메뉴 건너뛰기




Volumn 364, Issue , 2019, Pages

Clinical applications of machine learning algorithms: Beyond the black box

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; CLINICAL DECISION MAKING; CLINICAL PRACTICE; DIAGNOSTIC ERROR; ELECTRONIC HEALTH RECORD; HEALTH CARE POLICY; HUMAN; LEARNING ALGORITHM; MEDICAL ETHICS; PERSONALIZED MEDICINE; PRIORITY JOURNAL; STATISTICAL MODEL; ALGORITHM; ATTITUDE TO COMPUTERS; ATTITUDE TO HEALTH; COMPUTER ASSISTED DIAGNOSIS; COMPUTER ASSISTED THERAPY; COMPUTER SECURITY; ETHICS; HEALTH PERSONNEL ATTITUDE; LEGISLATION AND JURISPRUDENCE; MACHINE LEARNING; PROCEDURES;

EID: 85062890886     PISSN: 09598146     EISSN: 17561833     Source Type: Journal    
DOI: 10.1136/bmj.l886     Document Type: Article
Times cited : (300)

References (27)
  • 1
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016;316:2402-10. 10.1001/jama.2016.17216 27898976
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3
  • 2
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-8. 10.1038/nature21056 28117445
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3
  • 5
    • 84941103725 scopus 로고    scopus 로고
    • Disease Ontology 2015 update: An expanded and updated database of human diseases for linking biomedical knowledge through disease data
    • Kibbe WA, Arze C, Felix V, et al. Disease Ontology 2015 update: An expanded and updated database of human diseases for linking biomedical knowledge through disease data. Nucleic Acids Res 2015;43(D1):D1071-8. 10.1093/nar/gku1011 25348409
    • (2015) Nucleic Acids Res , vol.43 , pp. D1071-D1078
    • Kibbe, W.A.1    Arze, C.2    Felix, V.3
  • 6
    • 84990046464 scopus 로고    scopus 로고
    • Predicting the future-big data, machine learning, and clinical medicine
    • Obermeyer Z, Emanuel EJ. Predicting the future-big data, machine learning, and clinical medicine. N Engl J Med 2016;375:1216-9. 10.1056/NEJMp1606181 27682033
    • (2016) N Engl J Med , vol.375 , pp. 1216-1219
    • Obermeyer, Z.1    Emanuel, E.J.2
  • 7
    • 85040572144 scopus 로고    scopus 로고
    • Machine learning for healthcare: On the verge of a major shift in healthcare epidemiology
    • Wiens J, Shenoy ES. Machine learning for healthcare: On the verge of a major shift in healthcare epidemiology. Clin Infect Dis 2018;66:149-53. 10.1093/cid/cix731 29020316
    • (2018) Clin Infect Dis , vol.66 , pp. 149-153
    • Wiens, J.1    Shenoy, E.S.2
  • 8
    • 85063135586 scopus 로고    scopus 로고
    • "It's going to create a revolution": How AI is transforming the NHS
    • Sample I. "It's going to create a revolution": How AI is transforming the NHS. Guardian 2018 https://www.theguardian.com/technology/2018/jul/04/its-going-create-revolutionhow-ai-transforming-nhs.
    • (2018) Guardian
    • Sample, I.1
  • 9
    • 85052522615 scopus 로고    scopus 로고
    • Clinically applicable deep learning for diagnosis and referral in retinal disease
    • De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 2018;24:1342-50. 10.1038/s41591-018-0107-6 30104768
    • (2018) Nat Med , vol.24 , pp. 1342-1350
    • De Fauw, J.1    Ledsam, J.R.2    Romera-Paredes, B.3
  • 10
    • 85042563511 scopus 로고    scopus 로고
    • Watson for Oncology and breast cancer treatment recommendations: Agreement with an expert multidisciplinary tumor board
    • Somashekhar SP, Sepúlveda MJ, Puglielli S, et al. Watson for Oncology and breast cancer treatment recommendations: Agreement with an expert multidisciplinary tumor board. Ann Oncol 2018;29:418-23. 10.1093/annonc/mdx781 29324970
    • (2018) Ann Oncol , vol.29 , pp. 418-423
    • Somashekhar, S.P.1    Sepúlveda, M.J.2    Puglielli, S.3
  • 11
    • 85056841973 scopus 로고    scopus 로고
    • Anderson breaks with IBM Watson, raising questions about artificial intelligence in oncology
    • Schmidt CMD. Anderson breaks with IBM Watson, raising questions about artificial intelligence in oncology. J Natl Cancer Inst 2017;109:djx113. 10.1093/jnci/djx113 30053147
    • (2017) J Natl Cancer Inst , vol.109 , pp. djx113
    • Schmidt, C.M.D.1
  • 15
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc. Series B (Methodological) 1996;58:267-8810.1111/j.2517-6161.1996.tb02080.x.
    • (1996) J Royal Stat Soc. Series B (Methodological) , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 16
    • 0031118203 scopus 로고    scopus 로고
    • No free lunch theorems for optimization
    • Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput 1997;1:67-8210.1109/4235.58589310.1109/4235.585893.
    • (1997) IEEE Trans Evol Comput , vol.1 , pp. 67-82
    • Wolpert, D.H.1    Macready, W.G.2
  • 17
    • 84906665952 scopus 로고    scopus 로고
    • The frequency of diagnostic errors in outpatient care: Estimations from three large observational studies involving US adult populations
    • Singh H, Meyer AND, Thomas EJ. The frequency of diagnostic errors in outpatient care: Estimations from three large observational studies involving US adult populations. BMJ Qual Saf 2014;23:727-31. 10.1136/bmjqs-2013-002627 24742777
    • (2014) BMJ Qual Saf , vol.23 , pp. 727-731
    • Singh, H.1    Meyer2    Thomas, E.J.3
  • 18
    • 84866498947 scopus 로고    scopus 로고
    • Preventable deaths due to problems in care in English acute hospitals: A retrospective case record review study
    • Hogan H, Healey F, Neale G, Thomson R, Vincent C, Black N. Preventable deaths due to problems in care in English acute hospitals: A retrospective case record review study. BMJ Qual Saf 2012;21:737-45. 10.1136/bmjqs-2011-001159 22927487
    • (2012) BMJ Qual Saf , vol.21 , pp. 737-745
    • Hogan, H.1    Healey, F.2    Neale, G.3    Thomson, R.4    Vincent, C.5    Black, N.6
  • 20
    • 85040350436 scopus 로고    scopus 로고
    • AI agency and responsibility: The VW fraud case and beyond
    • Johnson DG, Verdicchio M. AI agency and responsibility: The VW fraud case and beyond. AI Soc 2018, 10.1007/s00146-017-0781-9.
    • (2018) AI Soc
    • Johnson, D.G.1    Verdicchio, M.2
  • 21
    • 85070880957 scopus 로고    scopus 로고
    • Why a right to explanation of automated decision-making does not exist in the general data protection regulation
    • Wachter S, Mittelstadt B, Floridi L. Why a right to explanation of automated decision-making does not exist in the general data protection regulation. International Data Privacy Law 2017;7:76-9910.1093/idpl/ipx005.
    • (2017) International Data Privacy Law , vol.7 , pp. 76-99
    • Wachter, S.1    Mittelstadt, B.2    Floridi, L.3
  • 22
    • 85046939396 scopus 로고    scopus 로고
    • Slave to the algorithm? Why a right to explanation is probably not the remedy you are looking for
    • Edwards L, Veale M. Slave to the algorithm? Why a right to explanation is probably not the remedy you are looking for. Duke Law and Technology Review 2017;16:18-84.
    • (2017) Duke Law and Technology Review , vol.16 , pp. 18-84
    • Edwards, L.1    Veale, M.2
  • 27
    • 85048525088 scopus 로고    scopus 로고
    • Big data phenotyping in rare diseases: Some ethical issues
    • Hallowell N, Parker M, Nellåker C. Big data phenotyping in rare diseases: Some ethical issues. Genet Med 2019;21:272-4. 10.1038/s41436-018-0067-8 29907800
    • (2019) Genet Med , vol.21 , pp. 272-274
    • Hallowell, N.1    Parker, M.2    Nellåker, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.