메뉴 건너뛰기




Volumn 28, Issue 24, 2012, Pages 3290-3297

Bayesian correlated clustering to integrate multiple datasets

Author keywords

[No Author keywords available]

Indexed keywords

SACCHAROMYCES CEREVISIAE;

EID: 84870796415     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/bts595     Document Type: Article
Times cited : (196)

References (55)
  • 1
    • 12344316947 scopus 로고    scopus 로고
    • A graph-theoretic approach to testing associations between disparate sources of functional genomics data
    • Balasubramanian, R. et al. (2004) A graph-theoretic approach to testing associations between disparate sources of functional genomics data. Bioinformatics, 20, 3353-3362.
    • (2004) Bioinformatics , vol.20 , pp. 3353-3362
    • Balasubramanian, R.1
  • 2
    • 0036100113 scopus 로고    scopus 로고
    • Context-specific Bayesian clustering for gene expression data
    • Barash, Y. and Friedman, N. (2002) Context-specific Bayesian clustering for gene expression data. J. Comput. Biol., 9, 169-191.
    • (2002) J. Comput. Biol , vol.9 , pp. 169-191
    • Barash, Y.1    Friedman, N.2
  • 3
    • 46749142532 scopus 로고    scopus 로고
    • ClValid: An R package for cluster validation
    • Brock, G. et al. (2008) clValid: an R package for cluster validation. J. Stat. Softw., 25, 1-22.
    • (2008) J. Stat. Softw , vol.25 , pp. 1-22
    • Brock, G.1
  • 6
    • 0031858914 scopus 로고    scopus 로고
    • SGD: Saccharomyces genome database
    • Cherry, J.M. et al. (1998) SGD: Saccharomyces genome database. Nucleic Acids Res., 26, 73-79.
    • (1998) Nucleic Acids Res , vol.26 , pp. 73-79
    • Cherry, J.M.1
  • 7
    • 0032112293 scopus 로고    scopus 로고
    • A genome-wide transcriptional analysis of the mitotic cell cycle
    • Cho, R.J. et al. (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell, 2, 65-73.
    • (1998) Mol. Cell , vol.2 , pp. 65-73
    • Cho, R.J.1
  • 8
    • 80053928843 scopus 로고    scopus 로고
    • Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements
    • Cooke, E.J. et al. (2011) Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements. BMC Bioinformatics, 12, 399.
    • (2011) BMC Bioinformatics , vol.12 , pp. 399
    • Cooke, E.J.1
  • 9
    • 33749428430 scopus 로고    scopus 로고
    • Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes
    • Datta, S. and Datta, S. (2006) Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. BMC Bioinformatics, 7, 397.
    • (2006) BMC Bioinformatics , vol.7 , pp. 397
    • Datta, S.1    Datta, S.2
  • 10
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via em Algorithm
    • Dempster, A. et al. (1977) Maximum likelihood from incomplete data via EM Algorithm. J. R. Stat. Soc. Series B Methodol., 39, 1-38.
    • (1977) J. R. Stat. Soc. Series B Methodol , vol.39 , pp. 1-38
    • Dempster, A.1
  • 11
    • 3142617128 scopus 로고    scopus 로고
    • Consistency in boosting: Discussion
    • Friedman, J. et al. (2004) Consistency in boosting: discussion. Ann. Stat., 32, 102-107.
    • (2004) Ann. Stat , vol.32 , pp. 102-107
    • Friedman, J.1
  • 12
    • 77954199057 scopus 로고    scopus 로고
    • Improved criteria for clustering based on the posterior similarity matrix
    • Fritsch, A. and Ickstadt, K. (2009) Improved criteria for clustering based on the posterior similarity matrix. Bayesian Anal., 4, 367-391.
    • (2009) Bayesian Anal , vol.4 , pp. 367-391
    • Fritsch, A.1    Ickstadt, K.2
  • 13
    • 77953204308 scopus 로고    scopus 로고
    • High-resolution transcription atlas of the mitotic cell cycle in budding yeast
    • Granovskaia, M.V. et al. (2010) High-resolution transcription atlas of the mitotic cell cycle in budding yeast. Genome Biol., 11, R24.
    • (2010) Genome Biol , vol.11
    • Granovskaia, M.V.1
  • 14
    • 0035531242 scopus 로고    scopus 로고
    • Modelling heterogeneity with and without the Dirichlet process
    • Green, P. and Richardson, S. (2001) Modelling heterogeneity with and without the Dirichlet process. Scand. J. Stat., 28, 355-375.
    • (2001) Scand. J. Stat , vol.28 , pp. 355-375
    • Green, P.1    Richardson, S.2
  • 15
    • 4544352942 scopus 로고    scopus 로고
    • Transcriptional regulatory code of a eukaryotic genome
    • Harbison, C.T. et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature, 431, 99-104.
    • (2004) Nature , vol.431 , pp. 99-104
    • Harbison, C.T.1
  • 16
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert, L. and Arabie, P. (1985) Comparing partitions. J. Classif., 2, 193-218.
    • (1985) J. Classif , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 17
    • 66449120271 scopus 로고    scopus 로고
    • Exploring the human genome with functional maps
    • Huttenhower, C. et al. (2009) Exploring the human genome with functional maps. Genome Res., 19, 1093-1106.
    • (2009) Genome Res , vol.19 , pp. 1093-1106
    • Huttenhower, C.1
  • 18
    • 0035805255 scopus 로고    scopus 로고
    • Integrated genomic and proteomic analyses of a systematically perturbed metabolic network
    • Ideker, T. et al. (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 292, 929-934.
    • (2001) Science , vol.292 , pp. 929-934
    • Ideker, T.1
  • 19
    • 0036623091 scopus 로고    scopus 로고
    • Exact and approximate representations for the sum Dirichlet process
    • Ishwaran, H. and Zarepour, M. (2002) Exact and approximate representations for the sum Dirichlet process. Can. J. Stat., 30, 269-283.
    • (2002) Can. J. Stat , vol.30 , pp. 269-283
    • Ishwaran, H.1    Zarepour, M.2
  • 20
    • 0034307468 scopus 로고    scopus 로고
    • Histone H2A.Z has a conserved function that is distinct from that of the major H2A sequence variants
    • Jackson, J.D. and Gorovsky, M.A. (2000) Histone H2A.Z has a conserved function that is distinct from that of the major H2A sequence variants. Nucleic Acids Res., 28, 3811-3816.
    • (2000) Nucleic Acids Res , vol.28 , pp. 3811-3816
    • Jackson, J.D.1    Gorovsky, M.A.2
  • 21
    • 0030478021 scopus 로고    scopus 로고
    • A likely histone H2A.F/Z variant in Saccharomyces cerevisiae
    • Jackson, J.D. et al. (1996) A likely histone H2A.F/Z variant in Saccharomyces cerevisiae. Trends Biochem. Sci., 21, 466-467.
    • (1996) Trends Biochem. Sci , vol.21 , pp. 466-467
    • Jackson, J.D.1
  • 22
    • 0142052944 scopus 로고    scopus 로고
    • A Bayesian networks approach for predicting protein-protein interactions from genomic data
    • Jansen, R. et al. (2003) A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science, 302, 449-453.
    • (2003) Science , vol.302 , pp. 449-453
    • Jansen, R.1
  • 23
    • 65549161909 scopus 로고    scopus 로고
    • Gaussian process regression bootstrapping: Exploring the effects of uncertainty in time course data
    • Kirk, P.D. and Stumpf, M.P. (2009) Gaussian process regression bootstrapping: exploring the effects of uncertainty in time course data. Bioinformatics, 25, 1300-1306.
    • (2009) Bioinformatics , vol.25 , pp. 1300-1306
    • Kirk, P.D.1    Stumpf, M.P.2
  • 24
    • 9444239213 scopus 로고    scopus 로고
    • A probabilistic functional network of yeast genes
    • Lee, I. et al. (2004) A probabilistic functional network of yeast genes. Science, 306, 1555-1558.
    • (2004) Science , vol.306 , pp. 1555-1558
    • Lee, I.1
  • 25
    • 33747875436 scopus 로고    scopus 로고
    • Context-specific infinite mixtures for clustering gene expression profiles across diverse microarray dataset
    • Liu, X. et al. (2006) Context-specific infinite mixtures for clustering gene expression profiles across diverse microarray dataset. Bioinformatics, 22, 1737-1744.
    • (2006) Bioinformatics , vol.22 , pp. 1737-1744
    • Liu, X.1
  • 26
    • 34848855728 scopus 로고    scopus 로고
    • Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data
    • Liu, X. et al. (2007) Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data. BMC Bioinformatics, 8, 283.
    • (2007) BMC Bioinformatics , vol.8 , pp. 283
    • Liu, X.1
  • 27
    • 10544256600 scopus 로고    scopus 로고
    • Expression monitoring by hybridization to high-density oligonucleotide arrays
    • Lockhart, D.J. et al. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol., 14, 1675-1680.
    • (1996) Nat. Biotechnol , vol.14 , pp. 1675-1680
    • Lockhart, D.J.1
  • 28
    • 49949096013 scopus 로고    scopus 로고
    • Gene Ontology term overlap as a measure of gene functional similarity
    • Mistry, M. and Pavlidis, P. (2008) Gene Ontology term overlap as a measure of gene functional similarity. BMC Bioinformatics, 9, 327.
    • (2008) BMC Bioinformatics , vol.9 , pp. 327
    • Mistry, M.1    Pavlidis, P.2
  • 29
    • 34548749776 scopus 로고    scopus 로고
    • Context-sensitive data integration and prediction of biological networks
    • Myers, C.L. and Troyanskaya, O.G. (2007) Context-sensitive data integration and prediction of biological networks. Bioinformatics, 23, 2322-2330.
    • (2007) Bioinformatics , vol.23 , pp. 2322-2330
    • Myers, C.L.1    Troyanskaya, O.G.2
  • 30
    • 33745113181 scopus 로고    scopus 로고
    • Discovery of biological networks from diverse functional genomic data
    • Myers, C.L. et al. (2005) Discovery of biological networks from diverse functional genomic data. Genome Biol., 6, R114.
    • (2005) Genome Biol , vol.6
    • Myers, C.L.1
  • 32
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Neal, R.M. (2000) Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Stat., 9, 249-265.
    • (2000) J. Comput. Graph. Stat , vol.9 , pp. 249-265
    • Neal, R.M.1
  • 33
    • 21644433245 scopus 로고    scopus 로고
    • Normalized random measures driven by increasing additive processes
    • Nieto-Barajas, L. et al. (2004) Normalized random measures driven by increasing additive processes. Ann. Stat., 32, 2343-2360.
    • (2004) Ann. Stat , vol.32 , pp. 2343-2360
    • Nieto-Barajas, L.1
  • 34
    • 0034841844 scopus 로고    scopus 로고
    • The tandem affinity purification (TAP) method: A general procedure of protein complex purification
    • Puig, O. et al. (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods, 24, 218-229.
    • (2001) Methods , vol.24 , pp. 218-229
    • Puig, O.1
  • 35
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W. (1971) Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc., 66, 846-850.
    • (1971) J. Am. Stat. Assoc , vol.66 , pp. 846-850
    • Rand, W.1
  • 36
    • 79955803023 scopus 로고    scopus 로고
    • The infinite Gaussian mixture model
    • Solla, S.A., Leen, T.K. and Müller, K.-R. (eds.) MIT Press, Cambridge, MA
    • Rasmussen, C.E. (2000) The infinite Gaussian mixture model. In: Solla, S.A., Leen, T.K. and Mü ller, K.-R. (eds.) Advances in Neural Information Processing Systems, Vol. 12. MIT Press, Cambridge, MA, pp. 554-560.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 554-560
    • Rasmussen, C.E.1
  • 38
    • 33746067911 scopus 로고    scopus 로고
    • Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks
    • Reiss, D.J. et al. (2006) Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics, 7, 280.
    • (2006) BMC Bioinformatics , vol.7 , pp. 280
    • Reiss, D.J.1
  • 39
    • 23444452564 scopus 로고    scopus 로고
    • Probabilistic model of the human protein-protein interaction network
    • Rhodes, D.R. et al. (2005) Probabilistic model of the human protein-protein interaction network. Nat. Biotechnol., 23, 951-959.
    • (2005) Nat. Biotechnol , vol.23 , pp. 951-959
    • Rhodes, D.R.1
  • 40
    • 0032828715 scopus 로고    scopus 로고
    • A generic protein purification method for protein complex characterization and proteome exploration
    • Rigaut, G. et al. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol., 17, 1030-1032.
    • (1999) Nat. Biotechnol , vol.17 , pp. 1030-1032
    • Rigaut, G.1
  • 41
    • 57249105121 scopus 로고    scopus 로고
    • Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models
    • Rogers, S. et al. (2008) Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics, 24, 2894-2900.
    • (2008) Bioinformatics , vol.24 , pp. 2894-2900
    • Rogers, S.1
  • 42
    • 79958175783 scopus 로고    scopus 로고
    • Infinite factorization of multiple non-parametric views
    • Rogers, S. et al. (2010) Infinite factorization of multiple non-parametric views. Mach. Learn., 79, 201-226.
    • (2010) Mach. Learn , vol.79 , pp. 201-226
    • Rogers, S.1
  • 43
    • 80054736950 scopus 로고    scopus 로고
    • Asymptotic behaviour of the posterior distribution in overfitted mixture models
    • Rousseau, J. and Mengersen, K. (2011) Asymptotic behaviour of the posterior distribution in overfitted mixture models. J. R. Stat. Soc. Series B Stat. Methodol., 73, 689-710.
    • (2011) J. R. Stat. Soc. Series B Stat. Methodol , vol.73 , pp. 689-710
    • Rousseau, J.1    Mengersen, K.2
  • 44
    • 0034721645 scopus 로고    scopus 로고
    • Histone H2A.Z regulates transcription and is partially redundant with nucleosome remodeling complexes
    • Santisteban, M.S. et al. (2000) Histone H2A.Z regulates transcription and is partially redundant with nucleosome remodeling complexes. Cell, 103, 411-422.
    • (2000) Cell , vol.103 , pp. 411-422
    • Santisteban, M.S.1
  • 45
    • 77954207953 scopus 로고    scopus 로고
    • Discovering transcriptional modules by Bayesian data integration
    • Savage, R.S. et al. (2010) Discovering transcriptional modules by Bayesian data integration. Bioinformatics, 26, i158-i167.
    • (2010) Bioinformatics , vol.26
    • Savage, R.S.1
  • 46
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena, M. et al. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467-470.
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1
  • 47
    • 70449331456 scopus 로고    scopus 로고
    • Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
    • Shen, R. et al. (2009) Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics, 25, 2906-2912.
    • (2009) Bioinformatics , vol.25 , pp. 2906-2912
    • Shen, R.1
  • 48
    • 0023948705 scopus 로고
    • Mapping protein-DNA interactions in vivo with formaldehyde: Evidence that histone H4 is retained on a highly transcribed gene
    • Solomon, M.J. et al. (1988)Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell, 53, 937-947.
    • (1988) Cell , vol.53 , pp. 937-947
    • Solomon, M.J.1
  • 49
    • 33644873184 scopus 로고    scopus 로고
    • BioGRID: A general repository for interaction datasets
    • Stark, C. et al. (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res., 34, D535-D539.
    • (2006) Nucleic Acids Res , vol.34
    • Stark, C.1
  • 50
    • 77955516707 scopus 로고    scopus 로고
    • Understanding GPU programming for statistical computation: Studies in massively parallel massive mixtures
    • Suchard, M.A. et al. (2010) Understanding GPU programming for statistical computation: studies in massively parallel massive mixtures. J. Comput. Graph. Stat., 19, 419-438.
    • (2010) J. Comput. Graph. Stat , vol.19 , pp. 419-438
    • Suchard, M.A.1
  • 51
    • 0038492417 scopus 로고    scopus 로고
    • A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae)
    • Troyanskaya, O.G. et al. (2003) A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Natl Acad. Sci. USA, 100, 8348-8353.
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 8348-8353
    • Troyanskaya, O.G.1
  • 52
    • 84870277977 scopus 로고    scopus 로고
    • Bayesian joint modeling of multiple gene networks and diverse genomic data to identify target genes of a transcription factor
    • Wei, P. and Pan, W. (2012) Bayesian joint modeling of multiple gene networks and diverse genomic data to identify target genes of a transcription factor. Ann. Appl. Stat., 6, 334-355.
    • (2012) Ann. Appl. Stat , vol.6 , pp. 334-355
    • Wei, P.1    Pan, W.2
  • 53
    • 8144227773 scopus 로고    scopus 로고
    • Combining biological networks to predict genetic interactions
    • Wong, S.L. et al. (2004) Combining biological networks to predict genetic interactions. Proc. Natl Acad. Sci. USA, 101, 15682-15687.
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 15682-15687
    • Wong, S.L.1
  • 54
    • 0037667290 scopus 로고    scopus 로고
    • Clustering gene-expression data with repeated measurements
    • Yeung, K.Y. et al. (2003) Clustering gene-expression data with repeated measurements. Genome Biol., 4, R34.
    • (2003) Genome Biol , vol.4
    • Yeung, K.Y.1
  • 55
    • 80055083654 scopus 로고    scopus 로고
    • Patient-specific data fusion defines prognostic cancer subtypes
    • Yuan, Y. et al. (2011) Patient-specific data fusion defines prognostic cancer subtypes. PLoS Comput. Biol., 7, e1002227.
    • (2011) PLoS Comput. Biol , vol.7
    • Yuan, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.