메뉴 건너뛰기




Volumn 25, Issue 5, 2018, Pages 611-618.e3

Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery

Author keywords

Bayesian matrix factorization; computational chemistry; deep learning; drug discovery; high content imaging; high throughput screening; machine learning; matrix factorization

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOASSAY; BIOLOGICAL ACTIVITY; COMPUTER MODEL; DRUG DEVELOPMENT; DRUG INDUSTRY; HIGH THROUGHPUT SCREENING; HUMAN; IMMUNOFLUORESCENCE; IN VITRO STUDY; MACHINE LEARNING; PREDICTION; PRIMARY CELL; PRIORITY JOURNAL; RANDOM FOREST; STRUCTURE ACTIVITY RELATION; SUPERVISED MACHINE LEARNING; DRUG REPOSITIONING; IMAGE PROCESSING; NEOPLASM; PROCEDURES; TUMOR CELL LINE;

EID: 85042602612     PISSN: 24519456     EISSN: 24519448     Source Type: Journal    
DOI: 10.1016/j.chembiol.2018.01.015     Document Type: Article
Times cited : (191)

References (29)
  • 1
    • 84876055711 scopus 로고    scopus 로고
    • Screening compounds with a novel high-throughput ABCB1-mediated efflux assay identifies drugs with known therapeutic targets at risk for multidrug resistance interference
    • Ansbro, M.R., Shukla, S., Ambudkar, S.V., Yuspa, S.H., Li, L., Screening compounds with a novel high-throughput ABCB1-mediated efflux assay identifies drugs with known therapeutic targets at risk for multidrug resistance interference. PLoS One, 8, 2013, e60334.
    • (2013) PLoS One , vol.8 , pp. e60334
    • Ansbro, M.R.1    Shukla, S.2    Ambudkar, S.V.3    Yuspa, S.H.4    Li, L.5
  • 2
    • 77950571108 scopus 로고    scopus 로고
    • New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays
    • Baell, J.B., Holloway, G.A., New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53 (2010), 2719–2740.
    • (2010) J. Med. Chem. , vol.53 , pp. 2719-2740
    • Baell, J.B.1    Holloway, G.A.2
  • 3
    • 84916603462 scopus 로고    scopus 로고
    • Reliable estimation of prediction errors for QSAR models under model uncertainty using double cross-validation
    • Baumann, D., Baumann, K., Reliable estimation of prediction errors for QSAR models under model uncertainty using double cross-validation. J. Cheminformatics, 6, 2014, 47.
    • (2014) J. Cheminformatics , vol.6 , pp. 47
    • Baumann, D.1    Baumann, K.2
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 5
    • 84962815651 scopus 로고    scopus 로고
    • Applications in image-based profiling of perturbations
    • Caicedo, J.C., Singh, S., Carpenter, A.E., Applications in image-based profiling of perturbations. Curr. Opin. Biotechnol. 39 (2016), 134–142.
    • (2016) Curr. Opin. Biotechnol. , vol.39 , pp. 134-142
    • Caicedo, J.C.1    Singh, S.2    Carpenter, A.E.3
  • 7
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Caruana, R., Multitask learning. Mach. Learn. 28 (1997), 41–75.
    • (1997) Mach. Learn. , vol.28 , pp. 41-75
    • Caruana, R.1
  • 9
    • 0034687231 scopus 로고    scopus 로고
    • Prediction of drug absorption using multivariate statistics
    • Egan, W.J., Merz, K.M., Baldwin, J.J., Prediction of drug absorption using multivariate statistics. J. Med. Chem. 43 (2000), 3867–3877.
    • (2000) J. Med. Chem. , vol.43 , pp. 3867-3877
    • Egan, W.J.1    Merz, K.M.2    Baldwin, J.J.3
  • 10
    • 79551628104 scopus 로고    scopus 로고
    • Imaged-based high-throughput screening for anti-angiogenic drug discovery
    • Evensen, L., Link, W., Lorens, J.B., Imaged-based high-throughput screening for anti-angiogenic drug discovery. Curr. Pharm. Des. 16 (2010), 3958–3963.
    • (2010) Curr. Pharm. Des. , vol.16 , pp. 3958-3963
    • Evensen, L.1    Link, W.2    Lorens, J.B.3
  • 11
    • 33244467920 scopus 로고    scopus 로고
    • In silico prediction of blood brain barrier permeability: an artificial neural network model
    • Garg, P., Verma, J., In silico prediction of blood brain barrier permeability: an artificial neural network model. J. Chem. Inf. Model. 46 (2006), 289–297.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 289-297
    • Garg, P.1    Verma, J.2
  • 14
    • 22944456331 scopus 로고    scopus 로고
    • Gene selection for microarray data
    • B. Schölkopf K. Tsuda J.P. Vert Kernel MIT Press
    • Hochreiter, S., Obermayer, K., Gene selection for microarray data. Schölkopf, B., Tsuda, K., Vert Kernel, J.P., (eds.) Methods in Computational Biology, 2004, MIT Press, 319–355.
    • (2004) Methods in Computational Biology , pp. 319-355
    • Hochreiter, S.1    Obermayer, K.2
  • 15
    • 84936165281 scopus 로고    scopus 로고
    • Understanding random forests: from theory to practice
    • Louppe, G., Understanding random forests: from theory to practice. arXiv, 2014 arXiv:14077502.
    • (2014) arXiv
    • Louppe, G.1
  • 17
    • 85047296699 scopus 로고    scopus 로고
    • How many trees in a random forest? Paper presented at: MLDM (Springer).
    • Oshiro, T.M., Perez, P.S., and Baranauskas, J.A. (2012). How many trees in a random forest? Paper presented at: MLDM (Springer).
    • (2012)
    • Oshiro, T.M.1    Perez, P.S.2    Baranauskas, J.A.3
  • 18
    • 33747624926 scopus 로고    scopus 로고
    • High-throughput fluorescence microscopy for systems biology
    • Pepperkok, R., Ellenberg, J., High-throughput fluorescence microscopy for systems biology. Nat. Rev. Mol. Cell Biol., 7, 2006, 690.
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 690
    • Pepperkok, R.1    Ellenberg, J.2
  • 20
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • Rogers, D., Hahn, M., Extended-connectivity fingerprints. J. Chem. Inf. Model. 50 (2010), 742–754.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 21
    • 85042254356 scopus 로고    scopus 로고
    • Macau: scalable Bayesian factorization with high-dimensional side information using MCMC. Proceedings of 2017 IEEE International Workshop on Machine Learning for Signal Processing. IEEE.
    • Simm, J., Arany, A., Zakeri, P., Haber, T., Wegner, J.K., Chupakhin, V., Ceulemans, H., and Moreau, Y. (2017). Macau: scalable Bayesian factorization with high-dimensional side information using MCMC. Proceedings of 2017 IEEE International Workshop on Machine Learning for Signal Processing. IEEE. https://doi.org/10.1109/MLSP.2017.8168143.
    • (2017)
    • Simm, J.1    Arany, A.2    Zakeri, P.3    Haber, T.4    Wegner, J.K.5    Chupakhin, V.6    Ceulemans, H.7    Moreau, Y.8
  • 22
    • 84902210226 scopus 로고    scopus 로고
    • Increasing the content of high-content screening: an overview
    • Singh, S., Carpenter, A.E., Genovesio, A., Increasing the content of high-content screening: an overview. J. Biomol. Screen. 19 (2014), 640–650.
    • (2014) J. Biomol. Screen. , vol.19 , pp. 640-650
    • Singh, S.1    Carpenter, A.E.2    Genovesio, A.3
  • 24
    • 34548317025 scopus 로고    scopus 로고
    • The potential of high-content high-throughput microscopy in drug discovery
    • Starkuviene, V., Pepperkok, R., The potential of high-content high-throughput microscopy in drug discovery. Br. J. Pharmacol. 152 (2007), 62–71.
    • (2007) Br. J. Pharmacol. , vol.152 , pp. 62-71
    • Starkuviene, V.1    Pepperkok, R.2
  • 28
    • 84992013719 scopus 로고    scopus 로고
    • Ranger: a fast implementation of random forests for high dimensional data in C++ and R
    • Wright, M.N., Ziegler, A., Ranger: a fast implementation of random forests for high dimensional data in C++ and R. arXiv, 2015 arXiv:150804409.
    • (2015) arXiv
    • Wright, M.N.1    Ziegler, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.