-
1
-
-
0024801278
-
Projecting individualized probabilities of developing breast cancer for white females who are being examined annually
-
Gail MH, Brinton LA, Byar DP, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 1989; 81:1879–1886
-
(1989)
J Natl Cancer Inst
, vol.81
, pp. 1879-1886
-
-
Gail, M.H.1
Brinton, L.A.2
Byar, D.P.3
-
2
-
-
1842680082
-
A breast cancer prediction model incorporating familial and personal risk factors
-
Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 2004; 23:1111–1130
-
(2004)
Stat Med
, vol.23
, pp. 1111-1130
-
-
Tyrer, J.1
Duffy, S.W.2
Cuzick, J.3
-
3
-
-
41049090799
-
Using clinical factors and mammographic breast density to estimate breast cancer risk: Development and validation of a new predictive model
-
Tice JA, Cummings SR, Smith-Bindman R, Ichikawa L, Barlow WE, Kerlikowske K. Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model. Ann Intern Med 2008; 148:337–347
-
(2008)
Ann Intern Med
, vol.148
, pp. 337-347
-
-
Tice, J.A.1
Cummings, S.R.2
Smith-Bindman, R.3
Ichikawa, L.4
Barlow, W.E.5
Kerlikowske, K.6
-
4
-
-
0027731939
-
The calculation of breast cancer risk for women with a first degree family history of ovarian cancer
-
Claus EB, Risch N, Thompson WD. The calculation of breast cancer risk for women with a first degree family history of ovarian cancer. Breast Cancer Res Treat 1993; 28:115–120
-
(1993)
Breast Cancer Res Treat
, vol.28
, pp. 115-120
-
-
Claus, E.B.1
Risch, N.2
Thompson, W.D.3
-
5
-
-
77952917993
-
Assessing women at high risk of breast cancer: A review of risk assessment models
-
Amir E, Freedman OC, Seruga B, Evans DG. Assessing women at high risk of breast cancer: a review of risk assessment models. J Natl Cancer Inst 2010; 102:680–691
-
(2010)
J Natl Cancer Inst
, vol.102
, pp. 680-691
-
-
Amir, E.1
Freedman, O.C.2
Seruga, B.3
Evans, D.G.4
-
6
-
-
85048265777
-
Exploring the prediction performance for breast cancer risk based on volumetric mammographic density at different thresholds
-
Wang C, Brentnall AR, Cuzick J, Harkness EF, Evans DG, Astley S. Exploring the prediction performance for breast cancer risk based on volumetric mammographic density at different thresholds. Breast Cancer Res 2018; 20:49
-
(2018)
Breast Cancer Res
, vol.20
, pp. 49
-
-
Wang, C.1
Brentnall, A.R.2
Cuzick, J.3
Harkness, E.F.4
Evans, D.G.5
Astley, S.6
-
7
-
-
84938679552
-
Are qualitative assessments of background parenchymal enhancement, amount of fibroglandular tissue on MR images, and mammographic density associated with breast cancer risk?
-
Dontchos BN, Rahbar H, Partridge SC, et al. Are qualitative assessments of background parenchymal enhancement, amount of fibroglandular tissue on MR images, and mammographic density associated with breast cancer risk? Radiology 2015; 276:371–380
-
(2015)
Radiology
, vol.276
, pp. 371-380
-
-
Dontchos, B.N.1
Rahbar, H.2
Partridge, S.C.3
-
8
-
-
84907584496
-
Inclusion of endogenous hormone levels in risk prediction models of postmenopausal breast cancer
-
Tworoger SS, Zhang X, Eliassen AH, et al. Inclusion of endogenous hormone levels in risk prediction models of postmenopausal breast cancer. J Clin Oncol 2014; 32:3111–3117
-
(2014)
J Clin Oncol
, vol.32
, pp. 3111-3117
-
-
Tworoger, S.S.1
Zhang, X.2
Eliassen, A.H.3
-
9
-
-
84893753687
-
Distribution of breast cancer risk from SNPs and classical risk factors in women of routine screening age in the UK
-
Brentnall AR, Evans DG, Cuzick J. Distribution of breast cancer risk from SNPs and classical risk factors in women of routine screening age in the UK. Br J Cancer 2014; 110:827–828
-
(2014)
Br J Cancer
, vol.110
, pp. 827-828
-
-
Brentnall, A.R.1
Evans, D.G.2
Cuzick, J.3
-
11
-
-
0001484711
-
A study of breast parenchyma by mammography in the normal woman and those with benign and malignant disease
-
Wolfe JN. A study of breast parenchyma by mammography in the normal woman and those with benign and malignant disease. Radiology 1967; 89:201–205
-
(1967)
Radiology
, vol.89
, pp. 201-205
-
-
Wolfe, J.N.1
-
12
-
-
84956745016
-
Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort
-
Brentnall AR, Harkness EF, Astley SM, et al. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res 2015; 17:147
-
(2015)
Breast Cancer Res
, vol.17
, pp. 147
-
-
Brentnall, A.R.1
Harkness, E.F.2
Astley, S.M.3
-
13
-
-
33748692404
-
Prospective breast cancer risk prediction model for women undergoing screening mammography
-
Barlow WE, White E, Ballard-Barbash R, et al. Prospective breast cancer risk prediction model for women undergoing screening mammography. J Natl Cancer Inst 2006; 98:1204–1214
-
(2006)
J Natl Cancer Inst
, vol.98
, pp. 1204-1214
-
-
Barlow, W.E.1
White, E.2
Ballard-Barbash, R.3
-
14
-
-
79959572832
-
Background parenchymal enhancement at breast MR imaging and breast cancer risk
-
King V, Brooks JD, Bernstein JL, Reiner AS, Pike MC, Morris EA. Background parenchymal enhancement at breast MR imaging and breast cancer risk. Radiology 2011; 260:50–60
-
(2011)
Radiology
, vol.260
, pp. 50-60
-
-
King, V.1
Brooks, J.D.2
Bernstein, J.L.3
Reiner, A.S.4
Pike, M.C.5
Morris, E.A.6
-
15
-
-
84990019746
-
Variation in mammographic breast density assessments among radiologists in clinical practice: A multicenter observational study
-
Sprague BL, Conant EF, Onega T, et al; PROSPR Consortium. Variation in mammographic breast density assessments among radiologists in clinical practice: a multicenter observational study. Ann Intern Med 2016; 165:457–464
-
(2016)
Ann Intern Med
, vol.165
, pp. 457-464
-
-
Sprague, B.L.1
Conant, E.F.2
Onega, T.3
-
16
-
-
23444443332
-
Categorizing breast mammographic density: Intra- And interobserver reproducibility of BI-RADS density categories
-
Ciatto S, Houssami N, Apruzzese A, et al. Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories. Breast 2005; 14:269–275
-
(2005)
Breast
, vol.14
, pp. 269-275
-
-
Ciatto, S.1
Houssami, N.2
Apruzzese, A.3
-
17
-
-
77953435411
-
Use of electronic medical records in oncology outcomes research
-
Kanas G, Morimoto L, Mowat F, O’Malley C, Fryzek J, Nordyke R. Use of electronic medical records in oncology outcomes research. Clinico-econ Outcomes Res 2010; 2:1–14
-
(2010)
Clinico-Econ Outcomes Res
, vol.2
, pp. 1-14
-
-
Kanas, G.1
Morimoto, L.2
Mowat, F.3
O’Malley, C.4
Fryzek, J.5
Nordyke, R.6
-
19
-
-
33750687026
-
ACR BI-RADS mammography
-
5th ed. In: D’Orsi CJ, Sickles EA, Mendelson EB, et al. Reston, VA: American College of Radiology
-
Sickles EA, D’Orsi CJ, Bassett LW, et al. ACR BI-RADS Mammography, 5th ed. In: D’Orsi CJ, Sickles EA, Mendelson EB, et al. ACR BI-RADS Atlas, Breast Imaging Reporting and Data System. Reston, VA: American College of Radiology, 2013
-
(2013)
ACR BI-RADS Atlas, Breast Imaging Reporting and Data System
-
-
Sickles, E.A.1
D’Orsi, C.J.2
Bassett, L.W.3
-
20
-
-
84986274465
-
Deep residual learning for image recognition
-
Tuytelaars T. Li FF, Bajcsy R, eds. Piscataway, NJ: IEEE
-
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Tuytelaars T. Li FF, Bajcsy R, eds. Proceedings of the Institute of Electrical and Electronics Engineers Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016:770–778
-
(2016)
Proceedings of the Institute of Electrical and Electronics Engineers Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
22
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Russakovsky O, Deng J, Su H, et al. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis 2015; 115:211–252
-
(2015)
Int J Comput Vis
, vol.115
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
-
23
-
-
85040697657
-
-
arXiv website. Revised October 25, Accessed February 20, 2019
-
Hu J, Shen L, Sun G. Squeeze-and-excitation networks. arXiv website. arxiv.org/abs/1709.01507. Revised October 25, 2016. Accessed February 20, 2019
-
(2016)
Squeeze-and-Excitation Networks
-
-
Hu, J.1
Shen, L.2
Sun, G.3
-
24
-
-
33646459214
-
Assessing prostate cancer risk: Results from the prostate cancer prevention trial
-
Thompson IM, Ankerst DP, Chi C, et al. Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. J Natl Cancer Inst 2006; 98:529–534
-
(2006)
J Natl Cancer Inst
, vol.98
, pp. 529-534
-
-
Thompson, I.M.1
Ankerst, D.P.2
Chi, C.3
-
25
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
San Francisco, CA: Morgan Kaufmann
-
Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 1995; 2:1137–1145)
-
(1995)
Proceedings of the 14th International Joint Conference on Artificial Intelligence
, vol.2
, pp. 1137-1145
-
-
Kohavi, R.1
-
26
-
-
85006390452
-
-
arXiv website. Revised October 6, Accessed February 20, 2019
-
Zhou B, Khosla A, Lapedriza A, Torralba A, Oli-va A. Places: an image database for deep scene understanding. arXiv website. arxiv.org/abs/1610.02055. Revised October 6, 2016. Accessed February 20, 2019
-
(2016)
Places: An Image Database for Deep Scene Understanding
-
-
Zhou, B.1
Khosla, A.2
Lapedriza, A.3
Torralba, A.4
Oli-Va, A.5
-
27
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 2014; 15:1929–1958
-
(2014)
J Mach Learn Res
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
|