메뉴 건너뛰기




Volumn 145, Issue , 2018, Pages 16-24

Affinity network fusion and semi-supervised learning for cancer patient clustering

Author keywords

Affinity network fusion; Cancer subtype discovery; Multi omic integration; Neural network; Patient clustering; Semi supervised learning

Indexed keywords

ACCURACY; ARTICLE; ARTIFICIAL NEURAL NETWORK; CANCER PATIENT; CLASSIFIER; CLUSTER ANALYSIS; INFORMATION PROCESSING; MATHEMATICAL ANALYSIS; OMICS; PRIORITY JOURNAL; SUPERVISED MACHINE LEARNING; BIOLOGY; HUMAN; NEOPLASM; PROCEDURES;

EID: 85048591696     PISSN: 10462023     EISSN: 10959130     Source Type: Journal    
DOI: 10.1016/j.ymeth.2018.05.020     Document Type: Article
Times cited : (35)

References (12)
  • 1
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data
    • Monti, S., Tamayo, P., Mesirov, J., Golub, T., Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52:1 (2003), 91–118.
    • (2003) Mach. Learn. , vol.52 , Issue.1 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 6
    • 77954195272 scopus 로고    scopus 로고
    • Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using paradigm
    • Vaske, C.J., Benz, S.C., Sanborn, J.Z., Earl, D., Szeto, C., Zhu, J., Haussler, D., Stuart, J.M., Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using paradigm. Bioinformatics 26:12 (2010), i237–i245, 10.1093/bioinformatics/btq182.
    • (2010) Bioinformatics , vol.26 , Issue.12 , pp. i237-i245
    • Vaske, C.J.1    Benz, S.C.2    Sanborn, J.Z.3    Earl, D.4    Szeto, C.5    Zhu, J.6    Haussler, D.7    Stuart, J.M.8
  • 7
    • 85050507465 scopus 로고    scopus 로고
    • Integrate multi-omic data using affinity network fusion (anf) for cancer patient clustering, arXiv preprint arXiv:1708.07136.
    • T. Ma, A. Zhang, Integrate multi-omic data using affinity network fusion (anf) for cancer patient clustering, arXiv preprint arXiv:1708.07136.
    • Ma, T.1    Zhang, A.2
  • 9
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • Luxburg, U., A tutorial on spectral clustering. Stat. Comput. 17:4 (2007), 395–416, 10.1007/s11222-007-9033-z.
    • (2007) Stat. Comput. , vol.17 , Issue.4 , pp. 395-416
    • Luxburg, U.1
  • 10
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • Proceedings of the IEEE conference on computer vision and pattern recognition
    • K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
    • (2016) , pp. 770-778
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 11
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert, L., Arabie, P., Comparing partitions. J. Classif. 2:1 (1985), 193–218, 10.1007/BF01908075.
    • (1985) J. Classif. , vol.2 , Issue.1 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 12
    • 85050502861 scopus 로고    scopus 로고
    • Variable selection in heterogeneous datasets: A truncated-rank sparse linear mixed model with applications to genome-wide association studies, bioRxiv doi
    • H. Wang, B. Aragam, E. P. Xing, Variable selection in heterogeneous datasets: A truncated-rank sparse linear mixed model with applications to genome-wide association studies, bioRxiv doi:10.1101/228106. https://www.biorxiv.org/content/early/2017/12/03/228106.
    • Wang, H.1    Aragam, B.2    Xing, E.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.