-
1
-
-
84930630277
-
Deep learning
-
&
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015)
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
2
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
Russakovsky, O.et al. Imagenet large scale visual recognition challenge. Int. J. Compute. Vis. 115, 211–252 (2015)
-
(2015)
Int. J. Compute. Vis.
, vol.115
, pp. 211-252
-
-
Russakovsky, O.1
-
3
-
-
84937806794
-
Advances in natural language processing
-
COI: 1:CAS:528:DC%2BC2MXhtFKktL%2FO
-
Hirschberg, J. & Manning, C. D. Advances in natural language processing. Science 349, 261–266 2015)
-
(2015)
Science
, vol.349
, pp. 261-266
-
-
Hirschberg, J.1
Manning, C.D.2
-
4
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
-
Geoffrey Hinton, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29, 82–97 (2012)
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, pp. 82-97
-
-
Hinton, G.1
-
6
-
-
84963949906
-
Mastering the game of go with deep neural networks and tree search
-
COI: 1:CAS:528:DC%2BC28Xhs12is7w%3D
-
Silver, D. et al. Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)
-
(2016)
Nature
, vol.529
, pp. 484-489
-
-
Silver, D.1
-
7
-
-
84944705350
-
Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions
-
Yohannes Kassahun, et al. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int. J. Comput. Assist. Radio. Surg. 11, 553–568 (2016)
-
(2016)
Int. J. Comput. Assist. Radio. Surg.
, vol.11
, pp. 553-568
-
-
Yohannes Kassahun1
-
8
-
-
85026529300
-
A survey on deep learning in medical image analysis
-
Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
-
(2017)
Med. Image Anal.
, vol.42
, pp. 60-88
-
-
Litjens, G.1
-
9
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
-
10
-
-
85054158054
-
Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
-
Haenssle, H. A. et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29, 1836–1842 (2018)
-
(2018)
Ann. Oncol.
, vol.29
, pp. 1836-1842
-
-
Haenssle, H.A.1
-
11
-
-
84964292829
-
Computer aided diagnosis with deep learning architecture: Applications to breast lesions in us images and pulmonary nodules in CT scans
-
24454
-
Cheng, J.-Z. et al. Computer aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in CT scans. Sci. Rep. 6, 24454 (2016)
-
(2016)
Sci. Rep.
, vol.6
-
-
Cheng, J.-Z.1
-
12
-
-
85001976294
-
Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs
-
Cicero, M. et al. Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Invest. Radiol. 52, 281–287 (2017)
-
(2017)
Invest. Radiol.
, vol.52
, pp. 281-287
-
-
Cicero, M.1
-
13
-
-
84980350859
-
Large scale deep learning for computer aided detection of mammographic lesions
-
Kooi, T. et al. Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35, 303–312 (2017)
-
(2017)
Med. Image Anal.
, vol.35
, pp. 303-312
-
-
Kooi, T.1
-
14
-
-
85046040191
-
Abstract WP61: Automated large artery occlusion detection in st roke imaging-paladin study
-
AWP61
-
Barreira, C. M. et al. Abstract WP61: Automated large artery occlusion detection in st roke imaging-paladin study. Stroke 49, AWP61 (2018)
-
(2018)
Stroke
, vol.49
-
-
Barreira, C.M.1
-
15
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016)
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
-
16
-
-
85042201755
-
Webster. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat
-
Poplin, R. et al. Webster. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2, 158–164 (2018)
-
(2018)
Biomed. Eng
, vol.2
, pp. 158-164
-
-
Poplin, R.1
-
17
-
-
85052522615
-
Clinically applicable deep learning for diagnosis and referral in retinal disease
-
Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342 (2018)
-
(2018)
Nat. Med.
, vol.24
, pp. 1342
-
-
Fauw, J.1
-
18
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
Springer
-
Cireşan, D. C., Giusti, A., Gambardella, L. M. & Schmidhuber, J. Mitosis detection in breast cancer histology images with deep neural networks. In International Conference on Medical Image Computing and Computer-assisted Intervention 411–418 (Springer, 2013)
-
(2013)
International Conference on Medical Image Computing and Computer-Assisted Intervention
, pp. 411-418
-
-
Cireşan, D.C.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
20
-
-
85009106590
-
Pan-cancer immunogenomic analyses reveal genotype–immunophenotype relationships and predictors of response to checkpoint blockade
-
Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype–immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 18, 248–262 (2017)
-
(2017)
Cell Rep
, vol.18
, pp. 248-262
-
-
Charoentong, P.1
-
21
-
-
81055146760
-
Systematic analysis of breast cancer morphology uncovers stromal features associated with survival
-
Beck, A. H. et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3, 108ra113 (2011)
-
(2011)
Sci. Transl. Med.
, vol.3
, pp. 108ra113
-
-
Beck, A.H.1
-
22
-
-
84937508363
-
How transferable are features in deep neural networks?
-
Yosinski, J., Clune, J., Bengio, Y. and Lipson, L. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems 3320–3328 (2014)
-
(2014)
Advances in Neural Information Processing Systems
, pp. 3320-3328
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, L.4
-
24
-
-
85042389905
-
Identifying medical diagnoses and treatable diseases by image-based deep learning
-
COI: 1:CAS:528:DC%2BC1cXjt12ltr0%3D
-
Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122–1131 (2018)
-
(2018)
Cell
, vol.172
, pp. 1122-1131
-
-
Kermany, D.S.1
-
30
-
-
84946747440
-
Show and tell: A neural image caption generator
-
Vinyals, O., Toshev, A., Bengio, S. & Erhan, D. Show and tell: a neural image caption generator. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 3156–3164 (2015)
-
(2015)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3156-3164
-
-
Vinyals, O.1
Toshev, A.2
Bengio, S.3
Erhan, D.4
-
31
-
-
85059754649
-
-
The Office of the National Coordinator for Health Information Technology. Quick stats: health IT dashboard. https://dashboard.healthit.gov/quickstats/quickstats.php (2017)
-
(2017)
Quick Stats: Health IT Dashboard
-
-
-
32
-
-
85032736236
-
Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis
-
Shickel, B., Tighe, P. J., Bihorac, A. & Rashidi, P. Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J. Biomed. Health Inform. 22, 1589–1604 (2017)
-
(2017)
IEEE J. Biomed. Health Inform.
, vol.22
, pp. 1589-1604
-
-
Shickel, B.1
Tighe, P.J.2
Bihorac, A.3
Rashidi, P.4
-
33
-
-
85127431078
-
Scalable and accurate deep learning with electronic health records
-
Rajkomar, A. et al. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 1, 18 (2018)
-
(2018)
NPJ Digit. Med.
, vol.1
, pp. 18
-
-
Rajkomar, A.1
-
34
-
-
84968813824
-
Deep patient: An unsupervised representation to predict the future of patients from the electronic health records
-
Miotto, R. et al. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)
-
(2016)
Sci. Rep.
, vol.6
, pp. 26094
-
-
Miotto, R.1
-
35
-
-
77954954080
-
Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables
-
Liu, V., Kipnis, P., Gould, M. K. & Escobar, G. J. Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables. Med. Care 48, 739–744 (2010)
-
(2010)
Med. Care
, vol.48
, pp. 739-744
-
-
Liu, V.1
Kipnis, P.2
Gould, M.K.3
Escobar, G.J.4
-
36
-
-
85029767500
-
Doctor AI: Predicting clinical events via recurrent neural networks
-
Choi, E. et al. Doctor AI: predicting clinical events via recurrent neural networks. In Machine Learning for Healthcare 301–318 (2016)
-
(2016)
Machine Learning for Healthcare
, pp. 301-318
-
-
Choi, E.1
-
37
-
-
85045746406
-
Recurrent neural networks for multivariate time series with missing values
-
Che, Z. et al. Recurrent neural networks for multivariate time series with missing values. Rep. 8, 1–12 (2018)
-
(2018)
Rep.
, vol.8
, pp. 1-12
-
-
Che, Z.1
-
38
-
-
85048542747
-
Clinical intervention prediction and understanding with deep neural networks
-
Suresh, H. et al. Clinical intervention prediction and understanding with deep neural networks. PMLR 68, 322–377 (2017)
-
(2017)
PMLR
, vol.68
, pp. 322-377
-
-
Suresh, H.1
-
39
-
-
84971287198
-
Mimic-iii, a freely accessible critical care database
-
COI: 1:CAS:528:DC%2BC28Xos1Wnu74%3D
-
Johnson, A. E. W.et al. Mimic-iii, a freely accessible critical care database. Sci. Data 3, 160035 (2016)
-
(2016)
Sci. Data
, vol.3
, pp. 160035
-
-
Johnson, A.E.W.1
-
40
-
-
85051798815
-
Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and icu
-
Mao, Q.et al. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and icu. BMJ Open 8, e017833 (2018)
-
(2018)
BMJ Open
, vol.8
-
-
Mao, Q.1
-
42
-
-
67650957592
-
Learning to search: functional gradient techniques for imitation learning
-
Ratliff, N. D., Silver, D. & Bagnell, J. A. Learning to search: functional gradient techniques for imitation learning. Autonomous Robots 27, 25–53 (2009)
-
(2009)
Autonomous Robots
, vol.27
, pp. 25-53
-
-
Ratliff, N.D.1
Silver, D.2
Bagnell, J.A.3
-
43
-
-
84893805239
-
A case study of trajectory transfer through non-rigid registration for a simplified suturing scenario
-
IEEE
-
Schulman, J. et al. A case study of trajectory transfer through non-rigid registration for a simplified suturing scenario. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 4111–4117 (IEEE, 2013)
-
(2013)
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp. 4111-4117
-
-
Schulman, J.1
-
44
-
-
69549086702
-
A system for robotic heart surgery that learns to tie knots using recurrent neural networks
-
Mayer, H.et al. A system for robotic heart surgery that learns to tie knots using recurrent neural networks. Adv. Robot 22, 1521–1537 (2008)
-
(2008)
Adv. Robot
, vol.22
, pp. 1521-1537
-
-
Mayer, H.1
-
45
-
-
85049454825
-
-
Preprint at
-
Shvets, A., Rakhlin, A., Kalinin, A. A. and Iglovikov, V. Automatic instrument segmentation in robot-assisted surgery using deep learning. Preprint at https://arxiv.org/abs/1803.01207 (2018)
-
(2018)
Automatic Instrument Segmentation in Robot-Assisted Surgery Using Deep Learning
-
-
Shvets, A.1
Rakhlin, A.2
Kalinin, A.A.3
Iglovikov, V.4
-
47
-
-
84924060689
-
Efficient bayesian mixed-model analysis increases association power in large cohorts
-
COI: 1:CAS:528:DC%2BC2MXhvFCntb4%3D
-
Loh, P.-R. et al. Efficient bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284 (2015)
-
(2015)
Nat. Genet.
, vol.47
, pp. 284
-
-
Loh, P.R.1
-
50
-
-
59249086642
-
Learning a prior on regulatory potential from eqtl data
-
Lee, S.-I. et al. Learning a prior on regulatory potential from eqtl data. PLoS Genet. 5, e1000358 (2009)
-
(2009)
PLoS Genet.
, vol.5
-
-
Lee, S.I.1
-
51
-
-
84895858942
-
A general framework for estimating the relative pathogenicity of human genetic variants
-
COI: 1:CAS:528:DC%2BC2cXhs1Sjt7g%3D
-
Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014)
-
(2014)
Nat. Genet.
, vol.46
, pp. 310-315
-
-
Kircher, M.1
-
52
-
-
84928997067
-
Dann: a deep learning approach for annotating the pathogenicity of genetic variants
-
COI: 1:CAS:528:DC%2BC28Xht1GntLfP
-
Quang, D., Chen, Y. & Xie, X. Dann: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31, 761–3 (2015)
-
(2015)
Bioinformatics
, vol.31
, pp. 761-763
-
-
Quang, D.1
Chen, Y.2
Xie, X.3
-
53
-
-
84971325681
-
Personalized medicine: From genotypes, molecular phenotypes and the quantified self, towards improved medicine
-
Dudley, J. T. et al. Personalized medicine: from genotypes, molecular phenotypes and the quantified self, towards improved medicine. In Pacific Symposium on Biocomputing 342–346 (2014)
-
(2014)
In Pacific Symposium on Biocomputing
, pp. 342-346
-
-
Dudley, J.T.1
-
54
-
-
84949818508
-
Machine learning in genomic medicine: a review of computational problems and data sets
-
&
-
Leung, M. K. K., Delong, A., Alipanahi, B. & Frey, B. J. Machine learning in genomic medicine: a review of computational problems and data sets. Proc. IEEE 104, 176–197 (2016)
-
(2016)
Proc. IEEE
, vol.104
, pp. 176-197
-
-
Leung, M.K.K.1
Delong, A.2
Alipanahi, B.3
Frey, B.J.4
-
55
-
-
84923276179
-
The human splicing code reveals new insights into the genetic determinants of disease
-
Xiong, H. Y. et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806 (2015)
-
(2015)
Science
, vol.347
, pp. 1254806
-
-
Xiong, H.Y.1
-
56
-
-
84938888109
-
Predicting the sequence specificities of dna-and rna-binding proteins by deep learning
-
COI: 1:CAS:528:DC%2BC2MXhtF2murnM
-
Alipanahi, B. et al. Predicting the sequence specificities of dna-and rna-binding proteins by deep learning. Nature Biotechnol. 33, 831–838 (2015)
-
(2015)
Nature Biotechnol.
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
-
57
-
-
79955037043
-
Universal noninvasive detection of solid organ transplant rejection
-
COI: 1:CAS:528:DC%2BC3MXltVOms78%3D
-
Snyder, T. M., Khush, K. K., Valantine, H. A. & Quake, S. R. Universal noninvasive detection of solid organ transplant rejection. Proc. Natl Acad. Sci. USA 108, 6229–6234 (2011)
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 6229-6234
-
-
Snyder, T.M.1
Khush, K.K.2
Valantine, H.A.3
Quake, S.R.4
-
58
-
-
85015983306
-
Diagnosis of capnocytophaga canimorsus sepsis by whole-genome next-generation sequencing
-
ofw144, Oxford University Press
-
Abril, M. K. et al. Diagnosis of capnocytophaga canimorsus sepsis by whole-genome next-generation sequencing. In Open Forum Infectious Diseases Vol. 3, ofw144 (Oxford University Press, 2016)
-
(2016)
Open Forum Infectious Diseases
, vol.3
-
-
Abril, M.K.1
-
59
-
-
84861746437
-
Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma dna
-
Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma dna. Sci. Transl. Med. 4, 136ra68–136ra68 (2012)
-
(2012)
Sci. Transl. Med.
, vol.4
, pp. 136ra68
-
-
Forshew, T.1
-
60
-
-
84863954202
-
Non-invasive prenatal measurement of the fetal genome
-
COI: 1:CAS:528:DC%2BC38XhtVKnt7bK
-
Fan, H. C. et al. Non-invasive prenatal measurement of the fetal genome. Nature 487, 320–324 (2012)
-
(2012)
Nature
, vol.487
, pp. 320-324
-
-
Fan, H.C.1
-
62
-
-
85018466550
-
Deepcpg: accurate prediction of single-cell dna methylation states using deep learning
-
Angermueller, C., Lee, H. J., Reik, W. & Stegle, O. Deepcpg: accurate prediction of single-cell dna methylation states using deep learning. Genome Biol. 18, 67 (2017)
-
(2017)
Genome Biol.
, vol.18
-
-
Angermueller, C.1
Lee, H.J.2
Reik, W.3
Stegle, O.4
-
63
-
-
84976420628
-
Gene expression inference with deep learning
-
COI: 1:CAS:528:DC%2BC28XhsF2jsrbO
-
Chen, Y. et al. Gene expression inference with deep learning. Bioinformatics 32, 1832–1839 (2016)
-
(2016)
Bioinformatics
, vol.32
, pp. 1832-1839
-
-
Chen, Y.1
-
64
-
-
85024505061
-
Denoising genome-wide histone chip-seq with convolutional neural networks
-
COI: 1:CAS:528:DC%2BC1cXitFOhsbfP
-
Koh, P. W., Pierson, E. & Kundaje, A. Denoising genome-wide histone chip-seq with convolutional neural networks. Bioinformatics 33, i225–i233 (2017)
-
(2017)
Bioinformatics
, vol.33
, pp. i225-i233
-
-
Koh, P.W.1
Pierson, E.2
Kundaje, A.3
|