메뉴 건너뛰기




Volumn 25, Issue 1, 2019, Pages 24-29

A guide to deep learning in healthcare

Author keywords

[No Author keywords available]

Indexed keywords

DIAGNOSTIC IMAGING; ELECTRONIC HEALTH RECORD; GENOMICS; NATURAL LANGUAGE PROCESSING; REINFORCEMENT; REVIEW; SURGERY; VISION; HEALTH CARE DELIVERY; HUMAN;

EID: 85059762330     PISSN: 10788956     EISSN: 1546170X     Source Type: Journal    
DOI: 10.1038/s41591-018-0316-z     Document Type: Review
Times cited : (2480)

References (64)
  • 2
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • Russakovsky, O.et al. Imagenet large scale visual recognition challenge. Int. J. Compute. Vis. 115, 211–252 (2015)
    • (2015) Int. J. Compute. Vis. , vol.115 , pp. 211-252
    • Russakovsky, O.1
  • 3
    • 84937806794 scopus 로고    scopus 로고
    • Advances in natural language processing
    • COI: 1:CAS:528:DC%2BC2MXhtFKktL%2FO
    • Hirschberg, J. & Manning, C. D. Advances in natural language processing. Science 349, 261–266 2015)
    • (2015) Science , vol.349 , pp. 261-266
    • Hirschberg, J.1    Manning, C.D.2
  • 4
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
    • Geoffrey Hinton, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29, 82–97 (2012)
    • (2012) IEEE Signal Process. Mag. , vol.29 , pp. 82-97
    • Hinton, G.1
  • 6
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of go with deep neural networks and tree search
    • COI: 1:CAS:528:DC%2BC28Xhs12is7w%3D
    • Silver, D. et al. Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)
    • (2016) Nature , vol.529 , pp. 484-489
    • Silver, D.1
  • 7
    • 84944705350 scopus 로고    scopus 로고
    • Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions
    • Yohannes Kassahun, et al. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int. J. Comput. Assist. Radio. Surg. 11, 553–568 (2016)
    • (2016) Int. J. Comput. Assist. Radio. Surg. , vol.11 , pp. 553-568
    • Yohannes Kassahun1
  • 8
    • 85026529300 scopus 로고    scopus 로고
    • A survey on deep learning in medical image analysis
    • Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
    • (2017) Med. Image Anal. , vol.42 , pp. 60-88
    • Litjens, G.1
  • 9
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1
  • 10
    • 85054158054 scopus 로고    scopus 로고
    • Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
    • Haenssle, H. A. et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29, 1836–1842 (2018)
    • (2018) Ann. Oncol. , vol.29 , pp. 1836-1842
    • Haenssle, H.A.1
  • 11
    • 84964292829 scopus 로고    scopus 로고
    • Computer aided diagnosis with deep learning architecture: Applications to breast lesions in us images and pulmonary nodules in CT scans
    • 24454
    • Cheng, J.-Z. et al. Computer aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in CT scans. Sci. Rep. 6, 24454 (2016)
    • (2016) Sci. Rep. , vol.6
    • Cheng, J.-Z.1
  • 12
    • 85001976294 scopus 로고    scopus 로고
    • Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs
    • Cicero, M. et al. Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Invest. Radiol. 52, 281–287 (2017)
    • (2017) Invest. Radiol. , vol.52 , pp. 281-287
    • Cicero, M.1
  • 13
    • 84980350859 scopus 로고    scopus 로고
    • Large scale deep learning for computer aided detection of mammographic lesions
    • Kooi, T. et al. Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35, 303–312 (2017)
    • (2017) Med. Image Anal. , vol.35 , pp. 303-312
    • Kooi, T.1
  • 14
    • 85046040191 scopus 로고    scopus 로고
    • Abstract WP61: Automated large artery occlusion detection in st roke imaging-paladin study
    • AWP61
    • Barreira, C. M. et al. Abstract WP61: Automated large artery occlusion detection in st roke imaging-paladin study. Stroke 49, AWP61 (2018)
    • (2018) Stroke , vol.49
    • Barreira, C.M.1
  • 15
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016)
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1
  • 16
    • 85042201755 scopus 로고    scopus 로고
    • Webster. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat
    • Poplin, R. et al. Webster. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2, 158–164 (2018)
    • (2018) Biomed. Eng , vol.2 , pp. 158-164
    • Poplin, R.1
  • 17
    • 85052522615 scopus 로고    scopus 로고
    • Clinically applicable deep learning for diagnosis and referral in retinal disease
    • Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342 (2018)
    • (2018) Nat. Med. , vol.24 , pp. 1342
    • Fauw, J.1
  • 20
    • 85009106590 scopus 로고    scopus 로고
    • Pan-cancer immunogenomic analyses reveal genotype–immunophenotype relationships and predictors of response to checkpoint blockade
    • Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype–immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 18, 248–262 (2017)
    • (2017) Cell Rep , vol.18 , pp. 248-262
    • Charoentong, P.1
  • 21
    • 81055146760 scopus 로고    scopus 로고
    • Systematic analysis of breast cancer morphology uncovers stromal features associated with survival
    • Beck, A. H. et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3, 108ra113 (2011)
    • (2011) Sci. Transl. Med. , vol.3 , pp. 108ra113
    • Beck, A.H.1
  • 24
    • 85042389905 scopus 로고    scopus 로고
    • Identifying medical diagnoses and treatable diseases by image-based deep learning
    • COI: 1:CAS:528:DC%2BC1cXjt12ltr0%3D
    • Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122–1131 (2018)
    • (2018) Cell , vol.172 , pp. 1122-1131
    • Kermany, D.S.1
  • 31
    • 85059754649 scopus 로고    scopus 로고
    • The Office of the National Coordinator for Health Information Technology. Quick stats: health IT dashboard. https://dashboard.healthit.gov/quickstats/quickstats.php (2017)
    • (2017) Quick Stats: Health IT Dashboard
  • 32
    • 85032736236 scopus 로고    scopus 로고
    • Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis
    • Shickel, B., Tighe, P. J., Bihorac, A. & Rashidi, P. Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J. Biomed. Health Inform. 22, 1589–1604 (2017)
    • (2017) IEEE J. Biomed. Health Inform. , vol.22 , pp. 1589-1604
    • Shickel, B.1    Tighe, P.J.2    Bihorac, A.3    Rashidi, P.4
  • 33
    • 85127431078 scopus 로고    scopus 로고
    • Scalable and accurate deep learning with electronic health records
    • Rajkomar, A. et al. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 1, 18 (2018)
    • (2018) NPJ Digit. Med. , vol.1 , pp. 18
    • Rajkomar, A.1
  • 34
    • 84968813824 scopus 로고    scopus 로고
    • Deep patient: An unsupervised representation to predict the future of patients from the electronic health records
    • Miotto, R. et al. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)
    • (2016) Sci. Rep. , vol.6 , pp. 26094
    • Miotto, R.1
  • 35
    • 77954954080 scopus 로고    scopus 로고
    • Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables
    • Liu, V., Kipnis, P., Gould, M. K. & Escobar, G. J. Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables. Med. Care 48, 739–744 (2010)
    • (2010) Med. Care , vol.48 , pp. 739-744
    • Liu, V.1    Kipnis, P.2    Gould, M.K.3    Escobar, G.J.4
  • 36
    • 85029767500 scopus 로고    scopus 로고
    • Doctor AI: Predicting clinical events via recurrent neural networks
    • Choi, E. et al. Doctor AI: predicting clinical events via recurrent neural networks. In Machine Learning for Healthcare 301–318 (2016)
    • (2016) Machine Learning for Healthcare , pp. 301-318
    • Choi, E.1
  • 37
    • 85045746406 scopus 로고    scopus 로고
    • Recurrent neural networks for multivariate time series with missing values
    • Che, Z. et al. Recurrent neural networks for multivariate time series with missing values. Rep. 8, 1–12 (2018)
    • (2018) Rep. , vol.8 , pp. 1-12
    • Che, Z.1
  • 38
    • 85048542747 scopus 로고    scopus 로고
    • Clinical intervention prediction and understanding with deep neural networks
    • Suresh, H. et al. Clinical intervention prediction and understanding with deep neural networks. PMLR 68, 322–377 (2017)
    • (2017) PMLR , vol.68 , pp. 322-377
    • Suresh, H.1
  • 39
    • 84971287198 scopus 로고    scopus 로고
    • Mimic-iii, a freely accessible critical care database
    • COI: 1:CAS:528:DC%2BC28Xos1Wnu74%3D
    • Johnson, A. E. W.et al. Mimic-iii, a freely accessible critical care database. Sci. Data 3, 160035 (2016)
    • (2016) Sci. Data , vol.3 , pp. 160035
    • Johnson, A.E.W.1
  • 40
    • 85051798815 scopus 로고    scopus 로고
    • Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and icu
    • Mao, Q.et al. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and icu. BMJ Open 8, e017833 (2018)
    • (2018) BMJ Open , vol.8
    • Mao, Q.1
  • 42
    • 67650957592 scopus 로고    scopus 로고
    • Learning to search: functional gradient techniques for imitation learning
    • Ratliff, N. D., Silver, D. & Bagnell, J. A. Learning to search: functional gradient techniques for imitation learning. Autonomous Robots 27, 25–53 (2009)
    • (2009) Autonomous Robots , vol.27 , pp. 25-53
    • Ratliff, N.D.1    Silver, D.2    Bagnell, J.A.3
  • 43
    • 84893805239 scopus 로고    scopus 로고
    • A case study of trajectory transfer through non-rigid registration for a simplified suturing scenario
    • IEEE
    • Schulman, J. et al. A case study of trajectory transfer through non-rigid registration for a simplified suturing scenario. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 4111–4117 (IEEE, 2013)
    • (2013) 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) , pp. 4111-4117
    • Schulman, J.1
  • 44
    • 69549086702 scopus 로고    scopus 로고
    • A system for robotic heart surgery that learns to tie knots using recurrent neural networks
    • Mayer, H.et al. A system for robotic heart surgery that learns to tie knots using recurrent neural networks. Adv. Robot 22, 1521–1537 (2008)
    • (2008) Adv. Robot , vol.22 , pp. 1521-1537
    • Mayer, H.1
  • 47
    • 84924060689 scopus 로고    scopus 로고
    • Efficient bayesian mixed-model analysis increases association power in large cohorts
    • COI: 1:CAS:528:DC%2BC2MXhvFCntb4%3D
    • Loh, P.-R. et al. Efficient bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284 (2015)
    • (2015) Nat. Genet. , vol.47 , pp. 284
    • Loh, P.R.1
  • 50
    • 59249086642 scopus 로고    scopus 로고
    • Learning a prior on regulatory potential from eqtl data
    • Lee, S.-I. et al. Learning a prior on regulatory potential from eqtl data. PLoS Genet. 5, e1000358 (2009)
    • (2009) PLoS Genet. , vol.5
    • Lee, S.I.1
  • 51
    • 84895858942 scopus 로고    scopus 로고
    • A general framework for estimating the relative pathogenicity of human genetic variants
    • COI: 1:CAS:528:DC%2BC2cXhs1Sjt7g%3D
    • Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014)
    • (2014) Nat. Genet. , vol.46 , pp. 310-315
    • Kircher, M.1
  • 52
    • 84928997067 scopus 로고    scopus 로고
    • Dann: a deep learning approach for annotating the pathogenicity of genetic variants
    • COI: 1:CAS:528:DC%2BC28Xht1GntLfP
    • Quang, D., Chen, Y. & Xie, X. Dann: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31, 761–3 (2015)
    • (2015) Bioinformatics , vol.31 , pp. 761-763
    • Quang, D.1    Chen, Y.2    Xie, X.3
  • 53
    • 84971325681 scopus 로고    scopus 로고
    • Personalized medicine: From genotypes, molecular phenotypes and the quantified self, towards improved medicine
    • Dudley, J. T. et al. Personalized medicine: from genotypes, molecular phenotypes and the quantified self, towards improved medicine. In Pacific Symposium on Biocomputing 342–346 (2014)
    • (2014) In Pacific Symposium on Biocomputing , pp. 342-346
    • Dudley, J.T.1
  • 54
    • 84949818508 scopus 로고    scopus 로고
    • Machine learning in genomic medicine: a review of computational problems and data sets
    • &
    • Leung, M. K. K., Delong, A., Alipanahi, B. & Frey, B. J. Machine learning in genomic medicine: a review of computational problems and data sets. Proc. IEEE 104, 176–197 (2016)
    • (2016) Proc. IEEE , vol.104 , pp. 176-197
    • Leung, M.K.K.1    Delong, A.2    Alipanahi, B.3    Frey, B.J.4
  • 55
    • 84923276179 scopus 로고    scopus 로고
    • The human splicing code reveals new insights into the genetic determinants of disease
    • Xiong, H. Y. et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806 (2015)
    • (2015) Science , vol.347 , pp. 1254806
    • Xiong, H.Y.1
  • 56
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of dna-and rna-binding proteins by deep learning
    • COI: 1:CAS:528:DC%2BC2MXhtF2murnM
    • Alipanahi, B. et al. Predicting the sequence specificities of dna-and rna-binding proteins by deep learning. Nature Biotechnol. 33, 831–838 (2015)
    • (2015) Nature Biotechnol. , vol.33 , pp. 831-838
    • Alipanahi, B.1
  • 57
    • 79955037043 scopus 로고    scopus 로고
    • Universal noninvasive detection of solid organ transplant rejection
    • COI: 1:CAS:528:DC%2BC3MXltVOms78%3D
    • Snyder, T. M., Khush, K. K., Valantine, H. A. & Quake, S. R. Universal noninvasive detection of solid organ transplant rejection. Proc. Natl Acad. Sci. USA 108, 6229–6234 (2011)
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 6229-6234
    • Snyder, T.M.1    Khush, K.K.2    Valantine, H.A.3    Quake, S.R.4
  • 58
    • 85015983306 scopus 로고    scopus 로고
    • Diagnosis of capnocytophaga canimorsus sepsis by whole-genome next-generation sequencing
    • ofw144, Oxford University Press
    • Abril, M. K. et al. Diagnosis of capnocytophaga canimorsus sepsis by whole-genome next-generation sequencing. In Open Forum Infectious Diseases Vol. 3, ofw144 (Oxford University Press, 2016)
    • (2016) Open Forum Infectious Diseases , vol.3
    • Abril, M.K.1
  • 59
    • 84861746437 scopus 로고    scopus 로고
    • Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma dna
    • Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma dna. Sci. Transl. Med. 4, 136ra68–136ra68 (2012)
    • (2012) Sci. Transl. Med. , vol.4 , pp. 136ra68
    • Forshew, T.1
  • 60
    • 84863954202 scopus 로고    scopus 로고
    • Non-invasive prenatal measurement of the fetal genome
    • COI: 1:CAS:528:DC%2BC38XhtVKnt7bK
    • Fan, H. C. et al. Non-invasive prenatal measurement of the fetal genome. Nature 487, 320–324 (2012)
    • (2012) Nature , vol.487 , pp. 320-324
    • Fan, H.C.1
  • 62
    • 85018466550 scopus 로고    scopus 로고
    • Deepcpg: accurate prediction of single-cell dna methylation states using deep learning
    • Angermueller, C., Lee, H. J., Reik, W. & Stegle, O. Deepcpg: accurate prediction of single-cell dna methylation states using deep learning. Genome Biol. 18, 67 (2017)
    • (2017) Genome Biol. , vol.18
    • Angermueller, C.1    Lee, H.J.2    Reik, W.3    Stegle, O.4
  • 63
    • 84976420628 scopus 로고    scopus 로고
    • Gene expression inference with deep learning
    • COI: 1:CAS:528:DC%2BC28XhsF2jsrbO
    • Chen, Y. et al. Gene expression inference with deep learning. Bioinformatics 32, 1832–1839 (2016)
    • (2016) Bioinformatics , vol.32 , pp. 1832-1839
    • Chen, Y.1
  • 64
    • 85024505061 scopus 로고    scopus 로고
    • Denoising genome-wide histone chip-seq with convolutional neural networks
    • COI: 1:CAS:528:DC%2BC1cXitFOhsbfP
    • Koh, P. W., Pierson, E. & Kundaje, A. Denoising genome-wide histone chip-seq with convolutional neural networks. Bioinformatics 33, i225–i233 (2017)
    • (2017) Bioinformatics , vol.33 , pp. i225-i233
    • Koh, P.W.1    Pierson, E.2    Kundaje, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.