-
1
-
-
84876055711
-
Screening compounds with a novel high-throughput ABCB1-mediated efflux assay identifies drugs with known therapeutic targets at risk for multidrug resistance interference
-
Ansbro, M.R., Shukla, S., Ambudkar, S.V., Yuspa, S.H., Li, L., Screening compounds with a novel high-throughput ABCB1-mediated efflux assay identifies drugs with known therapeutic targets at risk for multidrug resistance interference. PLoS One, 8, 2013, e60334.
-
(2013)
PLoS One
, vol.8
, pp. e60334
-
-
Ansbro, M.R.1
Shukla, S.2
Ambudkar, S.V.3
Yuspa, S.H.4
Li, L.5
-
2
-
-
77950571108
-
New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays
-
Baell, J.B., Holloway, G.A., New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53 (2010), 2719–2740.
-
(2010)
J. Med. Chem.
, vol.53
, pp. 2719-2740
-
-
Baell, J.B.1
Holloway, G.A.2
-
3
-
-
84916603462
-
Reliable estimation of prediction errors for QSAR models under model uncertainty using double cross-validation
-
Baumann, D., Baumann, K., Reliable estimation of prediction errors for QSAR models under model uncertainty using double cross-validation. J. Cheminformatics, 6, 2014, 47.
-
(2014)
J. Cheminformatics
, vol.6
, pp. 47
-
-
Baumann, D.1
Baumann, K.2
-
4
-
-
0035478854
-
Random forests
-
Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
84962815651
-
Applications in image-based profiling of perturbations
-
Caicedo, J.C., Singh, S., Carpenter, A.E., Applications in image-based profiling of perturbations. Curr. Opin. Biotechnol. 39 (2016), 134–142.
-
(2016)
Curr. Opin. Biotechnol.
, vol.39
, pp. 134-142
-
-
Caicedo, J.C.1
Singh, S.2
Carpenter, A.E.3
-
6
-
-
33845792555
-
CellProfiler: image analysis software for identifying and quantifying cell phenotypes
-
Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol., 7, 2006, R100.
-
(2006)
Genome Biol.
, vol.7
, pp. R100
-
-
Carpenter, A.E.1
Jones, T.R.2
Lamprecht, M.R.3
Clarke, C.4
Kang, I.H.5
Friman, O.6
Guertin, D.A.7
Chang, J.H.8
Lindquist, R.A.9
Moffat, J.10
-
7
-
-
0031189914
-
Multitask learning
-
Caruana, R., Multitask learning. Mach. Learn. 28 (1997), 41–75.
-
(1997)
Mach. Learn.
, vol.28
, pp. 41-75
-
-
Caruana, R.1
-
8
-
-
84889581795
-
Chemical predictive modelling to improve compound quality
-
Cumming, J.G., Davis, A.M., Muresan, S., Haeberlein, M., Chen, H., Chemical predictive modelling to improve compound quality. Nat. Rev. Drug Discov., 12, 2013, 948.
-
(2013)
Nat. Rev. Drug Discov.
, vol.12
, pp. 948
-
-
Cumming, J.G.1
Davis, A.M.2
Muresan, S.3
Haeberlein, M.4
Chen, H.5
-
9
-
-
0034687231
-
Prediction of drug absorption using multivariate statistics
-
Egan, W.J., Merz, K.M., Baldwin, J.J., Prediction of drug absorption using multivariate statistics. J. Med. Chem. 43 (2000), 3867–3877.
-
(2000)
J. Med. Chem.
, vol.43
, pp. 3867-3877
-
-
Egan, W.J.1
Merz, K.M.2
Baldwin, J.J.3
-
10
-
-
79551628104
-
Imaged-based high-throughput screening for anti-angiogenic drug discovery
-
Evensen, L., Link, W., Lorens, J.B., Imaged-based high-throughput screening for anti-angiogenic drug discovery. Curr. Pharm. Des. 16 (2010), 3958–3963.
-
(2010)
Curr. Pharm. Des.
, vol.16
, pp. 3958-3963
-
-
Evensen, L.1
Link, W.2
Lorens, J.B.3
-
11
-
-
33244467920
-
In silico prediction of blood brain barrier permeability: an artificial neural network model
-
Garg, P., Verma, J., In silico prediction of blood brain barrier permeability: an artificial neural network model. J. Chem. Inf. Model. 46 (2006), 289–297.
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 289-297
-
-
Garg, P.1
Verma, J.2
-
12
-
-
84891388151
-
Multiplex cytological profiling assay to measure diverse cellular states
-
Gustafsdottir, S.M., Ljosa, V., Sokolnicki, K.L., Wilson, J.A., Walpita, D., Kemp, M.M., Seiler, K.P., Carrel, H.A., Golub, T.R., Schreiber, S.L., Multiplex cytological profiling assay to measure diverse cellular states. PLoS One, 8, 2013, e80999.
-
(2013)
PLoS One
, vol.8
, pp. e80999
-
-
Gustafsdottir, S.M.1
Ljosa, V.2
Sokolnicki, K.L.3
Wilson, J.A.4
Walpita, D.5
Kemp, M.M.6
Seiler, K.P.7
Carrel, H.A.8
Golub, T.R.9
Schreiber, S.L.10
-
13
-
-
77956339402
-
CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging
-
Held, M., Schmitz, M.H., Fischer, B., Walter, T., Neumann, B., Olma, M.H., Peter, M., Ellenberg, J., Gerlich, D.W., CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat. Methods 7 (2010), 747–754.
-
(2010)
Nat. Methods
, vol.7
, pp. 747-754
-
-
Held, M.1
Schmitz, M.H.2
Fischer, B.3
Walter, T.4
Neumann, B.5
Olma, M.H.6
Peter, M.7
Ellenberg, J.8
Gerlich, D.W.9
-
14
-
-
22944456331
-
Gene selection for microarray data
-
B. Schölkopf K. Tsuda J.P. Vert Kernel MIT Press
-
Hochreiter, S., Obermayer, K., Gene selection for microarray data. Schölkopf, B., Tsuda, K., Vert Kernel, J.P., (eds.) Methods in Computational Biology, 2004, MIT Press, 319–355.
-
(2004)
Methods in Computational Biology
, pp. 319-355
-
-
Hochreiter, S.1
Obermayer, K.2
-
15
-
-
84936165281
-
Understanding random forests: from theory to practice
-
Louppe, G., Understanding random forests: from theory to practice. arXiv, 2014 arXiv:14077502.
-
(2014)
arXiv
-
-
Louppe, G.1
-
16
-
-
84987943069
-
DeepTox: toxicity prediction using deep learning
-
Mayr, A., Klambauer, G., Unterthiner, T., Hochreiter, S., DeepTox: toxicity prediction using deep learning. Front. Environ. Sci., 3, 2016, 10.3389/fenvs.2015.00080.
-
(2016)
Front. Environ. Sci.
, vol.3
-
-
Mayr, A.1
Klambauer, G.2
Unterthiner, T.3
Hochreiter, S.4
-
17
-
-
85047296699
-
-
How many trees in a random forest? Paper presented at: MLDM (Springer).
-
Oshiro, T.M., Perez, P.S., and Baranauskas, J.A. (2012). How many trees in a random forest? Paper presented at: MLDM (Springer).
-
(2012)
-
-
Oshiro, T.M.1
Perez, P.S.2
Baranauskas, J.A.3
-
18
-
-
33747624926
-
High-throughput fluorescence microscopy for systems biology
-
Pepperkok, R., Ellenberg, J., High-throughput fluorescence microscopy for systems biology. Nat. Rev. Mol. Cell Biol., 7, 2006, 690.
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 690
-
-
Pepperkok, R.1
Ellenberg, J.2
-
19
-
-
72949084248
-
Application of random forest approach to QSAR prediction of aquatic toxicity
-
Polishchuk, P.G., Muratov, E.N., Artemenko, A.G., Kolumbin, O.G., Muratov, N.N., Kuz'min, V.E., Application of random forest approach to QSAR prediction of aquatic toxicity. J. Chem. Inf. Model. 49 (2009), 2481–2488.
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 2481-2488
-
-
Polishchuk, P.G.1
Muratov, E.N.2
Artemenko, A.G.3
Kolumbin, O.G.4
Muratov, N.N.5
Kuz'min, V.E.6
-
20
-
-
77952772341
-
Extended-connectivity fingerprints
-
Rogers, D., Hahn, M., Extended-connectivity fingerprints. J. Chem. Inf. Model. 50 (2010), 742–754.
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
21
-
-
85042254356
-
-
Macau: scalable Bayesian factorization with high-dimensional side information using MCMC. Proceedings of 2017 IEEE International Workshop on Machine Learning for Signal Processing. IEEE.
-
Simm, J., Arany, A., Zakeri, P., Haber, T., Wegner, J.K., Chupakhin, V., Ceulemans, H., and Moreau, Y. (2017). Macau: scalable Bayesian factorization with high-dimensional side information using MCMC. Proceedings of 2017 IEEE International Workshop on Machine Learning for Signal Processing. IEEE. https://doi.org/10.1109/MLSP.2017.8168143.
-
(2017)
-
-
Simm, J.1
Arany, A.2
Zakeri, P.3
Haber, T.4
Wegner, J.K.5
Chupakhin, V.6
Ceulemans, H.7
Moreau, Y.8
-
22
-
-
84902210226
-
Increasing the content of high-content screening: an overview
-
Singh, S., Carpenter, A.E., Genovesio, A., Increasing the content of high-content screening: an overview. J. Biomol. Screen. 19 (2014), 640–650.
-
(2014)
J. Biomol. Screen.
, vol.19
, pp. 640-650
-
-
Singh, S.1
Carpenter, A.E.2
Genovesio, A.3
-
23
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15 (2014), 1929–1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
24
-
-
34548317025
-
The potential of high-content high-throughput microscopy in drug discovery
-
Starkuviene, V., Pepperkok, R., The potential of high-content high-throughput microscopy in drug discovery. Br. J. Pharmacol. 152 (2007), 62–71.
-
(2007)
Br. J. Pharmacol.
, vol.152
, pp. 62-71
-
-
Starkuviene, V.1
Pepperkok, R.2
-
25
-
-
77649266028
-
Visualization of image data from cells to organisms
-
Walter, T., Shattuck, D.W., Baldock, R., Bastin, M.E., Carpenter, A.E., Duce, S., Ellenberg, J., Fraser, A., Hamilton, N., Pieper, S., Visualization of image data from cells to organisms. Nat. Methods 7 (2010), S26–S41.
-
(2010)
Nat. Methods
, vol.7
, pp. S26-S41
-
-
Walter, T.1
Shattuck, D.W.2
Baldock, R.3
Bastin, M.E.4
Carpenter, A.E.5
Duce, S.6
Ellenberg, J.7
Fraser, A.8
Hamilton, N.9
Pieper, S.10
-
26
-
-
84949319273
-
In silico ADME/T modelling for rational drug design
-
Wang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., Liu, X., Luo, X., Luo, C., Chen, K., In silico ADME/T modelling for rational drug design. Q. Rev. Biophys. 48 (2015), 488–515.
-
(2015)
Q. Rev. Biophys.
, vol.48
, pp. 488-515
-
-
Wang, Y.1
Xing, J.2
Xu, Y.3
Zhou, N.4
Peng, J.5
Xiong, Z.6
Liu, X.7
Luo, X.8
Luo, C.9
Chen, K.10
-
27
-
-
84905046441
-
Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling
-
Wawer, M.J., Li, K., Gustafsdottir, S.M., Ljosa, V., Bodycombe, N.E., Marton, M.A., Sokolnicki, K.L., Bray, M.-A., Kemp, M.M., Winchester, E., Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling. Proc. Natl. Acad. Sci. USA 111 (2014), 10911–10916.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 10911-10916
-
-
Wawer, M.J.1
Li, K.2
Gustafsdottir, S.M.3
Ljosa, V.4
Bodycombe, N.E.5
Marton, M.A.6
Sokolnicki, K.L.7
Bray, M.-A.8
Kemp, M.M.9
Winchester, E.10
-
28
-
-
84992013719
-
Ranger: a fast implementation of random forests for high dimensional data in C++ and R
-
Wright, M.N., Ziegler, A., Ranger: a fast implementation of random forests for high dimensional data in C++ and R. arXiv, 2015 arXiv:150804409.
-
(2015)
arXiv
-
-
Wright, M.N.1
Ziegler, A.2
-
29
-
-
0038284929
-
Phenotypic screening of small molecule libraries by high throughput cell imaging
-
Yarrow, J., Feng, Y., Perlman, Z., Kirchhausen, T., Mitchison, T., Phenotypic screening of small molecule libraries by high throughput cell imaging. Comb. Chem. High Throughput Screen. 6 (2003), 279–286.
-
(2003)
Comb. Chem. High Throughput Screen.
, vol.6
, pp. 279-286
-
-
Yarrow, J.1
Feng, Y.2
Perlman, Z.3
Kirchhausen, T.4
Mitchison, T.5
|