메뉴 건너뛰기




Volumn 120, Issue , 2018, Pages 50-61

Towards automated clinical coding

Author keywords

Clinical coding; Hierarchical representation learning; Knowledge representation; Machine learning; Natural language processing; Recurrent neural networks

Indexed keywords

AUTOMATION; CLASSIFICATION (OF INFORMATION); CLINICAL RESEARCH; CODES (SYMBOLS); DISEASES; FORECASTING; INVERSE PROBLEMS; KNOWLEDGE REPRESENTATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; NATURAL LANGUAGE PROCESSING SYSTEMS; ONTOLOGY; TEXT PROCESSING;

EID: 85054423133     PISSN: 13865056     EISSN: 18728243     Source Type: Journal    
DOI: 10.1016/j.ijmedinf.2018.09.021     Document Type: Article
Times cited : (30)

References (55)
  • 1
    • 79953093873 scopus 로고    scopus 로고
    • Data from clinical notes: a perspective on the tension between structure and flexible documentation
    • Rosenbloom, S.T., Denny, J.C., Xu, H., Lorenzi, N., Stead, W.W., Johnson, K.B., Data from clinical notes: a perspective on the tension between structure and flexible documentation. J. Am. Med. Inform. Assoc. 18:2 (2011), 181–186.
    • (2011) J. Am. Med. Inform. Assoc. , vol.18 , Issue.2 , pp. 181-186
    • Rosenbloom, S.T.1    Denny, J.C.2    Xu, H.3    Lorenzi, N.4    Stead, W.W.5    Johnson, K.B.6
  • 2
    • 84995401599 scopus 로고    scopus 로고
    • The quality of clinical coding in the NHS, Tech. rep.
    • Capita Health and Wellbeing Limited, The quality of clinical coding in the NHS, Tech. rep. September 2014.
    • (2014)
    • Capita Health and Wellbeing Limited1
  • 3
    • 84941219304 scopus 로고    scopus 로고
    • Inaccuracy of ICD-9 codes for chronic kidney disease: a study from two practice-based research networks (PBRNs)
    • Cipparone, C.W., Withiam-Leitch, M., Kimminau, K.S., Fox, C.H., Singh, R., Kahn, L., Inaccuracy of ICD-9 codes for chronic kidney disease: a study from two practice-based research networks (PBRNs). J. Am. Board Fam. Med. 28:5 (2015), 678–682.
    • (2015) J. Am. Board Fam. Med. , vol.28 , Issue.5 , pp. 678-682
    • Cipparone, C.W.1    Withiam-Leitch, M.2    Kimminau, K.S.3    Fox, C.H.4    Singh, R.5    Kahn, L.6
  • 5
    • 0030804432 scopus 로고    scopus 로고
    • Inaccuracy of the International Classification of Diseases (ICD-9-CM) in identifying the diagnosis of ischemic cerebrovascular disease
    • Benesch, C., Witter, D.M. Jr., Wilder, A.L., Duncan, P.W., Samsa, G.P., Matchar, D.B., Inaccuracy of the International Classification of Diseases (ICD-9-CM) in identifying the diagnosis of ischemic cerebrovascular disease. Neurology 49:3 (1997), 660–664.
    • (1997) Neurology , vol.49 , Issue.3 , pp. 660-664
    • Benesch, C.1    Witter, D.M.2    Wilder, A.L.3    Duncan, P.W.4    Samsa, G.P.5    Matchar, D.B.6
  • 6
    • 84964959560 scopus 로고    scopus 로고
    • Combining billing codes, clinical notes, and medications from electronic health records provides superior phenotyping performance
    • Wei, W.-Q., Teixeira, P.L., Mo, H., Cronin, R.M., Warner, J.L., Denny, J.C., Combining billing codes, clinical notes, and medications from electronic health records provides superior phenotyping performance. J. Am. Med. Inform. Assoc. 23:e1 (2016), e20–e27.
    • (2016) J. Am. Med. Inform. Assoc. , vol.23 , Issue.e1 , pp. e20-e27
    • Wei, W.-Q.1    Teixeira, P.L.2    Mo, H.3    Cronin, R.M.4    Warner, J.L.5    Denny, J.C.6
  • 7
    • 85020903204 scopus 로고    scopus 로고
    • Understanding NHS financial pressures: how are they affecting patient care? Tech. rep., The King's Fund
    • Robertson, R., Wenzel, L., Thompson, J., Charles, A., Understanding NHS financial pressures: how are they affecting patient care? Tech. rep., The King's Fund. March 2017.
    • (2017)
    • Robertson, R.1    Wenzel, L.2    Thompson, J.3    Charles, A.4
  • 12
    • 85052829819 scopus 로고    scopus 로고
    • A paperless NHS: electronic health records, Tech. rep.
    • House of Commons Library
    • Parkin, E., A paperless NHS: electronic health records, Tech. rep. April 2016, House of Commons Library.
    • (2016)
    • Parkin, E.1
  • 13
    • 39049175778 scopus 로고    scopus 로고
    • Construction of a semi-automated ICD-10 coding help system to optimize medical and economic coding
    • Pereira, S., Névéol, A., Massari, P., Joubert, M., Darmoni, S., Construction of a semi-automated ICD-10 coding help system to optimize medical and economic coding. Stud. Health Technol. Inform. 124 (2006), 845–850.
    • (2006) Stud. Health Technol. Inform. , vol.124 , pp. 845-850
    • Pereira, S.1    Névéol, A.2    Massari, P.3    Joubert, M.4    Darmoni, S.5
  • 15
    • 0028805124 scopus 로고
    • New trends in natural language processing: statistical natural language processing
    • Marcus, M., New trends in natural language processing: statistical natural language processing. Proc. Natl. Acad. Sci. 92:22 (1995), 10052–10059.
    • (1995) Proc. Natl. Acad. Sci. , vol.92 , Issue.22 , pp. 10052-10059
    • Marcus, M.1
  • 17
    • 46949090420 scopus 로고    scopus 로고
    • Three approaches to automatic assignment of ICD-9-CM codes to radiology reports
    • Goldstein, I., Arzrumtsyan, A., Uzuner, O., Three approaches to automatic assignment of ICD-9-CM codes to radiology reports. AMIA Annu. Symp. Proc., 2007, 279–283.
    • (2007) AMIA Annu. Symp. Proc. , pp. 279-283
    • Goldstein, I.1    Arzrumtsyan, A.2    Uzuner, O.3
  • 18
    • 85054453177 scopus 로고    scopus 로고
    • Larkey, Automatic assignment of ICD9 codes to discharge summaries, citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.816.
    • W.B.C. Leah Larkey, Automatic assignment of ICD9 codes to discharge summaries, citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.816.
    • Leah, W.B.C.1
  • 19
    • 85120159006 scopus 로고    scopus 로고
    • Large scale diagnostic code classification for medical patient records
    • Lita, L.V., Yu, S., Niculescu, R.S., Bi, J., Large scale diagnostic code classification for medical patient records. IJCNLP, 2008, 877–882.
    • (2008) IJCNLP , pp. 877-882
    • Lita, L.V.1    Yu, S.2    Niculescu, R.S.3    Bi, J.4
  • 21
    • 85054439999 scopus 로고    scopus 로고
    • Applying deep learning to ICD-9 multi-label classification from 700 medical records. Accessed: 12 July.
    • P. Nigam, Applying deep learning to ICD-9 multi-label classification from 700 medical records. Accessed: 12 July 2017.
    • (2017)
    • Nigam, P.1
  • 22
    • 85054441435 scopus 로고    scopus 로고
    • ICD-9 coding of discharge summaries. Accessed: 12 July.
    • L. Lefebure, ICD-9 coding of discharge summaries. Accessed: 12 July 2017.
    • (2017)
    • Lefebure, L.1
  • 24
    • 85054441082 scopus 로고    scopus 로고
    • Clinical entity recognition for ICD-9 code prediction in clinical discharge summaries. Accessed: 12 July.
    • J. Brauer, Clinical entity recognition for ICD-9 code prediction in clinical discharge summaries. Accessed: 12 July 2017.
    • (2017)
    • Brauer, J.1
  • 26
  • 27
    • 85054459504 scopus 로고    scopus 로고
    • Learning phrase representations using RNN Encoder-Decoder for statistical machine translation, arXiv [cs.CL]arXiv:1406.1078.
    • K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN Encoder-Decoder for statistical machine translation, arXiv [cs.CL]arXiv:1406.1078.
    • Cho, K.1    van Merrienboer, B.2    Gulcehre, C.3    Bahdanau, D.4    Bougares, F.5    Schwenk, H.6    Bengio, Y.7
  • 29
    • 85054464272 scopus 로고    scopus 로고
    • Learning to diagnose with LSTM recurrent neural networks, arXiv [cs.LG]arXiv:1511.03677.
    • Z.C. Lipton, D.C. Kale, C. Elkan, R. Wetzell, Learning to diagnose with LSTM recurrent neural networks, arXiv [cs.LG]arXiv:1511.03677.
    • Lipton, Z.C.1    Kale, D.C.2    Elkan, C.3    Wetzell, R.4
  • 32
    • 85054439632 scopus 로고    scopus 로고
    • GRAM: Graph-based attention model for healthcare representation learning, arXiv [cs.LG]arXiv:1611.07012.
    • E. Choi, M.T. Bahadori, L. Song, W.F. Stewart, J. Sun, GRAM: Graph-based attention model for healthcare representation learning, arXiv [cs.LG]arXiv:1611.07012.
    • Choi, E.1    Bahadori, M.T.2    Song, L.3    Stewart, W.F.4    Sun, J.5
  • 33
    • 85016146323 scopus 로고    scopus 로고
    • Using recurrent neural network models for early detection of heart failure onset
    • Choi, E., Schuetz, A., Stewart, W.F., Sun, J., Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. 24:2 (2017), 361–370.
    • (2017) J. Am. Med. Inform. Assoc. , vol.24 , Issue.2 , pp. 361-370
    • Choi, E.1    Schuetz, A.2    Stewart, W.F.3    Sun, J.4
  • 36
    • 85054463153 scopus 로고    scopus 로고
    • A system for predicting ICD-10-PCS codes from electronic health records, Proc BioNLP
    • M. Subotin, A.R. Davis, A system for predicting ICD-10-PCS codes from electronic health records, Proc BioNLP, 2014, 59–67.
    • (2014) , pp. 59-67
    • Subotin, M.1    Davis, A.R.2
  • 38
    • 85007605456 scopus 로고    scopus 로고
    • A hierarchical method to automatically encode Chinese diagnoses through semantic similarity estimation
    • Ning, W., Yu, M., Zhang, R., A hierarchical method to automatically encode Chinese diagnoses through semantic similarity estimation. BMC Med. Inform. Decis. Mak., 16, 2016, 30.
    • (2016) BMC Med. Inform. Decis. Mak. , vol.16 , pp. 30
    • Ning, W.1    Yu, M.2    Zhang, R.3
  • 40
    • 85054444505 scopus 로고    scopus 로고
    • scikit-learn developers, 3.3. model evaluation: quantifying the quality of predictions [Online: accessed 6 August 2017].
    • scikit-learn developers, 3.3. model evaluation: quantifying the quality of predictions [Online: accessed 6 August 2017] (2017). http://scikit-learn.org/stable/modules/model_evaluation.html.
    • (2017)
  • 41
    • 85054448851 scopus 로고    scopus 로고
    • Thresholding classifiers to maximize F1 score, arXiv [stat.ML]arXiv:1402.1892.
    • Z.C. Lipton, C. Elkan, B. Narayanaswamy, Thresholding classifiers to maximize F1 score, arXiv [stat.ML]arXiv:1402.1892.
    • Lipton, Z.C.1    Elkan, C.2    Narayanaswamy, B.3
  • 43
    • 85054427909 scopus 로고    scopus 로고
    • for Health Statistics, ICD-9-CM official guidelines for coding and reporting. Accessed: 31 July.
    • N. C. for Health Statistics, ICD-9-CM official guidelines for coding and reporting. Accessed: 31 July 2017.
    • (2017)
    • C, N.1
  • 44
    • 85054427276 scopus 로고    scopus 로고
    • Don't Walk IV, Tagging patient notes with ICD-9 codes. Accessed: 12 July.
    • S. Ayyar, O. Bear Don't Walk IV, Tagging patient notes with ICD-9 codes. Accessed: 12 July 2017.
    • (2017)
    • Ayyar, S.1    Bear, O.2
  • 46
    • 85054423697 scopus 로고    scopus 로고
    • Minimizing finite sums with the stochastic average gradient, arXiv [math.OC]arXiv:1309.2388.
    • M. Schmidt, N. Le Roux, F. Bach, Minimizing finite sums with the stochastic average gradient, arXiv [math.OC]arXiv:1309.2388.
    • Schmidt, M.1    Le Roux, N.2    Bach, F.3
  • 48
    • 85054425559 scopus 로고    scopus 로고
    • Distributional semantics resources for biomedical text processing, Proceedings of LBM.
    • S. Pyysalo, F. Ginter, H. Moen, T. Salakoski, S. Ananiadou, Distributional semantics resources for biomedical text processing, Proceedings of LBM.
    • Pyysalo, S.1    Ginter, F.2    Moen, H.3    Salakoski, T.4    Ananiadou, S.5
  • 49
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • C.J.C. Burges L. Bottou M. Welling Z. Ghahramani K.Q. Weinberger Curran Associates, Inc.
    • Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J., Distributed representations of words and phrases and their compositionality. Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q., (eds.) Advances in Neural Information Processing Systems 26, 2013, Curran Associates, Inc., 3111–3119.
    • (2013) Advances in Neural Information Processing Systems 26 , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 52
    • 85054422519 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization, arXiv [cs.LG]arXiv:1412.6980.
    • D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv [cs.LG]arXiv:1412.6980.
    • Kingma, D.P.1    Ba, J.2
  • 54
    • 85054454209 scopus 로고    scopus 로고
    • A theoretically grounded application of dropout in recurrent neural networks, arXiv [stat.ML]arXiv:1512.05287.
    • Y. Gal, Z. Ghahramani, A theoretically grounded application of dropout in recurrent neural networks, arXiv [stat.ML]arXiv:1512.05287.
    • Gal, Y.1    Ghahramani, Z.2
  • 55
    • 84887564277 scopus 로고    scopus 로고
    • Rare genetic disorders: learning about genetic disease through gene mapping, SNPs, and microarray data
    • Chial, H., Rare genetic disorders: learning about genetic disease through gene mapping, SNPs, and microarray data. Nat. Educ., 1(1), 2008, 192.
    • (2008) Nat. Educ. , vol.1 , Issue.1 , pp. 192
    • Chial, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.