-
1
-
-
85008384488
-
Batch effects and the effective design of single-cell gene expression studies
-
COI: 1:CAS:528:DC%2BC2sXkslChtg%3D%3D
-
Tung, P.-Y. et al. Batch effects and the effective design of single-cell gene expression studies. Sci. Rep. 7, 39921 (2017)
-
(2017)
Sci. Rep.
, vol.7
-
-
Tung, P.Y.1
-
2
-
-
85010931059
-
A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor
-
PID: 5112579
-
Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 5, 2122 (2016)
-
(2016)
F1000Res.
, vol.5
, pp. 2122
-
-
Lun, A.T.L.1
McCarthy, D.J.2
Marioni, J.C.3
-
3
-
-
84967215049
-
Low dimensionality in gene expression data enables the accurate extraction of transcriptional programs from shallow sequencing
-
COI: 1:CAS:528:DC%2BC2sXhtFKksrg%3D
-
Heimberg, G., Bhatnagar, R., El-Samad, H. & Thomson, M. Low dimensionality in gene expression data enables the accurate extraction of transcriptional programs from shallow sequencing. Cell Syst. 2, 239–250 (2016)
-
(2016)
Cell Syst.
, vol.2
, pp. 239-250
-
-
Heimberg, G.1
Bhatnagar, R.2
El-Samad, H.3
Thomson, M.4
-
4
-
-
84951574149
-
MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015)
-
(2015)
Genome Biol.
, vol.16
-
-
Finak, G.1
-
5
-
-
85054726691
-
Missing data and technical variability in single-cell RNA-sequencing experiments
-
Hicks, S. C., Townes, F. W., Teng, M. & Irizarry, R. A. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics 19, 562–578 (2018)
-
(2018)
Biostatistics
, vol.19
, pp. 562-578
-
-
Hicks, S.C.1
Townes, F.W.2
Teng, M.3
Irizarry, R.A.4
-
6
-
-
33845432928
-
Adjusting batch effects in microarray expression data using empirical Bayes methods
-
Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007)
-
(2007)
Biostatistics
, vol.8
, pp. 118-127
-
-
Johnson, W.E.1
Li, C.2
Rabinovic, A.3
-
7
-
-
85046298440
-
Integrating single-cell transcriptomic data across different conditions, technologies, and species
-
COI: 1:CAS:528:DC%2BC1cXmslKrtL0%3D
-
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018)
-
(2018)
Nat. Biotechnol.
, vol.36
, pp. 411-420
-
-
Butler, A.1
Hoffman, P.2
Smibert, P.3
Papalexi, E.4
Satija, R.5
-
8
-
-
85046289733
-
Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
-
COI: 1:CAS:528:DC%2BC1cXmslKrtLo%3D
-
Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018)
-
(2018)
Nat. Biotechnol.
, vol.36
, pp. 421-427
-
-
Haghverdi, L.1
Lun, A.T.L.2
Morgan, M.D.3
Marioni, J.C.4
-
9
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
-
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014)
-
(2014)
Genome Biol.
, vol.15
-
-
Love, M.I.1
Huber, W.2
Anders, S.3
-
10
-
-
84926507971
-
limma powers differential expression analyses for RNA-sequencing and microarray studies
-
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015)
-
(2015)
Nucleic Acids Res.
, vol.43
-
-
Ritchie, M.E.1
-
12
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
COI: 1:CAS:528:DC%2BC2MXpt1SgtL0%3D
-
Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015)
-
(2015)
Cell
, vol.161
, pp. 1187-1201
-
-
Klein, A.M.1
-
13
-
-
84887109584
-
Accounting for technical noise in single-cell RNA-seq experiments
-
COI: 1:CAS:528:DC%2BC3sXhsVyqtb3L
-
Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093–1095 (2013)
-
(2013)
Nat. Methods
, vol.10
, pp. 1093-1095
-
-
Brennecke, P.1
-
14
-
-
84947748539
-
Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation
-
COI: 1:CAS:528:DC%2BC2MXhsFaqsbnO
-
Kolodziejczyk, A. A. et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17, 471–485 (2015)
-
(2015)
Cell Stem Cell
, vol.17
, pp. 471-485
-
-
Kolodziejczyk, A.A.1
-
15
-
-
85041430720
-
Single cells make big data: new challenges and opportunities in transcriptomics
-
Angerer, P. et al. Single cells make big data: new challenges and opportunities in transcriptomics. Curr. Opin. Syst. Biol. 4, 85–91 (2017)
-
(2017)
Curr. Opin. Syst. Biol.
, vol.4
, pp. 85-91
-
-
Angerer, P.1
-
16
-
-
84928227321
-
Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing
-
COI: 1:CAS:528:DC%2BC2cXhvFWqs7fM
-
Biase, F. H., Cao, X. & Zhong, S. Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing. Genome Res. 24, 1787–1796 (2014)
-
(2014)
Genome Res.
, vol.24
, pp. 1787-1796
-
-
Biase, F.H.1
Cao, X.2
Zhong, S.3
-
17
-
-
84989207582
-
Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing
-
COI: 1:CAS:528:DC%2BC28XpsFCks7Y%3D
-
Liu, W. et al. Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell Discov. 2, 16010 (2016)
-
(2016)
Cell Discov.
, vol.2
, pp. 16010
-
-
Liu, W.1
-
18
-
-
84961775163
-
Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos
-
COI: 1:CAS:528:DC%2BC28XltVamu70%3D
-
Goolam, M. et al. Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos. Cell 165, 61–74 (2016)
-
(2016)
Cell
, vol.165
, pp. 61-74
-
-
Goolam, M.1
-
19
-
-
84937703271
-
Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos
-
Fan, X. et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 16, 148 (2015)
-
(2015)
Genome Biol.
, vol.16
-
-
Fan, X.1
-
20
-
-
84946711375
-
Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis
-
COI: 1:CAS:528:DC%2BC2MXhvVSksr7P
-
Boroviak, T. et al. Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev. Cell 35, 366–382 (2015)
-
(2015)
Dev. Cell
, vol.35
, pp. 366-382
-
-
Boroviak, T.1
-
21
-
-
84892179132
-
Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
-
COI: 1:CAS:528:DC%2BC2cXktVykug%3D%3D
-
Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014)
-
(2014)
Science
, vol.343
, pp. 193-196
-
-
Deng, Q.1
Ramsköld, D.2
Reinius, B.3
Sandberg, R.4
-
22
-
-
84883134780
-
Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing
-
COI: 1:CAS:528:DC%2BC3sXhtFygsLrL
-
Xue, Z. et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597 (2013)
-
(2013)
Nature
, vol.500
, pp. 593-597
-
-
Xue, Z.1
-
23
-
-
85003945031
-
The landscape of accessible chromatin in mammalian preimplantation embryos
-
COI: 1:CAS:528:DC%2BC28XhtVSksbjP
-
Wu, J. et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652–657 (2016)
-
(2016)
Nature
, vol.534
, pp. 652-657
-
-
Wu, J.1
-
24
-
-
85014549629
-
Salmon provides fast and bias-aware quantification of transcript expression
-
COI: 1:CAS:528:DC%2BC2sXltVWgtL8%3D
-
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017)
-
(2017)
Nat. Methods
, vol.14
, pp. 417-419
-
-
Patro, R.1
Duggal, G.2
Love, M.I.3
Irizarry, R.A.4
Kingsford, C.5
-
25
-
-
84989332129
-
A benchmark for RNA-seq quantification pipelines
-
Teng, M. et al. A benchmark for RNA-seq quantification pipelines. Genome Biol. 17, 74 (2016)
-
(2016)
Genome Biol.
, vol.17
-
-
Teng, M.1
-
26
-
-
85040446434
-
Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
-
COI: 1:CAS:528:DC%2BC2sXhvFGmur3F
-
Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018)
-
(2018)
Nat. Biotechnol.
, vol.36
, pp. 89-94
-
-
Kang, H.M.1
-
28
-
-
84909644283
-
Normalization of RNA-seq data using factor analysis of control genes or samples
-
COI: 1:CAS:528:DC%2BC2cXhsVSqtLnI
-
Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902 (2014)
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 896-902
-
-
Risso, D.1
Ngai, J.2
Speed, T.P.3
Dudoit, S.4
-
29
-
-
85017522016
-
SCnorm: robust normalization of single-cell RNA-seq data
-
COI: 1:CAS:528:DC%2BC2sXmtFGhtLY%3D
-
Bacher, R. et al. SCnorm: robust normalization of single-cell RNA-seq data. Nat. Methods 14, 584–586 (2017)
-
(2017)
Nat. Methods
, vol.14
, pp. 584-586
-
-
Bacher, R.1
-
30
-
-
85040785722
-
A general and flexible method for signal extraction from single-cell RNA-seq data
-
Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S. & Vert, J.-P. A general and flexible method for signal extraction from single-cell RNA-seq data. Nat. Commun. 9, 284 (2018)
-
(2018)
Nat. Commun.
, vol.9
-
-
Risso, D.1
Perraudeau, F.2
Gribkova, S.3
Dudoit, S.4
Vert, J.P.5
-
31
-
-
85033389355
-
f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq
-
Buettner, F., Pratanwanich, N., McCarthy, D. J., Marioni, J. C. & Stegle, O. f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq. Genome Biol. 18, 212 (2017)
-
(2017)
Genome Biol.
, vol.18
-
-
Buettner, F.1
Pratanwanich, N.2
McCarthy, D.J.3
Marioni, J.C.4
Stegle, O.5
-
32
-
-
85045314028
-
An accurate and robust imputation method scImpute for single-cell RNA-seq data
-
Li, W. V. & Li, J. J. An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat. Commun. 9, 997 (2018)
-
(2018)
Nat. Commun.
, vol.9
-
-
Li, W.V.1
Li, J.J.2
-
33
-
-
85052140907
-
-
Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Single cell RNA-seq denoising using a deep count autoencoder. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/04/13/300681 (2018)
-
(2018)
Single Cell Rna-Seq Denoising Using a Deep Count Autoencoder
-
-
Eraslan, G.1
Simon, L.M.2
Mircea, M.3
Mueller, N.S.4
Theis, F.J.5
-
34
-
-
85048974018
-
SAVER: gene expression recovery for single-cell RNA sequencing
-
COI: 1:CAS:528:DC%2BC1cXht1WqsLrL
-
Huang, M. et al. SAVER: gene expression recovery for single-cell RNA sequencing. Nat. Methods 15, 539–542 (2018)
-
(2018)
Nat. Methods
, vol.15
, pp. 539-542
-
-
Huang, M.1
-
35
-
-
85048881841
-
Recovering gene interactions from single-cell data using data diffusion
-
van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729 (2018)
-
(2018)
Cell
, vol.174
, pp. 716-729
-
-
van Dijk, D.1
-
36
-
-
85041394976
-
SCANPY: large-scale single-cell gene expression data analysis
-
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018)
-
(2018)
Genome Biol.
, vol.19
-
-
Wolf, F.A.1
Angerer, P.2
Theis, F.J.3
-
37
-
-
85049105514
-
-
bioRxiv Preprint at
-
Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods: towards more accurate and robust tools. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/03/05/276907 (2018)
-
(2018)
A Comparison of Single-Cell Trajectory Inference Methods: Towards More Accurate and Robust Tools
-
-
Saelens, W.1
Cannoodt, R.2
Todorov, H.3
Saeys, Y.4
-
38
-
-
85185348905
-
-
Bhaduri, A., Nowakowski, T. J., Pollen, A. A. & Kriegstein, A. R. Saturating single-cell datasets. bioRxiv Preprint at https://www.biorxiv.org/content/early/2017/11/12/218370 (2017)
-
(2017)
Saturating Single-Cell Datasets
-
-
Bhaduri, A.1
Nowakowski, T.J.2
Pollen, A.A.3
Kriegstein, A.R.4
-
39
-
-
85040459896
-
The Human Cell Atlas
-
Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017)
-
(2017)
eLife
, vol.6
-
-
Regev, A.1
-
41
-
-
85019072518
-
Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R
-
COI: 1:CAS:528:DC%2BC1cXhvFagtL%2FP, PID: 5408845
-
McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017)
-
(2017)
Bioinformatics
, vol.33
, pp. 1179-1186
-
-
McCarthy, D.J.1
Campbell, K.R.2
Lun, A.T.L.3
Wills, Q.F.4
-
42
-
-
33646507506
-
Eigenvalues of large sample covariance matrices of spiked population models
-
Baik, J. & Silverstein, J. W. Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal. 97, 1382–1408 (2006)
-
(2006)
J. Multivariate Anal.
, vol.97
, pp. 1382-1408
-
-
Baik, J.1
Silverstein, J.W.2
-
43
-
-
0023453329
-
Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
-
Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)
-
(1987)
J. Comput. Appl. Math.
, vol.20
, pp. 53-65
-
-
Rousseeuw, P.J.1
-
45
-
-
85021816036
-
Normalizing single-cell RNA sequencing data: challenges and opportunities
-
COI: 1:CAS:528:DC%2BC2sXnslKkt7o%3D
-
Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat. Methods 14, 565–571 (2017)
-
(2017)
Nat. Methods
, vol.14
, pp. 565-571
-
-
Vallejos, C.A.1
Risso, D.2
Scialdone, A.3
Dudoit, S.4
Marioni, J.C.5
-
46
-
-
84964556059
-
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
-
Lun, A. T. L., Bach, K. & Marioni, J. C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016)
-
(2016)
Genome Biol.
, vol.17
-
-
Lun, A.T.L.1
Bach, K.2
Marioni, J.C.3
-
47
-
-
85030313053
-
Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data
-
Paulson, J. N. et al. Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data. BMC Bioinformatics 18, 437 (2017)
-
(2017)
BMC Bioinformatics
, vol.18
-
-
Paulson, J.N.1
-
48
-
-
84859098571
-
The sva package for removing batch effects and other unwanted variation in high-throughput experiments
-
COI: 1:CAS:528:DC%2BC38Xks1Sisb4%3D
-
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012)
-
(2012)
Bioinformatics
, vol.28
, pp. 882-883
-
-
Leek, J.T.1
Johnson, W.E.2
Parker, H.S.3
Jaffe, A.E.4
Storey, J.D.5
-
49
-
-
84861734626
-
Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses
-
COI: 1:CAS:528:DC%2BC38XivVChu7s%3D
-
Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507 (2012)
-
(2012)
Nat. Protoc.
, vol.7
, pp. 500-507
-
-
Stegle, O.1
Parts, L.2
Piipari, M.3
Winn, J.4
Durbin, R.5
-
50
-
-
75249087100
-
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
-
COI: 1:CAS:528:DC%2BD1MXhs1WlurvO
-
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010)
-
(2010)
Bioinformatics
, vol.26
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
51
-
-
85029212828
-
Splatter: simulation of single-cell RNA sequencing data
-
Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 18, 174 (2017)
-
(2017)
Genome Biol.
, vol.18
-
-
Zappia, L.1
Phipson, B.2
Oshlack, A.3
-
52
-
-
85016096622
-
Ensembl 2017
-
COI: 1:CAS:528:DC%2BC1cXhslWhs74%3D
-
Aken, B. L. et al. Ensembl 2017. Nucleic Acids Res. 45, D635–D642 (2017)
-
(2017)
Nucleic Acids Res.
, vol.45
, pp. D635-D642
-
-
Aken, B.L.1
|