메뉴 건너뛰기




Volumn 213, Issue 1, 2019, Pages 227-233

Deep learning model to assess cancer risk on the basis of a breast MR image alone

Author keywords

Artificial intelligence; Breast imaging; Deep learning; Risk assessment

Indexed keywords

ADULT; AGED; AREA UNDER THE CURVE; ARTICLE; BREAST CANCER; CANCER DIAGNOSIS; CANCER GROWTH; CANCER RISK; CANCER SCREENING; CLINICAL ASSESSMENT; CLINICAL FEATURE; COHORT ANALYSIS; CONTROLLED STUDY; DEEP LEARNING; DISEASE DURATION; FALSE POSITIVE RESULT; FEMALE; FOLLOW UP; HUMAN; IMAGE ANALYSIS; IMAGE ENHANCEMENT; LEARNING CURVE; MAJOR CLINICAL STUDY; MIDDLE AGED; NUCLEAR MAGNETIC RESONANCE IMAGING; PATIENT CARE; PRIORITY JOURNAL; RETROSPECTIVE STUDY; RISK ASSESSMENT; VERY ELDERLY;

EID: 85068644430     PISSN: 0361803X     EISSN: 15463141     Source Type: Journal    
DOI: 10.2214/AJR.18.20813     Document Type: Article
Times cited : (26)

References (27)
  • 1
    • 0024801278 scopus 로고
    • Projecting individualized probabilities of developing breast cancer for white females who are being examined annually
    • Gail MH, Brinton LA, Byar DP, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 1989; 81:1879–1886
    • (1989) J Natl Cancer Inst , vol.81 , pp. 1879-1886
    • Gail, M.H.1    Brinton, L.A.2    Byar, D.P.3
  • 2
    • 1842680082 scopus 로고    scopus 로고
    • A breast cancer prediction model incorporating familial and personal risk factors
    • Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 2004; 23:1111–1130
    • (2004) Stat Med , vol.23 , pp. 1111-1130
    • Tyrer, J.1    Duffy, S.W.2    Cuzick, J.3
  • 3
    • 41049090799 scopus 로고    scopus 로고
    • Using clinical factors and mammographic breast density to estimate breast cancer risk: Development and validation of a new predictive model
    • Tice JA, Cummings SR, Smith-Bindman R, Ichikawa L, Barlow WE, Kerlikowske K. Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model. Ann Intern Med 2008; 148:337–347
    • (2008) Ann Intern Med , vol.148 , pp. 337-347
    • Tice, J.A.1    Cummings, S.R.2    Smith-Bindman, R.3    Ichikawa, L.4    Barlow, W.E.5    Kerlikowske, K.6
  • 4
    • 0027731939 scopus 로고
    • The calculation of breast cancer risk for women with a first degree family history of ovarian cancer
    • Claus EB, Risch N, Thompson WD. The calculation of breast cancer risk for women with a first degree family history of ovarian cancer. Breast Cancer Res Treat 1993; 28:115–120
    • (1993) Breast Cancer Res Treat , vol.28 , pp. 115-120
    • Claus, E.B.1    Risch, N.2    Thompson, W.D.3
  • 5
    • 77952917993 scopus 로고    scopus 로고
    • Assessing women at high risk of breast cancer: A review of risk assessment models
    • Amir E, Freedman OC, Seruga B, Evans DG. Assessing women at high risk of breast cancer: a review of risk assessment models. J Natl Cancer Inst 2010; 102:680–691
    • (2010) J Natl Cancer Inst , vol.102 , pp. 680-691
    • Amir, E.1    Freedman, O.C.2    Seruga, B.3    Evans, D.G.4
  • 6
    • 85048265777 scopus 로고    scopus 로고
    • Exploring the prediction performance for breast cancer risk based on volumetric mammographic density at different thresholds
    • Wang C, Brentnall AR, Cuzick J, Harkness EF, Evans DG, Astley S. Exploring the prediction performance for breast cancer risk based on volumetric mammographic density at different thresholds. Breast Cancer Res 2018; 20:49
    • (2018) Breast Cancer Res , vol.20 , pp. 49
    • Wang, C.1    Brentnall, A.R.2    Cuzick, J.3    Harkness, E.F.4    Evans, D.G.5    Astley, S.6
  • 7
    • 84938679552 scopus 로고    scopus 로고
    • Are qualitative assessments of background parenchymal enhancement, amount of fibroglandular tissue on MR images, and mammographic density associated with breast cancer risk?
    • Dontchos BN, Rahbar H, Partridge SC, et al. Are qualitative assessments of background parenchymal enhancement, amount of fibroglandular tissue on MR images, and mammographic density associated with breast cancer risk? Radiology 2015; 276:371–380
    • (2015) Radiology , vol.276 , pp. 371-380
    • Dontchos, B.N.1    Rahbar, H.2    Partridge, S.C.3
  • 8
    • 84907584496 scopus 로고    scopus 로고
    • Inclusion of endogenous hormone levels in risk prediction models of postmenopausal breast cancer
    • Tworoger SS, Zhang X, Eliassen AH, et al. Inclusion of endogenous hormone levels in risk prediction models of postmenopausal breast cancer. J Clin Oncol 2014; 32:3111–3117
    • (2014) J Clin Oncol , vol.32 , pp. 3111-3117
    • Tworoger, S.S.1    Zhang, X.2    Eliassen, A.H.3
  • 9
    • 84893753687 scopus 로고    scopus 로고
    • Distribution of breast cancer risk from SNPs and classical risk factors in women of routine screening age in the UK
    • Brentnall AR, Evans DG, Cuzick J. Distribution of breast cancer risk from SNPs and classical risk factors in women of routine screening age in the UK. Br J Cancer 2014; 110:827–828
    • (2014) Br J Cancer , vol.110 , pp. 827-828
    • Brentnall, A.R.1    Evans, D.G.2    Cuzick, J.3
  • 10
    • 58149145635 scopus 로고    scopus 로고
    • Validation of biomarker-based risk prediction models
    • Taylor JM, Ankerst DP, Andridge RR. Validation of biomarker-based risk prediction models. Clin Cancer Res 2008; 14:5977–5983
    • (2008) Clin Cancer Res , vol.14 , pp. 5977-5983
    • Taylor, J.M.1    Ankerst, D.P.2    Andridge, R.R.3
  • 11
    • 0001484711 scopus 로고
    • A study of breast parenchyma by mammography in the normal woman and those with benign and malignant disease
    • Wolfe JN. A study of breast parenchyma by mammography in the normal woman and those with benign and malignant disease. Radiology 1967; 89:201–205
    • (1967) Radiology , vol.89 , pp. 201-205
    • Wolfe, J.N.1
  • 12
    • 84956745016 scopus 로고    scopus 로고
    • Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort
    • Brentnall AR, Harkness EF, Astley SM, et al. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res 2015; 17:147
    • (2015) Breast Cancer Res , vol.17 , pp. 147
    • Brentnall, A.R.1    Harkness, E.F.2    Astley, S.M.3
  • 13
    • 33748692404 scopus 로고    scopus 로고
    • Prospective breast cancer risk prediction model for women undergoing screening mammography
    • Barlow WE, White E, Ballard-Barbash R, et al. Prospective breast cancer risk prediction model for women undergoing screening mammography. J Natl Cancer Inst 2006; 98:1204–1214
    • (2006) J Natl Cancer Inst , vol.98 , pp. 1204-1214
    • Barlow, W.E.1    White, E.2    Ballard-Barbash, R.3
  • 15
    • 84990019746 scopus 로고    scopus 로고
    • Variation in mammographic breast density assessments among radiologists in clinical practice: A multicenter observational study
    • Sprague BL, Conant EF, Onega T, et al; PROSPR Consortium. Variation in mammographic breast density assessments among radiologists in clinical practice: a multicenter observational study. Ann Intern Med 2016; 165:457–464
    • (2016) Ann Intern Med , vol.165 , pp. 457-464
    • Sprague, B.L.1    Conant, E.F.2    Onega, T.3
  • 16
    • 23444443332 scopus 로고    scopus 로고
    • Categorizing breast mammographic density: Intra- And interobserver reproducibility of BI-RADS density categories
    • Ciatto S, Houssami N, Apruzzese A, et al. Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories. Breast 2005; 14:269–275
    • (2005) Breast , vol.14 , pp. 269-275
    • Ciatto, S.1    Houssami, N.2    Apruzzese, A.3
  • 22
    • 84947041871 scopus 로고    scopus 로고
    • ImageNet large scale visual recognition challenge
    • Russakovsky O, Deng J, Su H, et al. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis 2015; 115:211–252
    • (2015) Int J Comput Vis , vol.115 , pp. 211-252
    • Russakovsky, O.1    Deng, J.2    Su, H.3
  • 23
    • 85040697657 scopus 로고    scopus 로고
    • arXiv website. Revised October 25, Accessed February 20, 2019
    • Hu J, Shen L, Sun G. Squeeze-and-excitation networks. arXiv website. arxiv.org/abs/1709.01507. Revised October 25, 2016. Accessed February 20, 2019
    • (2016) Squeeze-and-Excitation Networks
    • Hu, J.1    Shen, L.2    Sun, G.3
  • 24
    • 33646459214 scopus 로고    scopus 로고
    • Assessing prostate cancer risk: Results from the prostate cancer prevention trial
    • Thompson IM, Ankerst DP, Chi C, et al. Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. J Natl Cancer Inst 2006; 98:529–534
    • (2006) J Natl Cancer Inst , vol.98 , pp. 529-534
    • Thompson, I.M.1    Ankerst, D.P.2    Chi, C.3
  • 25
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • San Francisco, CA: Morgan Kaufmann
    • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 1995; 2:1137–1145)
    • (1995) Proceedings of the 14th International Joint Conference on Artificial Intelligence , vol.2 , pp. 1137-1145
    • Kohavi, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.