-
1
-
-
85047344588
-
-
Accessed 22 August
-
Prostate Cancer—Cancer Stat Facts. https://seer.cancer.gov/statfacts/html/prost.html. Accessed 22 August 2018.
-
(2018)
Prostate Cancer—Cancer Stat Facts
-
-
-
2
-
-
84936797319
-
A contemporary prostate cancer grading system: a validated alternative to the Gleason score
-
Epstein, J. I. et al. A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur. Urol. 69, 428–435 (2016).
-
(2016)
Eur. Urol.
, vol.69
, pp. 428-435
-
-
Epstein, J.I.1
-
3
-
-
24144493035
-
The 2005 International Society of Urological Pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma
-
Epstein, J. I., Allsbrook, W. C., Amin, M. B. & Egevad, L. L. The 2005 International Society of Urological Pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma. Am. J. Surg. Pathol. 29, 1228–1242 (2005).
-
(2005)
Am. J. Surg. Pathol.
, vol.29
, pp. 1228-1242
-
-
Epstein, J.I.1
Allsbrook, W.C.2
Amin, M.B.3
Egevad, L.L.4
-
4
-
-
84958033425
-
The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System
-
Epstein, J. I. et al. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 40, 244–252 (2016).
-
(2016)
Am. J. Surg. Pathol
, vol.40
, pp. 244-252
-
-
Epstein, J.I.1
-
5
-
-
85092428779
-
-
Accessed 14 August
-
NCCN Clinical Practice Guidelines in Oncology. https://www.nccn.org/professionals/physician_gls/default.aspx#prostate. Accessed 14 August 2018.
-
(2018)
-
-
-
6
-
-
84896128069
-
Interobserver variability in the pathological assessment of radical prostatectomy specimens: findings of the Laparoscopic Prostatectomy Robot Open (LAPPRO) study
-
Persson, J. et al. Interobserver variability in the pathological assessment of radical prostatectomy specimens: findings of the Laparoscopic Prostatectomy Robot Open (LAPPRO) study. Scand. J. Urol. 48, 160–167 (2014).
-
(2014)
Scand. J. Urol.
, vol.48
, pp. 160-167
-
-
Persson, J.1
-
7
-
-
36549011799
-
Interobserver agreement of Gleason score and modified Gleason score in needle biopsy and in surgical specimen of prostate cancer
-
Discussion 647–51
-
Veloso, S. G. et al. Interobserver agreement of Gleason score and modified Gleason score in needle biopsy and in surgical specimen of prostate cancer. Int. Braz. J. Urol. 33, 639–646 (2007). Discussion 647–51.
-
(2007)
Int. Braz. J. Urol.
, vol.33
, pp. 639-646
-
-
Veloso, S.G.1
-
8
-
-
84879935168
-
Central prostate pathology review: should it be mandatory?
-
Discussion 202–203
-
Montironi, R., Lopez-Beltran, A., Cheng, L., Montorsi, F. & Scarpelli, M. Central prostate pathology review: should it be mandatory? Eur. Urol. 64, 199–201 (2013). Discussion 202–203.
-
(2013)
Eur. Urol.
, vol.64
, pp. 199-201
-
-
Montironi, R.1
Lopez-Beltran, A.2
Cheng, L.3
Montorsi, F.4
Scarpelli, M.5
-
9
-
-
84879952269
-
Phase 3 study of adjuvant radiotherapy versus wait and see in pT3 prostate cancer: impact of pathology review on analysis
-
Bottke, D. et al. Phase 3 study of adjuvant radiotherapy versus wait and see in pT3 prostate cancer: impact of pathology review on analysis. Eur. Urol. 64, 193–198 (2013).
-
(2013)
Eur. Urol.
, vol.64
, pp. 193-198
-
-
Bottke, D.1
-
10
-
-
84871133517
-
Standardization of Gleason grading among 337 European pathologists
-
Egevad, L. et al. Standardization of Gleason grading among 337 European pathologists. Histopathology 62, 247–256 (2013).
-
(2013)
Histopathology
, vol.62
, pp. 247-256
-
-
Egevad, L.1
-
11
-
-
79955571596
-
Interobserver variability in histologic evaluation of radical prostatectomy between central and local pathologists: Findings of TAX 3501 multinational clinical trial
-
Netto, G. J., Eisenberger, M., Epstein, J. I. & TAX 3501 Trial Investigators. Interobserver variability in histologic evaluation of radical prostatectomy between central and local pathologists: findings of TAX 3501 multinational clinical trial. Urology 77, 1155–1160 (2011).
-
(2011)
Urology
, vol.77
, pp. 1155-1160
-
-
Netto, G.J.1
Eisenberger, M.2
Epstein, J.I.3
-
12
-
-
0035126050
-
Interobserver reproducibility of Gleason grading of prostatic carcinoma: urologic pathologists
-
Allsbrook, W. C. Jr et al. Interobserver reproducibility of Gleason grading of prostatic carcinoma: urologic pathologists. Hum. Pathol. 32, 74–80 (2001).
-
(2001)
Hum. Pathol.
, vol.32
, pp. 74-80
-
-
Allsbrook, W.C.1
-
13
-
-
0035122453
-
Interobserver reproducibility of Gleason grading of prostatic carcinoma: general pathologist
-
Allsbrook, W. C. Jr et al. Interobserver reproducibility of Gleason grading of prostatic carcinoma: general pathologist. Hum. Pathol. 32, 81–88 (2001).
-
(2001)
Hum. Pathol.
, vol.32
, pp. 81-88
-
-
Allsbrook, W.C.1
-
14
-
-
0038045043
-
Accuracy of gleason grading by practicing pathologists and the impact of education on improving agreement
-
Mikami, Y. et al. Accuracy of gleason grading by practicing pathologists and the impact of education on improving agreement. Hum. Pathol. 34, 658–665 (2003).
-
(2003)
Hum. Pathol.
, vol.34
, pp. 658-665
-
-
Mikami, Y.1
-
15
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
COI: 1:CAS:528:DC%2BC2sXhsFGltrY%3D
-
Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
-
16
-
-
85054158054
-
Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
-
COI: 1:STN:280:DC%2BC1MbhslCjtA%3D%3D
-
Haenssle, H. A. et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29, 1836–1842 (2018).
-
(2018)
Ann. Oncol.
, vol.29
, pp. 1836-1842
-
-
Haenssle, H.A.1
-
17
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016).
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
-
18
-
-
85038438910
-
Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
-
Ting, D. S. W. et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318, 2211–2223 (2017).
-
(2017)
JAMA
, vol.318
, pp. 2211-2223
-
-
Ting, D.S.W.1
-
19
-
-
85034636594
-
Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks
-
Burlina, P. M. et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 135, 1170–1176 (2017).
-
(2017)
JAMA Ophthalmol.
, vol.135
, pp. 1170-1176
-
-
Burlina, P.M.1
-
20
-
-
85052522615
-
Clinically applicable deep learning for diagnosis and referral in retinal disease
-
De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342–1350 (2018).
-
(2018)
Nat. Med.
, vol.24
, pp. 1342-1350
-
-
De Fauw, J.1
-
21
-
-
85042389905
-
Identifying medical diagnoses and treatable diseases by image-based deep learning
-
COI: 1:CAS:528:DC%2BC1cXjt12ltr0%3D
-
Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122–1131.e9 (2018).
-
(2018)
Cell
, vol.172
, pp. 1122-1131.e9
-
-
Kermany, D.S.1
-
23
-
-
85058466258
-
Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study
-
Chilamkurthy, S. et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet, 10.1016/S0140-6736(18)31645-3 (2018).
-
(2018)
The Lancet
, vol.392
, Issue.10162
, pp. 2388-2396
-
-
Chilamkurthy, S.1
Ghosh, R.2
Tanamala, S.3
Biviji, M.4
Campeau, N.G.5
Venugopal, V.K.6
Mahajan, V.7
Rao, P.8
Warier, P.9
-
24
-
-
85038431889
-
Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
-
Ehteshami Bejnordi, B. et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318, 2199–2210 (2017).
-
(2017)
JAMA
, vol.318
, pp. 2199-2210
-
-
Ehteshami Bejnordi, B.1
-
27
-
-
85051675515
-
Automated Gleason grading of prostate cancer tissue microarrays via deep learning
-
Arvaniti, E. et al. Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Sci. Rep. 8, 12054 (2018).
-
(2018)
Sci. Rep.
, vol.8
-
-
Arvaniti, E.1
-
28
-
-
85056358333
-
Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer
-
Steiner, D. F. et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am. J. Surg. Pathol., 10.1097/PAS.0000000000001151 (2018).
-
(2018)
The American Journal of Surgical Pathology
, vol.42
, Issue.12
, pp. 1636-1646
-
-
Steiner, D.F.1
MacDonald, R.2
Liu, Y.3
Truszkowski, P.4
Hipp, J.D.5
Gammage, C.6
Thng, F.7
Peng, L.8
Stumpe, M.C.9
-
29
-
-
85068564023
-
Artificial intelligence–based breast cancer nodal metastasis detection
-
https://doi.org/10.5858/arpa.2018-0147-oa
-
Liu, Y. et al. Artificial intelligence–based breast cancer nodal metastasis detection. Arch. Pathol. Lab. Med. 10.5858/arpa.2018-0147-oa (2018).
-
(2018)
Arch. Pathol. Lab. Med.
-
-
Liu, Y.1
-
30
-
-
85054588187
-
Stable and discriminating features are predictive of cancer presence and Gleason grade in radical prostatectomy specimens: a multi-site study
-
Leo, P. et al. Stable and discriminating features are predictive of cancer presence and Gleason grade in radical prostatectomy specimens: a multi-site study. Sci. Rep. 8, 14918 (2018).
-
(2018)
Sci. Rep.
, vol.8
-
-
Leo, P.1
-
31
-
-
84885381855
-
Statistical shape model for manifold regularization: Gleason grading of prostate histology
-
Sparks, R. & Madabhushi, A. Statistical shape model for manifold regularization: Gleason grading of prostate histology. Comput. Vis. Image Under. 117, 1138–1146 (2013).
-
(2013)
Comput. Vis. Image Under.
, vol.117
, pp. 1138-1146
-
-
Sparks, R.1
Madabhushi, A.2
-
32
-
-
78149477488
-
Automated gland segmentation and classification for gleason grading of prostate tissue images
-
23–26 August 2010, Istanbul
-
Nguyen, K., Jain, A. K. & Allen, R. L. Automated gland segmentation and classification for gleason grading of prostate tissue images. In: 2010 20th International Conference on Pattern Recognition, 23–26 August 2010, Istanbul (2010).
-
(2010)
2010 20Th International Conference on Pattern Recognition
-
-
Nguyen, K.1
Jain, A.K.2
Allen, R.L.3
-
33
-
-
85051659095
-
Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score
-
Orlando, Florida, USA
-
Jiménez del Toro, O. et al. Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score. In Medical Imaging 2017: Digital Pathology (Orlando, Florida, USA, 2017).
-
(2017)
Medical Imaging 2017: Digital Pathology
-
-
Jiménez Del Toro, O.1
-
34
-
-
85048495113
-
Semantic segmentation for prostate cancer grading by convolutional neural networks
-
Houston, Texas, USA
-
Ma, Z. et al. Semantic segmentation for prostate cancer grading by convolutional neural networks. In Medical Imaging 2018: Digital Pathology (Houston, Texas, USA, 2018).
-
(2018)
Medical Imaging 2018: Digital Pathology
-
-
Ma, Z.1
-
35
-
-
84978387816
-
Towards grading gleason score using generically trained deep convolutional neural networks
-
Prague, Czech Republic
-
Kallen, H., Molin, J., Heyden, A., Lundstrom, C. & Astrom, K. Towards grading gleason score using generically trained deep convolutional neural networks. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) (Prague, Czech Republic, 2016).
-
(2016)
2016 IEEE 13Th International Symposium on Biomedical Imaging (ISBI)
-
-
Kallen, H.1
Molin, J.2
Heyden, A.3
Lundstrom, C.4
Astrom, K.5
-
36
-
-
85015420724
-
A curated collection of tissue microarray images and clinical outcome data of prostate cancer patients
-
COI: 1:CAS:528:DC%2BC2sXkvVSntrw%3D
-
Zhong, Q. et al. A curated collection of tissue microarray images and clinical outcome data of prostate cancer patients. Sci. Data 4, 170014 (2017).
-
(2017)
Sci. Data
, vol.4
-
-
Zhong, Q.1
-
37
-
-
33748998493
-
Impact of pathology review of stage and margin status of radical prostatectomy specimens (EORTC trial 22911)
-
van der Kwast, T. H. et al. Impact of pathology review of stage and margin status of radical prostatectomy specimens (EORTC trial 22911). Virchows Arch. 449, 428–434 (2006).
-
(2006)
Virchows Arch.
, vol.449
, pp. 428-434
-
-
van der Kwast, T.H.1
-
38
-
-
70349650210
-
Protocol for the examination of specimens from patients with carcinoma of the prostate gland
-
PID: 19792046
-
Srigley, J. R. et al. Protocol for the examination of specimens from patients with carcinoma of the prostate gland. Arch. Pathol. Lab. Med. 133, 1568–1576 (2009).
-
(2009)
Arch. Pathol. Lab. Med.
, vol.133
, pp. 1568-1576
-
-
Srigley, J.R.1
-
39
-
-
84961221276
-
The 2016 WHO classification of tumours of the urinary system and male genital organs—Part B: prostate and bladder tumours
-
Humphrey, P. A., Moch, H., Cubilla, A. L., Ulbright, T. M. & Reuter, V. E. The 2016 WHO classification of tumours of the urinary system and male genital organs—Part B: prostate and bladder tumours. Eur. Urol. 70, 106–119 (2016).
-
(2016)
Eur. Urol.
, vol.70
, pp. 106-119
-
-
Humphrey, P.A.1
Moch, H.2
Cubilla, A.L.3
Ulbright, T.M.4
Reuter, V.E.5
-
40
-
-
85011867632
-
Contemporary Gleason grading of prostatic carcinoma: an update with discussion on practical issues to implement the 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma
-
Epstein, J. I., Amin, M. B., Reuter, V. E. & Humphrey, P. A. Contemporary Gleason grading of prostatic carcinoma: an update with discussion on practical issues to implement the 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 41, e1–e7 (2017).
-
(2017)
Am. J. Surg. Pathol.
, vol.41
, pp. e1-e7
-
-
Epstein, J.I.1
Amin, M.B.2
Reuter, V.E.3
Humphrey, P.A.4
-
41
-
-
84959263667
-
Clinical utility of quantitative gleason grading in prostate biopsies and prostatectomy specimens
-
Sauter, G. et al. Clinical utility of quantitative gleason grading in prostate biopsies and prostatectomy specimens. Eur. Urol. 69, 592–598 (2016).
-
(2016)
Eur. Urol.
, vol.69
, pp. 592-598
-
-
Sauter, G.1
-
42
-
-
84965829779
-
Regression models and life-tables
-
Kotz, S., Johnson, N. L., Springer, New York, NY
-
Cox, D. R. Regression models and life-tables. in Springer Series in Statistics (eds Kotz, S., & Johnson, N. L.) 527–541 (Springer, New York, NY, 1992).
-
(1992)
Springer Series in Statistics
, pp. 527-541
-
-
Cox, D.R.1
-
43
-
-
77953123852
-
The value of mandatory second opinion pathology review of prostate needle biopsy interpretation before radical prostatectomy
-
Brimo, F., Schultz, L. & Epstein, J. I. The value of mandatory second opinion pathology review of prostate needle biopsy interpretation before radical prostatectomy. J. Urol. 184, 126–130 (2010).
-
(2010)
J. Urol.
, vol.184
, pp. 126-130
-
-
Brimo, F.1
Schultz, L.2
Epstein, J.I.3
-
44
-
-
84941797079
-
Diagnosis of ‘poorly formed glands’ gleason pattern 4 prostatic adenocarcinoma on needle biopsy: an interobserver reproducibility study among urologic pathologists with recommendations
-
Zhou, M. et al. Diagnosis of ‘poorly formed glands’ gleason pattern 4 prostatic adenocarcinoma on needle biopsy: an interobserver reproducibility study among urologic pathologists with recommendations. Am. J. Surg. Pathol. 39, 1331–1339 (2015).
-
(2015)
Am. J. Surg. Pathol.
, vol.39
, pp. 1331-1339
-
-
Zhou, M.1
-
45
-
-
84942754710
-
Diagnosis of Gleason Pattern 5 prostate adenocarcinoma on core needle biopsy
-
Shah, R. B. et al. Diagnosis of Gleason Pattern 5 prostate adenocarcinoma on core needle biopsy. Am. J. Surg. Pathol. 39, 1242–1249 (2015).
-
(2015)
Am. J. Surg. Pathol.
, vol.39
, pp. 1242-1249
-
-
Shah, R.B.1
-
46
-
-
84960105473
-
Grading of prostatic adenocarcinoma: current state and prognostic implications
-
Gordetsky, J. & Epstein, J. Grading of prostatic adenocarcinoma: current state and prognostic implications. Diagn. Pathol. 11, 25 (2016).
-
(2016)
Diagn. Pathol.
, vol.11
, pp. 25
-
-
Gordetsky, J.1
Epstein, J.2
-
47
-
-
85028701746
-
The gold standard paradox in digital image analysis: manual versus automated scoring as ground truth
-
Aeffner, F. et al. The gold standard paradox in digital image analysis: manual versus automated scoring as ground truth. Arch. Pathol. Lab. Med. 141, 1267–1275 (2017).
-
(2017)
Arch. Pathol. Lab. Med.
, vol.141
, pp. 1267-1275
-
-
Aeffner, F.1
-
48
-
-
85014442834
-
-
Preprint at arXiv [q-bio.QM]
-
Wang, D., Khosla, A., Gargeya, R., Irshad, H. & Beck, A. H. Deep learning for identifying metastatic breast cancer. Preprint at arXiv [q-bio.QM]. https://arxiv.org/abs/1606.05718 (2016).
-
(2016)
Deep Learning for Identifying Metastatic Breast Cancer
-
-
Wang, D.1
Khosla, A.2
Gargeya, R.3
Irshad, H.4
Beck, A.H.5
-
49
-
-
85023173631
-
Deep learning-based assessment of tumor-associated stroma for diagnosing breast cancer in histopathology images
-
Melbourne, Australia
-
Ehteshami Bejnordi, B. et al. Deep learning-based assessment of tumor-associated stroma for diagnosing breast cancer in histopathology images. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) (Melbourne, Australia, 2017).
-
(2017)
2017 IEEE 14Th International Symposium on Biomedical Imaging (ISBI 2017)
-
-
Ehteshami Bejnordi, B.1
-
50
-
-
84884994218
-
The Cancer Genome Atlas Pan-Cancer analysis project
-
Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).
-
(2013)
Nat. Genet.
, vol.45
, pp. 1113-1120
-
-
Weinstein, J.N.1
-
51
-
-
85044905247
-
An integrated TCGA Pan-cancer clinical data resource to drive high-quality survival outcome analytics
-
COI: 1:CAS:528:DC%2BC1cXntFaiu7Y%3D
-
Liu, J. et al. An integrated TCGA Pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173, 400–416.e11 (2018).
-
(2018)
Cell
, vol.173
, pp. 400-416.e11
-
-
Liu, J.1
-
52
-
-
33748470123
-
Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal for a standardized definition
-
COI: 1:CAS:528:DC%2BD28Xps1Sit70%3D
-
Stephenson, A. J. et al. Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal for a standardized definition. J. Clin. Oncol. 24, 3973–3978 (2006).
-
(2006)
J. Clin. Oncol.
, vol.24
, pp. 3973-3978
-
-
Stephenson, A.J.1
-
53
-
-
84986296808
-
Rethinking the Inception architecture for computer vision
-
Las Vegas, NV, USA
-
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the Inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV, USA, 2016).
-
(2016)
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
55
-
-
84959363938
-
Stain specific standardization of whole-slide histopathological images
-
Bejnordi, B. E. et al. Stain specific standardization of whole-slide histopathological images. IEEE Trans. Med. Imaging 35, 404–415 (2016).
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 404-415
-
-
Bejnordi, B.E.1
-
56
-
-
85062864819
-
Learning transferable architectures for scalable image recognition
-
Salt Lake City, UT, USA
-
Zoph, B., Vasudevan, V., Shlens, J. & Le, Q. V. Learning transferable architectures for scalable image recognition. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT, USA, 2018).
-
(2018)
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
-
-
Zoph, B.1
Vasudevan, V.2
Shlens, J.3
Le, Q.V.4
-
58
-
-
84973587732
-
A coefficient of agreement for nominal Ssales
-
Cohen, J. A coefficient of agreement for nominal Ssales. Educ. Psychol. Meas. 20, 37–46 (1960).
-
(1960)
Educ. Psychol. Meas.
, vol.20
, pp. 37-46
-
-
Cohen, J.1
|