메뉴 건너뛰기




Volumn 18, Issue 1, 2017, Pages

Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data

Author keywords

Filtering; GTEx; Normalization; Preprocessing; Quality control; RNA Seq

Indexed keywords

FILTRATION; GENE EXPRESSION; PIPELINES; QUALITY ASSURANCE; RNA; TISSUE; WOOL; YARN;

EID: 85030313053     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-017-1847-x     Document Type: Article
Times cited : (35)

References (27)
  • 4
  • 5
    • 0037129827 scopus 로고    scopus 로고
    • Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes
    • RESEARCH0034
    • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034.
    • (2002) Genome Biol , vol.3
    • Vandesompele, J.1    De Preter, K.2    Pattyn, F.3    Poppe, B.4    Van Roy, N.5    De Paepe, A.6    Speleman, F.7
  • 6
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185-93.
    • (2003) Bioinformatics , vol.19 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Astrand, M.3    Speed, T.P.4
  • 10
    • 85010952398 scopus 로고    scopus 로고
    • Whose sample is it anyway? Widespread misannotation of samples in transcriptomics studies
    • Toker L, Feng M, Pavlidis P. Whose sample is it anyway? Widespread misannotation of samples in transcriptomics studies. F1000Research. 2016;5:2103.
    • (2016) F1000Research , vol.5 , pp. 2103
    • Toker, L.1    Feng, M.2    Pavlidis, P.3
  • 12
    • 0000071395 scopus 로고
    • Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis
    • Gower JC. Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis. Biometrika. 1966;53:325-38.
    • (1966) Biometrika , vol.53 , pp. 325-338
    • Gower, J.C.1
  • 13
    • 85012214233 scopus 로고    scopus 로고
    • Evaluating the Effect of Cell Culture on Gene Expression in Primary Tissue Samples Using Microfluidic-Based Single Cell Transcriptional Analysis
    • Januszyk M, Rennert R, Sorkin M, Maan Z, Wong L, Whittam A, Whitmore A, Duscher D, Gurtner G. Evaluating the Effect of Cell Culture on Gene Expression in Primary Tissue Samples Using Microfluidic-Based Single Cell Transcriptional Analysis. Microarrays. 2015;4:540-50.
    • (2015) Microarrays , vol.4 , pp. 540-550
    • Januszyk, M.1    Rennert, R.2    Sorkin, M.3    Maan, Z.4    Wong, L.5    Whittam, A.6    Whitmore, A.7    Duscher, D.8    Gurtner, G.9
  • 19
    • 77953095629 scopus 로고    scopus 로고
    • Independent filtering increases detection power for high-throughput experiments
    • Bourgon R, Gentleman R, Huber W. Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci. 2010;107:9546-51.
    • (2010) Proc Natl Acad Sci , vol.107 , pp. 9546-9551
    • Bourgon, R.1    Gentleman, R.2    Huber, W.3
  • 20
    • 84896735766 scopus 로고    scopus 로고
    • Voom: precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.
    • (2014) Genome Biol , vol.15 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 23
    • 84882714530 scopus 로고    scopus 로고
    • Gene expression Data-based filtering for replicated high-throughput transcriptome sequencing experiments
    • Rau A, Gallopin M, Celeux G, Jaffrézic F. Gene expression Data-based filtering for replicated high-throughput transcriptome sequencing experiments. Bioinformatics. 2013;29:2146-52.
    • (2013) Bioinformatics , vol.29 , pp. 2146-2152
    • Rau, A.1    Gallopin, M.2    Celeux, G.3    Jaffrézic, F.4
  • 24
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.
    • (2010) Genome Biol , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 25
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 26
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 2010;11:94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3    Dudoit, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.