , pp. 38-44
    • Jiao, Y.-S.1    Du, P.-F.2
  • 23
    • 84957575309 scopus 로고    scopus 로고
    • A novel feature extraction method with feature selection to identify Golgi-resident protein types from imbalanced data
    • Yang, R., Zhang, C., Gao, R., Zhang, L., A novel feature extraction method with feature selection to identify Golgi-resident protein types from imbalanced data. Int J Mol Sci, 17(2), 2016, 218.
    • (2016) Int J Mol Sci , vol.17 , Issue.2 , pp. 218
    • Yang, R.1    Zhang, C.2    Gao, R.3    Zhang, L.4
  • 25
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach Learn 45:1 (2001), 5–32.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 26
    • 85019267862 scopus 로고    scopus 로고
    • Intelligent computational model for classification of sub-Golgi protein using oversampling and fisher feature selection methods
    • Ahmad, J., Javed, F., Hayat, M., Intelligent computational model for classification of sub-Golgi protein using oversampling and fisher feature selection methods. Artif Intell Med 78 (2017), 14–22.
    • (2017) Artif Intell Med , vol.78 , pp. 14-22
    • Ahmad, J.1    Javed, F.2    Hayat, M.3
  • 27
    • 80054950510 scopus 로고    scopus 로고
    • Molecular dynamics simulations and drug discovery
    • Durrant, J.D., McCammon, J.A., Molecular dynamics simulations and drug discovery. BMC Biol, 9(1), 2011, 71.
    • (2011) BMC Biol , vol.9 , Issue.1 , pp. 71
    • Durrant, J.D.1    McCammon, J.A.2
  • 29
    • 84884262140 scopus 로고    scopus 로고
    • A review of protein function prediction under machine learning perspective
    • Bernardes, J.S., A review of protein function prediction under machine learning perspective. Recent Pat Biotechnol 7:2 (2013), 122–141.
    • (2013) Recent Pat Biotechnol , vol.7 , Issue.2 , pp. 122-141
    • Bernardes, J.S.1
  • 30
    • 85040963354 scopus 로고    scopus 로고
    • Uniprot database [online].
    • Uniprot database [online].
  • 31
    • 0029051959 scopus 로고
    • A novel approach to predicting protein structural classes in a (20-1)-D amino acid composition space
    • Chou, K.-C., A novel approach to predicting protein structural classes in a (20-1)-D amino acid composition space. Proteins 21:4 (1995), 319–344.
    • (1995) Proteins , vol.21 , Issue.4 , pp. 319-344
    • Chou, K.-C.1
  • 32
    • 0030801002 scopus 로고    scopus 로고
    • Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    • Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:17 (1997), 3389–3402.
    • (1997) Nucleic Acids Res , vol.25 , Issue.17 , pp. 3389-3402
    • Altschul, S.F.1    Madden, T.L.2    Schäffer, A.A.3    Zhang, J.4    Zhang, Z.5    Miller, W.6
  • 33
    • 80955133208 scopus 로고    scopus 로고
    • The influence of dipeptide composition on protein folding rates
    • Trans Tech Publ
    • Guo, J.X., Rao, N.N., The influence of dipeptide composition on protein folding rates. Advanced materials research, vol. 378, 2012, Trans Tech Publ, 157–160.
    • (2012) Advanced materials research , vol.378 , pp. 157-160
    • Guo, J.X.1    Rao, N.N.2
  • 34
    • 2542458612 scopus 로고    scopus 로고
    • Classification of nuclear receptors based on amino acid composition and dipeptide composition
    • Bhasin, M., Raghava, G.P., Classification of nuclear receptors based on amino acid composition and dipeptide composition. J Biol Chem 279:22 (2004), 23262–23266.
    • (2004) J Biol Chem , vol.279 , Issue.22 , pp. 23262-23266
    • Bhasin, M.1    Raghava, G.P.2
  • 35
    • 77956684350 scopus 로고    scopus 로고
    • Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis
    • Kaundal, R., Saini, R., Zhao, P.X., Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis. Plant Physiol 154:1 (2010), 36–54.
    • (2010) Plant Physiol , vol.154 , Issue.1 , pp. 36-54
    • Kaundal, R.1    Saini, R.2    Zhao, P.X.3
  • 36
    • 77958586156 scopus 로고    scopus 로고
    • Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition
    • Lin, H., Ding, H., Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition. J Theor Biol 269:1 (2011), 64–69.
    • (2011) J Theor Biol , vol.269 , Issue.1 , pp. 64-69
    • Lin, H.1    Ding, H.2
  • 37
    • 46449089781 scopus 로고    scopus 로고
    • PSLDoc: protein subcellular localization prediction based on gapped-dipeptides and probabilistic latent semantic analysis
    • Chang, J.-M., Su, E.C.-Y., Lo, A., Chiu, H.-S., Sung, T.-Y., Hsu, W.-L., PSLDoc: protein subcellular localization prediction based on gapped-dipeptides and probabilistic latent semantic analysis. Proteins 72:2 (2008), 693–710.
    • (2008) Proteins , vol.72 , Issue.2 , pp. 693-710
    • Chang, J.-M.1    Su, E.C.-Y.2    Lo, A.3    Chiu, H.-S.4    Sung, T.-Y.5    Hsu, W.-L.6
  • 38
    • 84951757220 scopus 로고    scopus 로고
    • Prediction of protein structural class based on gapped-dipeptides and a recursive feature selection approach
    • Liu, T., Qin, Y., Wang, Y., Wang, C., Prediction of protein structural class based on gapped-dipeptides and a recursive feature selection approach. Int J Mol Sci, 17(1), 2015, 15.
    • (2015) Int J Mol Sci , vol.17 , Issue.1 , pp. 15
    • Liu, T.1    Qin, Y.2    Wang, Y.3    Wang, C.4
  • 39
    • 77957124553 scopus 로고    scopus 로고
    • Prediction of protein structural class for low-similarity sequences using support vector machine and PSI-BLAST profile
    • Liu, T., Zheng, X., Wang, J., Prediction of protein structural class for low-similarity sequences using support vector machine and PSI-BLAST profile. Biochimie 92:10 (2010), 1330–1334.
    • (2010) Biochimie , vol.92 , Issue.10 , pp. 1330-1334
    • Liu, T.1    Zheng, X.2    Wang, J.3
  • 40
    • 0035874091 scopus 로고    scopus 로고
    • Prediction of protein cellular attributes using pseudo-amino acid composition
    • Chou, K.-C., Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 43:3 (2001), 246–255.
    • (2001) Proteins , vol.43 , Issue.3 , pp. 246-255
    • Chou, K.-C.1
  • 41
    • 79951518208 scopus 로고    scopus 로고
    • Some remarks on protein attribute prediction and pseudo amino acid composition
    • Chou, K.-C., Some remarks on protein attribute prediction and pseudo amino acid composition. J Theor Biol 273:1 (2011), 236–247.
    • (2011) J Theor Biol , vol.273 , Issue.1 , pp. 236-247
    • Chou, K.-C.1
  • 42
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I., Elisseeff, A., An introduction to variable and feature selection. J Mach Learn Res 3:Mar (2003), 1157–1182.
    • (2003) J Mach Learn Res , vol.3 , Issue.Mar , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 43
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y., Inza, I., Larrañaga, P., A review of feature selection techniques in bioinformatics. Bioinformatics 23:19 (2007), 2507–2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 45
    • 84922071321 scopus 로고    scopus 로고
    • Identification of mitochondrial proteins of malaria parasite using analysis of variance
    • Ding, H., Li, D., Identification of mitochondrial proteins of malaria parasite using analysis of variance. Amino Acids 47:2 (2015), 329–333.
    • (2015) Amino Acids , vol.47 , Issue.2 , pp. 329-333
    • Ding, H.1    Li, D.2
  • 46
    • 84979255705 scopus 로고    scopus 로고
    • iNuc-STNC: a sequence-based predictor for identification of nucleosome positioning in genomes by extending the concept of SAAC and Chou's PseAAC
    • Tahir, M., Hayat, M., iNuc-STNC: a sequence-based predictor for identification of nucleosome positioning in genomes by extending the concept of SAAC and Chou's PseAAC. Mol BioSyst 12:8 (2016), 2587–2593.
    • (2016) Mol BioSyst , vol.12 , Issue.8 , pp. 2587-2593
    • Tahir, M.1    Hayat, M.2
  • 47
    • 0037195776 scopus 로고    scopus 로고
    • Using functional domain composition and support vector machines for prediction of protein subcellular location
    • Chou, K.-C., Cai, Y.-D., Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 277:48 (2002), 45765–45769.
    • (2002) J Biol Chem , vol.277 , Issue.48 , pp. 45765-45769
    • Chou, K.-C.1    Cai, Y.-D.2
  • 48
    • 85019181082 scopus 로고    scopus 로고
    • Performance measures in evaluating machine learning based bioinformatics predictors for classifications
    • Jiao, Y., Du, P., Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quant Biol, 2016, 1–11.
    • (2016) Quant Biol , pp. 1-11
    • Jiao, Y.1    Du, P.2
  • 49
    • 84994316617 scopus 로고    scopus 로고
    • iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition
    • Zhang, C.-J., Tang, H., Li, W.-C., Lin, H., Chen, W., Chou, K.-C., iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition. Oncotarget 7:43 (2016), 69783–69793.
    • (2016) Oncotarget , vol.7 , Issue.43 , pp. 69783-69793
    • Zhang, C.-J.1    Tang, H.2    Li, W.-C.3    Lin, H.4    Chen, W.5    Chou, K.-C.6
  • 50
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • Efron, B., Bootstrap methods: another look at the jackknife. Ann Stat, 1979, 1–26.
    • (1979) Ann Stat , pp. 1-26
    • Efron, B.1
  • 52
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Kohavi, R., et al. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI, vol. 14, Stanford, CA, 1995, 1137–1145.
    • (1995) IJCAI, vol. 14, Stanford, CA , pp. 1137-1145
    • Kohavi, R.1
  • 53
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation
    • Powers, D.M., Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Machine Learning Technol. 2:1 (2011), 37–63.
    • (2011) J. Machine Learning Technol. , vol.2 , Issue.1 , pp. 37-63
    • Powers, D.M.1
  • 54
    • 84970866422 scopus 로고
    • Statistics notes. Diagnostic tests. 1. Sensitivity and specificity
    • Altman, D.G., Bland, J.M., Statistics notes. Diagnostic tests. 1. Sensitivity and specificity. BMJ, 308, 1994.
    • (1994) BMJ , vol.308
    • Altman, D.G.1    Bland, J.M.2
  • 55
    • 0001290841 scopus 로고    scopus 로고
    • Confusion matrix
    • Kohavi, R., Provost, F., Confusion matrix. Mach Learn 30:2–3 (1998), 271–274.
    • (1998) Mach Learn , vol.30 , Issue.2-3 , pp. 271-274
    • Kohavi, R.1    Provost, F.2
  • 56
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett, T., An introduction to ROC analysis. Pattern Recogn Lett 27:8 (2006), 861–874.
    • (2006) Pattern Recogn Lett , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 57
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of T4 phage lysozyme
    • Matthews, B.W., Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta (BBA) 405:2 (1975), 442–451.
    • (1975) Biochim Biophys Acta (BBA) , vol.405 , Issue.2 , pp. 442-451
    • Matthews, B.W.1
  • 59
    • 85040989627 scopus 로고    scopus 로고
    • The WEKA workbench. Online appendix for “data mining: Practical machine learning tools and techniques”.
    • Frank E, Hall M, Witten IH. The WEKA workbench. Online appendix for “data mining: Practical machine learning tools and techniques”.
    • Frank, E.1    Hall, M.2    Witten, I.H.3
  • 60
    • 84885112194 scopus 로고    scopus 로고
    • AcalPred: a sequence-based tool for discriminating between acidic and alkaline enzymes
    • Lin, H., Chen, W., Ding, H., AcalPred: a sequence-based tool for discriminating between acidic and alkaline enzymes. PLoS ONE, 8(10), 2013, e75726.
    • (2013) PLoS ONE , vol.8 , Issue.10 , pp. e75726
    • Lin, H.1    Chen, W.2    Ding, H.3
  • 62
    • 84896463976 scopus 로고    scopus 로고
    • iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition
    • Guo, S.-H., Deng, E.-Z., Xu, L.-Q., Ding, H., Lin, H., Chen, W., et al. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics 30:11 (2014), 1522–1529.
    • (2014) Bioinformatics , vol.30 , Issue.11 , pp. 1522-1529
    • Guo, S.-H.1    Deng, E.-Z.2    Xu, L.-Q.3    Ding, H.4    Lin, H.5    Chen, W.6
  • 63
    • 85021669018 scopus 로고    scopus 로고
    • Pro54DB: a database for experimentally verified sigma-54 promoters
    • Liang, Z.-Y., Lai, H.-Y., Yang, H., Zhang, C.-J., Yang, H., Wei, H.-H., et al. Pro54DB: a database for experimentally verified sigma-54 promoters. Bioinformatics 33:3 (2017), 467–469.
    • (2017) Bioinformatics , vol.33 , Issue.3 , pp. 467-469
    • Liang, Z.-Y.1    Lai, H.-Y.2    Yang, H.3    Zhang, C.-J.4    Yang, H.5    Wei, H.-H.6
  • 64
    • 84976649929 scopus 로고    scopus 로고
    • Prediction of cell-penetrating peptides with feature selection techniques
    • Tang, H., Su, Z.-D., Wei, H.-H., Chen, W., Lin, H., Prediction of cell-penetrating peptides with feature selection techniques. Biochem Biophys Res Commun 477:1 (2016), 150–154.
    • (2016) Biochem Biophys Res Commun , vol.477 , Issue.1 , pp. 150-154
    • Tang, H.1    Su, Z.-D.2    Wei, H.-H.3    Chen, W.4    Lin, H.5
  • 65
    • 84904606183 scopus 로고    scopus 로고
    • Identifying the subfamilies of voltage-gated potassium channels using feature selection technique
    • Liu, W.-X., Deng, E.-Z., Chen, W., Lin, H., Identifying the subfamilies of voltage-gated potassium channels using feature selection technique. Int J Mol Sci 15:7 (2014), 12940–12951.
    • (2014) Int J Mol Sci , vol.15 , Issue.7 , pp. 12940-12951
    • Liu, W.-X.1    Deng, E.-Z.2    Chen, W.3    Lin, H.4
  • 66
    • 85016157034 scopus 로고    scopus 로고
    • RNAlocate: a resource for RNA subcellular localizations
    • Zhang, T., Tan, P., Wang, L., Jin, N., Li, Y., Zhang, L., et al. RNAlocate: a resource for RNA subcellular localizations. Nucleic Acids Res 45:D1 (2017), D135–D138.
    • (2017) Nucleic Acids Res , vol.45 , Issue.D1 , pp. D135-D138
    • Zhang, T.1    Tan, P.2    Wang, L.3    Jin, N.4    Li, Y.5    Zhang, L.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.