메뉴 건너뛰기




Volumn 29, Issue 20, 2013, Pages 2610-2616

Bayesian consensus clustering

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; BAYES THEOREM; CLUSTER ANALYSIS; GENE DOSAGE; GENOMICS; HUMAN; PROCEDURES; STATISTICAL MODEL; ARTICLE; METHODOLOGY;

EID: 84885617335     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btt425     Document Type: Article
Times cited : (230)

References (29)
  • 1
    • 84877028141 scopus 로고    scopus 로고
    • Comprehensive molecular portraits of human breast tumours
    • Cancer Genome Atlas Network
    • Cancer Genome Atlas Network. (2012) Comprehensive molecular portraits of human breast tumours. Nature, 490, 61-70
    • (2012) Nature , vol.490 , pp. 61-70
  • 2
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland, W.S. (1979) Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc., 74, 829-836
    • (1979) J. Am. Stat. Assoc , vol.74 , pp. 829-836
    • Cleveland, W.S.1
  • 3
    • 84861527388 scopus 로고    scopus 로고
    • The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
    • Curtis, C. et al. (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486, 346-352
    • (2012) Nature , vol.486 , pp. 346-352
    • Curtis, C.1
  • 5
    • 84880542781 scopus 로고    scopus 로고
    • Metasignatures identify two major subtypes of breast cancer
    • Duan, Q. et al. (2013) Metasignatures identify two major subtypes of breast cancer. CPT Pharmacom. Syst. Pharmacol., 3, e35
    • (2013) CPT Pharmacom. Syst. Pharmacol , vol.3
    • Duan, Q.1
  • 6
    • 77954199057 scopus 로고    scopus 로고
    • Improved criteria for clustering based on the posterior similarity matrix
    • Fritsch, A. and Ickstadt, K. (2009) Improved criteria for clustering based on the posterior similarity matrix. Bayesian Anal., 4, 367-391
    • (2009) Bayesian Anal , vol.4 , pp. 367-391
    • Fritsch, A.1    Ickstadt, K.2
  • 7
    • 84898934543 scopus 로고    scopus 로고
    • Variational inference for bayesian mixtures of factor analysers
    • Solla, S.A. et al. (ed., [NIPS Conference, Denver, Colorado, USA, November 29-December 4, 1999]. The MIT Press, Cambridge, MA, USA
    • Ghahramani, Z. and Beal, M.J. (1999) Variational inference for bayesian mixtures of factor analysers. In: Solla, S.A. et al. (ed.) Advances in Neural Information Processing Systems 12, [NIPS Conference, Denver, Colorado, USA, November 29-December 4, 1999]. The MIT Press, Cambridge, MA, USA, pp. 449-455
    • (1999) Advances in Neural Information Processing Systems , vol.12 , pp. 449-455
    • Ghahramani, Z.1    Beal, M.J.2
  • 8
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert, L. and Arabie, P. (1985) Comparing partitions. J. Classif., 2, 193-218
    • (1985) J. Classif , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 9
    • 78149477701 scopus 로고    scopus 로고
    • Genomic subtypes of breast cancer identified by arraycomparative genomic hybridization display distinct molecular and clinical characteristics
    • Jönsson G et al. 2010 Genomic subtypes of breast cancer identified by arraycomparative genomic hybridization display distinct molecular and clinical characteristics Breast Cancer Res. 12 R42
    • (2010) Breast Cancer Res , vol.12
    • Jönsson, G.1
  • 10
    • 84870796415 scopus 로고    scopus 로고
    • Bayesian correlated clustering to integrate multiple datasets
    • Kirk, P. et al. (2012) Bayesian correlated clustering to integrate multiple datasets. Bioinformatics, 28, 3290-3297
    • (2012) Bioinformatics , vol.28 , pp. 3290-3297
    • Kirk, P.1
  • 11
    • 84870001973 scopus 로고    scopus 로고
    • Integrative model-based clustering of microarray methylation and expression data
    • Kormaksson, M. et al. (2012) Integrative model-based clustering of microarray methylation and expression data. Ann. Appl. Stat., 6, 1327-1347
    • (2012) Ann. Appl. Stat , vol.6 , pp. 1327-1347
    • Kormaksson, M.1
  • 12
    • 84876058478 scopus 로고    scopus 로고
    • Joint and individual variation explained (jive) for integrated analysis of multiple data types
    • Lock, E. et al. (2013) Joint and Individual Variation Explained (JIVE) for integrated analysis of multiple data types. Ann. Appl. Stat., 7, 523-542
    • (2013) Ann. Appl. Stat , vol.7 , pp. 523-542
    • Lock, E.1
  • 13
    • 80051934386 scopus 로고    scopus 로고
    • Onplsa novel multiblock method for the modelling of predictive and orthogonal variation
    • Löfstedt T Trygg J. 2011 Onplsa novel multiblock method for the modelling of predictive and orthogonal variation J. Chemom. 25 441-455
    • (2011) J. Chemom , vol.25 , pp. 441-455
    • Löfstedt, T.1    Trygg, J.2
  • 15
    • 84875016233 scopus 로고    scopus 로고
    • Pattern discovery and cancer gene identification in integrated cancer genomic data
    • Mo, Q. et al. (2013) Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl Acad. Sci. USA, 110, 4245-4250
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 4245-4250
    • Mo, Q.1
  • 17
    • 79958266660 scopus 로고    scopus 로고
    • The dirichlet labeling process for clustering functional data
    • Nguyen, X. and Gelfand, A.E. (2011) The Dirichlet labeling process for clustering functional data. Stat. Sin., 21, 1249-1289
    • (2011) Stat. Sin , vol.21 , pp. 1249-1289
    • Nguyen, X.1    Gelfand, A.E.2
  • 18
    • 84907095419 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing
    • R Development Core Team Vienna, Austria. ISBN 3-900051-07-0
    • R Development Core Team. (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0
    • (2012) R Foundation for Statistical Computing
  • 20
    • 84867125131 scopus 로고    scopus 로고
    • Copula mixture model for dependency-seeking clustering
    • Langford, J. and Pineau, J. (eds). ICML12, p., New York, NY, Omnipress
    • Rey, M. and Roth, V. (2012) Copula mixture model for dependency-seeking clustering. In: Langford, J. and Pineau, J. (eds) Proceedings of the 29th International Conference on Machine Learning (ICML-12). ICML12, p. 927-934, New York, NY, Omnipress
    • (2012) Proceedings of the 29th International Conference on Machine Learning (ICML-12 , pp. 927-934
    • Rey, M.1    Roth, V.2
  • 21
    • 57249105121 scopus 로고    scopus 로고
    • Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models
    • Rogers, S. et al. (2008) Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics, 24, 2894-2900
    • (2008) Bioinformatics , vol.24 , pp. 2894-2900
    • Rogers, S.1
  • 22
    • 77954207953 scopus 로고    scopus 로고
    • Discovering transcriptional modules by bayesian data integration
    • Savage, R.S. et al. (2010) Discovering transcriptional modules by bayesian data integration. Bioinformatics, 26, i158-i167
    • (2010) Bioinformatics , vol.26
    • Savage, R.S.1
  • 24
    • 70449331456 scopus 로고    scopus 로고
    • Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
    • Shen, R. et al. (2009) Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics, 25, 2906-2912
    • (2009) Bioinformatics , vol.25 , pp. 2906-2912
    • Shen, R.1
  • 25
    • 20444465712 scopus 로고    scopus 로고
    • Bayesian variable selection in clustering high-dimensional data
    • Tadesse, M.G. et al. (2005) Bayesian variable selection in clustering high-dimensional data. J. Am. Stat. Assoc., 100, 602-617
    • (2005) J. Am. Stat. Assoc , vol.100 , pp. 602-617
    • Tadesse, M.G.1
  • 26
    • 79551693227 scopus 로고    scopus 로고
    • Bayesian cluster ensembles
    • Wang, H. et al. (2011) Bayesian cluster ensembles. Stat. Anal. Data Mining, 4, 54-70
    • (2011) Stat. Anal. Data Mining , vol.4 , pp. 54-70
    • Wang, H.1
  • 27
    • 77958056558 scopus 로고    scopus 로고
    • Nonparametric bayesian clustering ensembles
    • Springer, Berlin-Heidelberg
    • Wang, P. et al. (2010) Nonparametric bayesian clustering ensembles. In: Machine Learning and Knowledge Discovery in Databases. Springer, Berlin-Heidelberg, pp. 435-450
    • (2010) Machine Learning and Knowledge Discovery in Databases , pp. 435-450
    • Wang, P.1
  • 28
    • 80055083654 scopus 로고    scopus 로고
    • Patient-specific data fusion defines prognostic cancer subtypes
    • Yuan, Y. et al. (2011) Patient-specific data fusion defines prognostic cancer subtypes. PLoS Comput. Biol., 7, e1002227
    • (2011) PLoS Comput. Biol , vol.7
    • Yuan, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.