-
1
-
-
68049085674
-
Evolution of efficient pathways for degradation of anthropogenic chemicals
-
Copley SD. 2009. Evolution of efficient pathways for degradation of anthropogenic chemicals. Nat Chem Biol 5:559–566. https://doi.org/10.1038/nchembio.197.
-
(2009)
Nat Chem Biol
, vol.5
, pp. 559-566
-
-
Copley, S.D.1
-
2
-
-
4744339316
-
Evolution of enzymes for the metabolism of new chemical inputs into the environment
-
Wackett LP. 2004. Evolution of enzymes for the metabolism of new chemical inputs into the environment. J Biol Chem 279:41259–41262. https://doi.org/10.1074/jbc.R400014200.
-
(2004)
J Biol Chem
, vol.279
, pp. 41259-41262
-
-
Wackett, L.P.1
-
3
-
-
85041924132
-
Toward prediction and control of antibiotic-resistance evolution
-
Furusawa C, Horinouchi T, Maeda T. 2018. Toward prediction and control of antibiotic-resistance evolution. Curr Opin Biotechnol 54:45–49. https://doi.org/10.1016/j.copbio.2018.01.026.
-
(2018)
Curr Opin Biotechnol
, vol.54
, pp. 45-49
-
-
Furusawa, C.1
Horinouchi, T.2
Maeda, T.3
-
4
-
-
85044768181
-
Evolutionary mechanisms shaping the maintenance of antibiotic resistance
-
Durão P, Balbontín R, Gordo I. 2018. Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends Microbiol 26:677–691. https://doi.org/10.1016/j.tim.2018.01.005.
-
(2018)
Trends Microbiol
, vol.26
, pp. 677-691
-
-
Durão, P.1
Balbontín, R.2
Gordo, I.3
-
5
-
-
84875212396
-
Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance
-
Palmer AC, Kishony R. 2013. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nat Rev Genet 14:243–248. https://doi.org/10.1038/nrg3351.
-
(2013)
Nat Rev Genet
, vol.14
, pp. 243-248
-
-
Palmer, A.C.1
Kishony, R.2
-
6
-
-
85039843874
-
Interventions on metabolism: Making antibiotic-susceptible bacteria
-
Baquero F, Martínez JL. 2017. Interventions on metabolism: making antibiotic-susceptible bacteria. mBio 8:e01950-17. https://doi.org/10.1128/mBio.01950-17.
-
(2017)
Mbio
, vol.8
-
-
Baquero, F.1
Martínez, J.L.2
-
7
-
-
84961267108
-
Ancient evolution and recent evolution converge for the biodegradation of cyanuric acid and related triazines
-
Seffernick JL, Wackett LP. 2016. Ancient evolution and recent evolution converge for the biodegradation of cyanuric acid and related triazines. Appl Environ Microbiol 82:1638–1645. https://doi.org/10.1128/AEM.03594-15.
-
(2016)
Appl Environ Microbiol
, vol.82
, pp. 1638-1645
-
-
Seffernick, J.L.1
Wackett, L.P.2
-
8
-
-
0034061462
-
Aerobic degradation of dinitro-toluenes and pathway for bacterial degradation of 2,6-dinitrotoluene
-
Nishino SF, Paoli GC, Spain JC. 2000. Aerobic degradation of dinitro-toluenes and pathway for bacterial degradation of 2,6-dinitrotoluene. Appl Environ Microbiol 66:2139–2147. https://doi.org/10.1128/aem.66.5.2139-2147.2000.
-
(2000)
Appl Environ Microbiol
, vol.66
, pp. 2139-2147
-
-
Nishino, S.F.1
Paoli, G.C.2
Spain, J.C.3
-
9
-
-
0028841595
-
Biodegradation of nitroaromatic compounds
-
Spain JC. 1995. Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555. https://doi.org/10.1146/annurev.mi.49.100 195.002515.
-
(1995)
Annu Rev Microbiol
, vol.49
, pp. 523-555
-
-
Spain, J.C.1
-
10
-
-
85046707542
-
Resveratrol as a growth substrate for bacteria from the rhizosphere
-
Kurt Z, Minoia M, Spain JC. 2018. Resveratrol as a growth substrate for bacteria from the rhizosphere. Appl Environ Microbiol 84:e00104-18. https://doi.org/10.1128/AEM.00104-18.
-
(2018)
Appl Environ Microbiol
, vol.84
-
-
Kurt, Z.1
Minoia, M.2
Spain, J.C.3
-
11
-
-
84875059461
-
Why are chlorinated pollutants so difficult to degrade aerobically? Redox stress limits 1,3-dichloroprop-1-ene metabolism by Pseudomonas pavonaceae
-
Nikel PI, Pérez-Pantoja D, de Lorenzo V. 2013. Why are chlorinated pollutants so difficult to degrade aerobically? Redox stress limits 1,3-dichloroprop-1-ene metabolism by Pseudomonas pavonaceae. Philos Trans R Soc Lond B Biol Sci 368:20120377. https://doi.org/10.1098/rstb.2012.0377.
-
(2013)
Philos Trans R Soc Lond B Biol Sci
, vol.368
, pp. 20120377
-
-
Nikel, P.I.1
Pérez-Pantoja, D.2
de Lorenzo, V.3
-
12
-
-
0031028986
-
Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds
-
van der Meer JR. 1997. Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie Van Leeuwenhoek 71:159–178. https://doi.org/10.1023/A:1000166400935.
-
(1997)
Antonie Van Leeuwenhoek
, vol.71
, pp. 159-178
-
-
van der Meer, J.R.1
-
13
-
-
80054009620
-
Evolution of catabolic pathways and their regulatory systems in synthetic nitroaromatic compounds degrading bacteria
-
Kivisaar M. 2011. Evolution of catabolic pathways and their regulatory systems in synthetic nitroaromatic compounds degrading bacteria. Mol Microbiol 82:265–268. https://doi.org/10.1111/j.1365-2958.2011.07824.x.
-
(2011)
Mol Microbiol
, vol.82
, pp. 265-268
-
-
Kivisaar, M.1
-
14
-
-
0041661967
-
Evolution of catabolic pathways for synthetic compounds: Bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene
-
Johnson GR, Spain JC. 2003. Evolution of catabolic pathways for synthetic compounds: bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene. Appl Microbiol Biotechnol 62: 110–123. https://doi.org/10.1007/s00253-003-1341-4.
-
(2003)
Appl Microbiol Biotechnol
, vol.62
, pp. 110-123
-
-
Johnson, G.R.1
Spain, J.C.2
-
15
-
-
85055547035
-
Phylogenomics of aerobic bacterial degradation of aromatics
-
Rojo F, Springer, Cambridge, England
-
Pérez-Pantoja D, Donoso R, Junca H, González B, Pieper DH. 2017. Phylogenomics of aerobic bacterial degradation of aromatics, p 1–48. In Rojo F (ed), Aerobic utilization of hydrocarbons, oils and lipids. Springer, Cambridge, England.
-
(2017)
Aerobic Utilization of Hydrocarbons, Oils and Lipids
, pp. 1-48
-
-
Pérez-Pantoja, D.1
Donoso, R.2
Junca, H.3
González, B.4
Pieper, D.H.5
-
16
-
-
84859971346
-
Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales
-
Pérez-Pantoja D, Donoso R, Agulló L, Córdova M, Seeger M, Pieper DH, González B. 2012. Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol 14: 1091–1117. https://doi.org/10.1111/j.1462-2920.2011.02613.x.
-
(2012)
Environ Microbiol
, vol.14
, pp. 1091-1117
-
-
Pérez-Pantoja, D.1
Donoso, R.2
Agulló, L.3
Córdova, M.4
Seeger, M.5
Pieper, D.H.6
González, B.7
-
17
-
-
84898874640
-
Biotechnological domestication of pseudomonads using synthetic biology
-
Nikel PI, Martínez-García E, de Lorenzo V. 2014. Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12:368–379. https://doi.org/10.1038/nrmicro3253.
-
(2014)
Nat Rev Microbiol
, vol.12
, pp. 368-379
-
-
Nikel, P.I.1
Martínez-García, E.2
de Lorenzo, V.3
-
18
-
-
84896710626
-
The private life of environmental bacteria: Pollutant biodegradation at the single cell level
-
Nikel PI, Silva-Rocha R, Benedetti I, de Lorenzo V. 2014. The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environ Microbiol 16:628–642. https://doi.org/10.1111/1462-2920.12360.
-
(2014)
Environ Microbiol
, vol.16
, pp. 628-642
-
-
Nikel, P.I.1
Silva-Rocha, R.2
Benedetti, I.3
de Lorenzo, V.4
-
19
-
-
84964771581
-
The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis
-
Belda E, van Heck RGA, José Lopez-Sanchez MJ, Cruveiller S, Barbe V, Fraser C, Klenk HP, Petersen J, Morgat A, Nikel PI, Vallenet D, Rouy Z, Sekowska A, Martins dos Santos VAP, de Lorenzo V, Danchin A, Mé-digue C. 2016. The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis. Environ Microbiol 18:3403–3424. https://doi.org/10.1111/1462-2920.13230.
-
(2016)
Environ Microbiol
, vol.18
, pp. 3403-3424
-
-
Belda, E.1
van Heck, R.G.A.2
José Lopez-Sanchez, M.J.3
Cruveiller, S.4
Barbe, V.5
Fraser, C.6
Klenk, H.P.7
Petersen, J.8
Morgat, A.9
Nikel, P.I.10
Vallenet, D.11
Rouy, Z.12
Sekowska, A.13
Martins Dos Santos, V.A.P.14
de Lorenzo, V.15
Danchin, A.16
Mé-Digue, C.17
-
20
-
-
85028355868
-
Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology
-
Dvořák P, Nikel PI, Damborský J, de Lorenzo V. 2017. Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol Adv 35:845–866. https://doi.org/10.1016/j.biotechadv.2017.08.001.
-
(2017)
Biotechnol Adv
, vol.35
, pp. 845-866
-
-
Dvořák, P.1
Nikel, P.I.2
Damborský, J.3
de Lorenzo, V.4
-
21
-
-
77952926530
-
Nitroaromatic compounds, from synthesis to biodegradation
-
Ju KS, Parales RE. 2010. Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev 74:250–272. https://doi.org/10.1128/MMBR.00006-10.
-
(2010)
Microbiol Mol Biol Rev
, vol.74
, pp. 250-272
-
-
Ju, K.S.1
Parales, R.E.2
-
22
-
-
33646533034
-
Aromatic hydrocarbon dioxygenases
-
Singh A, Ward OP, vol, Springer, Berlin, Germany
-
Parales RE, Resnick SM. 2004. Aromatic hydrocarbon dioxygenases, p 175–195. In Singh A, Ward OP (ed), Biodegradation and bioremediation, vol 2. Springer, Berlin, Germany.
-
(2004)
Biodegradation and Bioremediation
, vol.2
, pp. 175-195
-
-
Parales, R.E.1
Resnick, S.M.2
-
23
-
-
0034029015
-
Aromatic hydrocarbon dioxygenases in environmental biotechnology
-
Gibson DT, Parales RE. 2000. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243. https://doi.org/10.1016/S0958-1669(00)00090-2.
-
(2000)
Curr Opin Biotechnol
, vol.11
, pp. 236-243
-
-
Gibson, D.T.1
Parales, R.E.2
-
24
-
-
34547644103
-
Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme
-
Gómez-Gil L, Kumar P, Barriault D, Bolin JT, Sylvestre M, Eltis LD. 2007. Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme. J Bacteriol 189:5705–5715. https://doi.org/10.1128/JB.01476-06.
-
(2007)
J Bacteriol
, vol.189
, pp. 5705-5715
-
-
Gómez-Gil, L.1
Kumar, P.2
Barriault, D.3
Bolin, J.T.4
Sylvestre, M.5
Eltis, L.D.6
-
25
-
-
0034724877
-
Steady-state kinetic characterization and crystallization of a polychlorinated biphenyl-transforming dioxygenase
-
Imbeault NYR, Powlowski JB, Colbert CL, Bolin JT, Eltis LD. 2000. Steady-state kinetic characterization and crystallization of a polychlorinated biphenyl-transforming dioxygenase. J Biol Chem 275:12430–12437. https://doi.org/10.1074/jbc.275.17.12430.
-
(2000)
J Biol Chem
, vol.275
, pp. 12430-12437
-
-
Imbeault, N.Y.R.1
Powlowski, J.B.2
Colbert, C.L.3
Bolin, J.T.4
Eltis, L.D.5
-
26
-
-
0032900895
-
Benzene-induced uncoupling of naphthalene dioxygenase activity and enzyme inactivation by production of hydrogen peroxide
-
Lee K. 1999. Benzene-induced uncoupling of naphthalene dioxygenase activity and enzyme inactivation by production of hydrogen peroxide. J Bacteriol 181:2719–2725.
-
(1999)
J Bacteriol
, vol.181
, pp. 2719-2725
-
-
Lee, K.1
-
27
-
-
37549066316
-
Roles of ring-hydro-xylating dioxygenases in styrene and benzene catabolism in Rhodococcus jostii RHA1
-
Patrauchan MA, Florizone C, Eapen S, Gómez-Gil L, Sethuraman B, Fukuda M, Davies J, Mohn WW, Eltis LD. 2008. Roles of ring-hydro-xylating dioxygenases in styrene and benzene catabolism in Rhodococcus jostii RHA1. J Bacteriol 190:37–47. https://doi.org/10.1128/JB.01122-07.
-
(2008)
J Bacteriol
, vol.190
, pp. 37-47
-
-
Patrauchan, M.A.1
Florizone, C.2
Eapen, S.3
Gómez-Gil, L.4
Sethuraman, B.5
Fukuda, M.6
Davies, J.7
Mohn, W.W.8
Eltis, L.D.9
-
28
-
-
0031958521
-
Substrate specificities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenase enzyme systems
-
Parales RE, Emig MD, Lynch NA, Gibson DT. 1998. Substrate specificities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenase enzyme systems. J Bacteriol 180:2337–2344.
-
(1998)
J Bacteriol
, vol.180
, pp. 2337-2344
-
-
Parales, R.E.1
Emig, M.D.2
Lynch, N.A.3
Gibson, D.T.4
-
29
-
-
84860008511
-
Aerobic degradation of aromatic hydrocarbons
-
Timmis KN, Springer, Berlin, Germany
-
Pérez-Pantoja D, González B, Pieper DH. 2010. Aerobic degradation of aromatic hydrocarbons, p 799–837. In Timmis KN (ed), Handbook of hydrocarbon and lipid microbiology, vol 2. Springer, Berlin, Germany.
-
(2010)
Handbook of Hydrocarbon and Lipid Microbiology
, vol.2
, pp. 799-837
-
-
Pérez-Pantoja, D.1
González, B.2
Pieper, D.H.3
-
30
-
-
84949233426
-
Electron flow through biological molecules: Does hole hopping protect proteins from oxidative damage?
-
Winkler JR, Gray HB. 2015. Electron flow through biological molecules: does hole hopping protect proteins from oxidative damage? Q Rev Biophys 48:411–420. https://doi.org/10.1017/S0033583515000062.
-
(2015)
Q Rev Biophys
, vol.48
, pp. 411-420
-
-
Winkler, J.R.1
Gray, H.B.2
-
31
-
-
35148834805
-
Mutation as a stress response and the regulation of evolvability
-
Galhardo RS, Hastings PJ, Rosenberg SM. 2007. Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42:399–435. https://doi.org/10.1080/10409230701648502.
-
(2007)
Crit Rev Biochem Mol Biol
, vol.42
, pp. 399-435
-
-
Galhardo, R.S.1
Hastings, P.J.2
Rosenberg, S.M.3
-
32
-
-
85026830700
-
Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria
-
Ilmjärv T, Naanuri E, Kivisaar M. 2017. Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria. PLoS One 12:e0182484. https://doi.org/10.1371/journal.pone.0182484.
-
(2017)
Plos One
, vol.12
-
-
Ilmjärv, T.1
Naanuri, E.2
Kivisaar, M.3
-
33
-
-
0026006586
-
Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp
-
Spanggord RJ, Spain JC, Nishino SF, Mortelmans KE. 1991. Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl Environ Microbiol 57:3200–3205.
-
(1991)
Appl Environ Microbiol
, vol.57
, pp. 3200-3205
-
-
Spanggord, R.J.1
Spain, J.C.2
Nishino, S.F.3
Mortelmans, K.E.4
-
34
-
-
0036064709
-
Origins of the 2,4-dinitrotoluene pathway
-
Johnson GR, Jain RK, Spain JC. 2002. Origins of the 2,4-dinitrotoluene pathway. J Bacteriol 184:4219–4232. https://doi.org/10.1128/jb.184.15.4219-4232.2002.
-
(2002)
J Bacteriol
, vol.184
, pp. 4219-4232
-
-
Johnson, G.R.1
Jain, R.K.2
Spain, J.C.3
-
35
-
-
84884653783
-
Endogenous stress caused by faulty oxidation reactions fosters evolution of 2,4-dinitrotoluene-degrading bacteria
-
Pérez-Pantoja D, Nikel PI, Chavarría M, de Lorenzo V. 2013. Endogenous stress caused by faulty oxidation reactions fosters evolution of 2,4-dinitrotoluene-degrading bacteria. PLoS Genet 9:e1003764. https://doi.org/10.1371/journal.pgen.1003764.
-
(2013)
Plos Genet
, vol.9
-
-
Pérez-Pantoja, D.1
Nikel, P.I.2
Chavarría, M.3
de Lorenzo, V.4
-
36
-
-
85027563788
-
Hfq links translation repression to stress-induced mutagenesis in E. Coli
-
Chen J, Gottesman S. 2017. Hfq links translation repression to stress-induced mutagenesis in E. coli. Genes Dev 31:1382–1395. https://doi.org/10.1101/gad.302547.117.
-
(2017)
Genes Dev
, vol.31
, pp. 1382-1395
-
-
Chen, J.1
Gottesman, S.2
-
37
-
-
84875876463
-
σ-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity
-
Gutiérrez A, Laureti L, Crussard S, Abida H, Rodríguez-Rojas A, Blázquez J, Baharoglu Z, Mazel D, Darfeuille F, Vogel J, Matic I. 2013. σ-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Commun 4:1610. https://doi.org/10.1038/ncomms2607.
-
(2013)
Nat Commun
, vol.4
, pp. 1610
-
-
Gutiérrez, A.1
Laureti, L.2
Crussard, S.3
Abida, H.4
Rodríguez-Rojas, A.5
Blázquez, J.6
Baharoglu, Z.7
Mazel, D.8
Darfeuille, F.9
Vogel, J.10
Matic, I.11
-
38
-
-
78651472662
-
Mechanisms of stationary-phase mutagenesis in bacteria: Mutational processes in pseudomonads
-
Kivisaar M. 2010. Mechanisms of stationary-phase mutagenesis in bacteria: mutational processes in pseudomonads. FEMS Microbiol Lett 312:1–14. https://doi.org/10.1111/j.1574-6968.2010.02027.x.
-
(2010)
FEMS Microbiol Lett
, vol.312
, pp. 1-14
-
-
Kivisaar, M.1
-
39
-
-
84905965348
-
Oxidative stress response in Pseudomonas putida
-
Kim J, Park W. 2014. Oxidative stress response in Pseudomonas putida. Appl Microbiol Biotechnol 98:6933–6946. https://doi.org/10.1007/s00253-014-5883-4.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 6933-6946
-
-
Kim, J.1
Park, W.2
-
40
-
-
85029591389
-
Metabolic defence against oxidative stress: The road less travelled so far
-
Lemire J, Alhasawi A, Appanna VP, Tharmalingam S, Appanna VD. 2017. Metabolic defence against oxidative stress: the road less travelled so far. J Appl Microbiol 123:798–809. https://doi.org/10.1111/jam.13509.
-
(2017)
J Appl Microbiol
, vol.123
, pp. 798-809
-
-
Lemire, J.1
Alhasawi, A.2
Appanna, V.P.3
Tharmalingam, S.4
Appanna, V.D.5
-
41
-
-
34548563918
-
Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens
-
Singh R, Mailloux RJ, Puiseux-Dao S, Appanna VD. 2007. Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. J Bacteriol 189:6665–6675. https://doi.org/10.1128/JB.00555-07.
-
(2007)
J Bacteriol
, vol.189
, pp. 6665-6675
-
-
Singh, R.1
Mailloux, R.J.2
Puiseux-Dao, S.3
Appanna, V.D.4
-
42
-
-
84955475683
-
Measurement and meaning of cellular thiol:Disulfide redox status
-
Comini MA. 2016. Measurement and meaning of cellular thiol:disulfide redox status. Free Radic Res 50:246–271. https://doi.org/10.3109/1071 5762.2015.1110241.
-
(2016)
Free Radic Res
, vol.50
, pp. 246-271
-
-
Comini, M.A.1
-
43
-
-
10444278093
-
Expression of glutathione S-transferase and peptide methionine sulphoxide reductase in Ochrobactrum anthropi is correlated to the production of reactive oxygen species caused by aromatic substrates
-
Tamburro A, Robuffo I, Heipieper HJ, Allocati N, Rotilio D, Di Ilio C, Favaloro B. 2004. Expression of glutathione S-transferase and peptide methionine sulphoxide reductase in Ochrobactrum anthropi is correlated to the production of reactive oxygen species caused by aromatic substrates. FEMS Microbiol Lett 241:151–156. https://doi.org/10.1016/j.femsle.2004.10.013.
-
(2004)
FEMS Microbiol Lett
, vol.241
, pp. 151-156
-
-
Tamburro, A.1
Robuffo, I.2
Heipieper, H.J.3
Allocati, N.4
Rotilio, D.5
Di Ilio, C.6
Favaloro, B.7
-
44
-
-
84969963522
-
From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions
-
Nikel PI, Chavarría M, Danchin A, de Lorenzo V. 2016. From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol 34:20–29. https://doi.org/10.1016/j.cbpa.2016.05.011.
-
(2016)
Curr Opin Chem Biol
, vol.34
, pp. 20-29
-
-
Nikel, P.I.1
Chavarría, M.2
Danchin, A.3
de Lorenzo, V.4
-
45
-
-
85058870980
-
Chasing bacterial chassis for metabolic engineering: A perspective review from classical to non-traditional microorganisms
-
June 2018
-
Calero P, Nikel PI. 21 June 2018. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb Biotechnol https://doi.org/10.1111/1751-7915.13292.
-
(2018)
Microb Biotechnol
-
-
Calero, P.1
Nikel, P.I.2
-
46
-
-
84870996383
-
Making green polymers even greener: Towards sustainable production of polyhydroxyalkanoates from agroindustrial by-products
-
Petre M, InTech, Rijeka, Croatia
-
Gomez JGC, Méndez BS, Nikel PI, Pettinari MJ, Prieto MA, Silva LF. 2012. Making green polymers even greener: towards sustainable production of polyhydroxyalkanoates from agroindustrial by-products, p 41–62. In Petre M (ed), Advances in applied biotechnology. InTech, Rijeka, Croatia.
-
(2012)
Advances in Applied Biotechnology
, pp. 41-62
-
-
Gomez, J.G.C.1
Méndez, B.S.2
Nikel, P.I.3
Pettinari, M.J.4
Prieto, M.A.5
Silva, L.F.6
-
47
-
-
84944910018
-
Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways
-
Nikel PI, Chavarría M, Fuhrer T, Sauer U, de Lorenzo V. 2015. Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J Biol Chem 290:25920–25932. https://doi.org/10.1074/jbc.M115.687749.
-
(2015)
J Biol Chem
, vol.290
, pp. 25920-25932
-
-
Nikel, P.I.1
Chavarría, M.2
Fuhrer, T.3
Sauer, U.4
de Lorenzo, V.5
-
48
-
-
85019615262
-
Quantitative physiology approaches to understand and optimize reducing power availability in environmental bacteria
-
McGenity TJ, Timmis KN, Nogales-Fernández B, Humana Press, Heidelberg, Germany
-
Nikel PI, Chavarría M. 2016. Quantitative physiology approaches to understand and optimize reducing power availability in environmental bacteria, p 39–70. In McGenity TJ, Timmis KN, Nogales-Fernández B (ed), Hydrocarbon and lipid microbiology protocols–synthetic and systems biology–tools. Humana Press, Heidelberg, Germany. https://doi.org/10.1007/8623_2015_84.
-
(2016)
Hydrocarbon and Lipid Microbiology protocols–synthetic and Systems biology–tools
, pp. 39-70
-
-
Nikel, P.I.1
Chavarría, M.2
-
49
-
-
84991447132
-
Pyridine nucleotide transhydrogenases enable redox balance of Pseudomonas putida during biodegradation of aromatic compounds
-
Nikel PI, Pérez-Pantoja D, de Lorenzo V. 2016. Pyridine nucleotide transhydrogenases enable redox balance of Pseudomonas putida during biodegradation of aromatic compounds. Environ Microbiol 18: 3565–3582. https://doi.org/10.1111/1462-2920.13434.
-
(2016)
Environ Microbiol
, vol.18
, pp. 3565-3582
-
-
Nikel, P.I.1
Pérez-Pantoja, D.2
de Lorenzo, V.3
-
50
-
-
80053934387
-
Association of dnt genes of Burkholderia sp. DNT with the substrate-blind regulator DntR draws the evolutionary itinerary of 2,4-dinitrotoluene biodegradation
-
de las Heras A, Chavarría M, de Lorenzo V. 2011. Association of dnt genes of Burkholderia sp. DNT with the substrate-blind regulator DntR draws the evolutionary itinerary of 2,4-dinitrotoluene biodegradation. Mol Microbiol 82:287–299. https://doi.org/10.1111/j.1365-2958.2011.07825.x.
-
(2011)
Mol Microbiol
, vol.82
, pp. 287-299
-
-
de las Heras, A.1
Chavarría, M.2
de Lorenzo, V.3
-
51
-
-
84921889421
-
Freeing Pseudomonas putida KT2440 of its proviral load strengthens endurance to environmental stresses
-
Martínez-García E, Jatsenko T, Kivisaar M, de Lorenzo V. 2015. Freeing Pseudomonas putida KT2440 of its proviral load strengthens endurance to environmental stresses. Environ Microbiol 17:76–90. https://doi.org/10.1111/1462-2920.12492.
-
(2015)
Environ Microbiol
, vol.17
, pp. 76-90
-
-
Martínez-García, E.1
Jatsenko, T.2
Kivisaar, M.3
de Lorenzo, V.4
-
52
-
-
84928718106
-
Genome reduction boosts heterologous gene expression in Pseudomonas putida
-
Lieder S, Nikel PI, de Lorenzo V, Takors R. 2015. Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microb Cell Fact 14:23. https://doi.org/10.1186/s12934-015-0207-7.
-
(2015)
Microb Cell Fact
, vol.14
, pp. 23
-
-
Lieder, S.1
Nikel, P.I.2
de Lorenzo, V.3
Takors, R.4
-
53
-
-
0028241454
-
Biodegradation of 4-methyl-5-nitrocatechol by Pseudomonas sp. Strain DNT
-
Haigler BE, Nishino SF, Spain JC. 1994. Biodegradation of 4-methyl-5-nitrocatechol by Pseudomonas sp. strain DNT. J Bacteriol 176: 3433–3437. https://doi.org/10.1128/jb.176.11.3433-3437.1994.
-
(1994)
J Bacteriol
, vol.176
, pp. 3433-3437
-
-
Haigler, B.E.1
Nishino, S.F.2
Spain, J.C.3
-
54
-
-
0029820893
-
Purification and sequence analysis of 4-methyl-5-nitrocatechol oxygenase from Burkholderia sp. Strain DNT
-
Haigler BE, Suen WC, Spain JC. 1996. Purification and sequence analysis of 4-methyl-5-nitrocatechol oxygenase from Burkholderia sp. strain DNT. J Bacteriol 178:6019–6024. https://doi.org/10.1128/jb.178.20.6019-6024.1996.
-
(1996)
J Bacteriol
, vol.178
, pp. 6019-6024
-
-
Haigler, B.E.1
Suen, W.C.2
Spain, J.C.3
-
55
-
-
0034068228
-
Role of quinones in toxicology
-
Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ. 2000. Role of quinones in toxicology. Chem Res Toxicol 13:135–160. https://doi.org/10.1021/tx9902082.
-
(2000)
Chem Res Toxicol
, vol.13
, pp. 135-160
-
-
Bolton, J.L.1
Trush, M.A.2
Penning, T.M.3
Dryhurst, G.4
Monks, T.J.5
-
56
-
-
84876567509
-
The Standard European Vector Architecture (SEVA): A coherent platform for the analysis and deployment of complex prokaryotic phenotypes
-
Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A, de las Heras A, Páez-Espino AD, Durante-Rodríguez G, Kim J, Nikel PI, Platero R, de Lorenzo V. 2013. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:D666–D675. https://doi.org/10.1093/nar/gks1119.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. D666-D675
-
-
Silva-Rocha, R.1
Martínez-García, E.2
Calles, B.3
Chavarría, M.4
Arce-Rodríguez, A.5
de las Heras, A.6
Páez-Espino, A.D.7
Durante-Rodríguez, G.8
Kim, J.9
Nikel, P.I.10
Platero, R.11
de Lorenzo, V.12
-
57
-
-
13544273854
-
Adaptation of the yeast URA3 selection system to Gram-negative bacteria and generation of a ΔbetCDE Pseudomonas putida strain
-
Galvão TC, de Lorenzo V. 2005. Adaptation of the yeast URA3 selection system to Gram-negative bacteria and generation of a ΔbetCDE Pseudomonas putida strain. Appl Environ Microbiol 71:883–892. https://doi.org/10.1128/AEM.71.2.883-892.2005.
-
(2005)
Appl Environ Microbiol
, vol.71
, pp. 883-892
-
-
Galvão, T.C.1
de Lorenzo, V.2
-
58
-
-
84964313870
-
Pseudomonas 2.0: Genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression
-
Martínez-García E, Nikel PI, Aparicio T, de Lorenzo V. 2014. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Fact 13:159. https://doi.org/10.1186/s12934-014-0159-3.
-
(2014)
Microb Cell Fact
, vol.13
, pp. 159
-
-
Martínez-García, E.1
Nikel, P.I.2
Aparicio, T.3
de Lorenzo, V.4
-
59
-
-
0031407768
-
DNA gyrase, topoisomerase IV, and the 4-quinolones
-
Drlica K, Zhao X. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392.
-
(1997)
Microbiol Mol Biol Rev
, vol.61
, pp. 377-392
-
-
Drlica, K.1
Zhao, X.2
-
60
-
-
85006247350
-
Mechanisms of bacterial persistence during stress and antibiotic exposure
-
Harms A, Maisonneuve E, Gerdes K. 2016. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354:aaf4268. https://doi.org/10.1126/science.aaf4268.
-
(2016)
Science
, vol.354
-
-
Harms, A.1
Maisonneuve, E.2
Gerdes, K.3
-
61
-
-
84924921744
-
SOS, the formidable strategy of bacteria against aggressions
-
Baharoglu Z, Mazel D. 2014. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 38:1126–1145. https://doi.org/10.1111/1574-6976.12077.
-
(2014)
FEMS Microbiol Rev
, vol.38
, pp. 1126-1145
-
-
Baharoglu, Z.1
Mazel, D.2
-
62
-
-
37449019352
-
Cohabitation of two different lexA regulons in Pseudomonas putida
-
Abella M, Campoy S, Erill I, Rojo F, Barbé J. 2007. Cohabitation of two different lexA regulons in Pseudomonas putida. J Bacteriol 189: 8855–8862. https://doi.org/10.1128/JB.01213-07.
-
(2007)
J Bacteriol
, vol.189
, pp. 8855-8862
-
-
Abella, M.1
Campoy, S.2
Erill, I.3
Rojo, F.4
Barbé, J.5
-
63
-
-
84871700696
-
Quantitative, non-disruptive monitoring of transcription in single cells with a broad-host range GFP-luxCDABE dual reporter system
-
Benedetti IM, de Lorenzo V, Silva-Rocha R. 2012. Quantitative, non-disruptive monitoring of transcription in single cells with a broad-host range GFP-luxCDABE dual reporter system. PLoS One 7:e52000. https://doi.org/10.1371/journal.pone.0052000.
-
(2012)
Plos One
, vol.7
-
-
Benedetti, I.M.1
de Lorenzo, V.2
Silva-Rocha, R.3
-
64
-
-
0035937403
-
Structural mechanism for rifampicin inhibition of bacterial RNA polymerase
-
Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA. 2001. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901–912. https://doi.org/10.1016/S0092-8674(01)00286-0.
-
(2001)
Cell
, vol.104
, pp. 901-912
-
-
Campbell, E.A.1
Korzheva, N.2
Mustaev, A.3
Murakami, K.4
Nair, S.5
Goldfarb, A.6
Darst, S.A.7
-
65
-
-
71549137129
-
R mutations in Pseudomonas aeruginosa and Pseudomonas putida
-
R mutations in Pseudomonas aeruginosa and Pseudomonas putida. Mutat Res 683:106–114. https://doi.org/10.1016/j.mrfmmm.2009.10.015.
-
(2010)
Mutat Res
, vol.683
, pp. 106-114
-
-
Jatsenko, T.1
Tover, A.2
Tegova, R.3
Kivisaar, M.4
-
66
-
-
23744489566
-
Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins
-
Artsimovitch I, Vassylyeva MN, Svetlov D, Svetlov V, Perederina A, Igarashi N, Matsugaki N, Wakatsuki S, Tahirov TH, Vassylyev DG. 2005. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell 122: 351–363. https://doi.org/10.1016/j.cell.2005.07.014.
-
(2005)
Cell
, vol.122
, pp. 351-363
-
-
Artsimovitch, I.1
Vassylyeva, M.N.2
Svetlov, D.3
Svetlov, V.4
Perederina, A.5
Igarashi, N.6
Matsugaki, N.7
Wakatsuki, S.8
Tahirov, T.H.9
Vassylyev, D.G.10
-
67
-
-
84877842924
-
Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440
-
Nikel PI, Chavarría M, Martínez-García E, Taylor AC, de Lorenzo V. 2013. Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440. Microb Cell Fact 12:50. https://doi.org/10.1186/1475-2859-12-50.
-
(2013)
Microb Cell Fact
, vol.12
, pp. 50
-
-
Nikel, P.I.1
Chavarría, M.2
Martínez-García, E.3
Taylor, A.C.4
de Lorenzo, V.5
-
68
-
-
84928793736
-
The glycerol-dependent metabolic persistence of Pseudomonas putida KT2440 reflects the regulatory logic of the GlpR repressor
-
Nikel PI, Romero-Campero FJ, Zeidman JA, Goñi-Moreno Á, de Lorenzo V. 2015. The glycerol-dependent metabolic persistence of Pseudomonas putida KT2440 reflects the regulatory logic of the GlpR repressor. mBio 6:e00340-15. https://doi.org/10.1128/mBio.00340-15.
-
(2015)
Mbio
, vol.6
-
-
Nikel, P.I.1
Romero-Campero, F.J.2
Zeidman, J.A.3
Goñi-Moreno, Á.4
de Lorenzo, V.5
-
69
-
-
84910027662
-
Robustness of Pseudomonas putida KT2440 as a host for ethanol biosynthesis
-
Nikel PI, de Lorenzo V. 2014. Robustness of Pseudomonas putida KT2440 as a host for ethanol biosynthesis. New Biotechnol 31:562–571. https://doi.org/10.1016/j.nbt.2014.02.006.
-
(2014)
New Biotechnol
, vol.31
, pp. 562-571
-
-
Nikel, P.I.1
de Lorenzo, V.2
-
70
-
-
84864574150
-
Why do bacteria use so many enzymes to scavenge hydrogen peroxide?
-
Mishra S, Imlay J. 2012. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch Biochem Biophys 525:145–160. https://doi.org/10.1016/j.abb.2012.04.014.
-
(2012)
Arch Biochem Biophys
, vol.525
, pp. 145-160
-
-
Mishra, S.1
Imlay, J.2
-
71
-
-
84901236283
-
+ levels
-
+ levels. J Bacteriol 196:2166–2177. https://doi.org/10.1128/JB.01542-14.
-
(2014)
J Bacteriol
, vol.196
, pp. 2166-2177
-
-
Baker, J.L.1
Derr, A.M.2
Karuppaiah, K.3
Macgilvray, M.E.4
Kajfasz, J.K.5
Faustoferri, R.C.6
Rivera-Ramos, I.7
Bitoun, J.P.8
Lemos, J.A.9
Wen, Z.T.10
Quivey, R.G.11
-
72
-
-
79958041001
-
Identification of a conserved sequence in flavoproteins essential for the correct conformation and activity of the NADH oxidase NoxE of Lactococcus lactis
-
Tachon S, Chambellon E, Yvon M. 2011. Identification of a conserved sequence in flavoproteins essential for the correct conformation and activity of the NADH oxidase NoxE of Lactococcus lactis. J Bacteriol 193:3000–3008. https://doi.org/10.1128/JB.01466-10.
-
(2011)
J Bacteriol
, vol.193
, pp. 3000-3008
-
-
Tachon, S.1
Chambellon, E.2
Yvon, M.3
-
73
-
-
80052787409
-
Response of Pseudomonas putida KT2440 to increased NADH and ATP demand
-
Ebert BE, Kurth F, Grund M, Blank LM, Schmid A. 2011. Response of Pseudomonas putida KT2440 to increased NADH and ATP demand. Appl Environ Microbiol 77:6597–6605. https://doi.org/10.1128/AEM.05588-11.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 6597-6605
-
-
Ebert, B.E.1
Kurth, F.2
Grund, M.3
Blank, L.M.4
Schmid, A.5
-
74
-
-
84949495478
-
Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes
-
Benedetti I, de Lorenzo V, Nikel PI. 2016. Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metab Eng 33:109–118. https://doi.org/10.1016/j.ymben.2015.11.004.
-
(2016)
Metab Eng
, vol.33
, pp. 109-118
-
-
Benedetti, I.1
de Lorenzo, V.2
Nikel, P.I.3
-
75
-
-
84956522448
-
Data on the standardization of a cyclohexanone-responsive expression system for Gram-negative bacteria
-
Benedetti I, Nikel PI, de Lorenzo V. 2016. Data on the standardization of a cyclohexanone-responsive expression system for Gram-negative bacteria. Data Brief 6:738–744. https://doi.org/10.1016/j.dib.2016.01.022.
-
(2016)
Data Brief
, vol.6
, pp. 738-744
-
-
Benedetti, I.1
Nikel, P.I.2
de Lorenzo, V.3
-
76
-
-
0027215203
-
Mutations in the mutY gene of Escherichia coli enhance the frequency of targeted G:C¡T:A transversions induced by a single 8-oxoguanine residue in single-stranded DNA
-
Moriya M, Grollman AP. 1993. Mutations in the mutY gene of Escherichia coli enhance the frequency of targeted G:C¡T:A transversions induced by a single 8-oxoguanine residue in single-stranded DNA. Mol Gen Genet 239:72–76. https://doi.org/10.1007/bf00281603.
-
(1993)
Mol Gen Genet
, vol.239
, pp. 72-76
-
-
Moriya, M.1
Grollman, A.P.2
-
77
-
-
17944380943
-
The Y-family of DNA polymerases
-
Ohmori H, Friedberg EC, Fuchs RPP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T, Prakash L, Prakash S, Todo T, Walker GC, Wang Z, Woodgate R. 2001. The Y-family of DNA polymerases. Mol Cell 8:7–8. https://doi.org/10.1016/S1097-2765(01)00278-7.
-
(2001)
Mol Cell
, vol.8
, pp. 7-8
-
-
Ohmori, H.1
Friedberg, E.C.2
Fuchs, R.P.P.3
Goodman, M.F.4
Hanaoka, F.5
Hinkle, D.6
Kunkel, T.A.7
Lawrence, C.W.8
Livneh, Z.9
Nohmi, T.10
Prakash, L.11
Prakash, S.12
Todo, T.13
Walker, G.C.14
Wang, Z.15
Woodgate, R.16
-
78
-
-
85010722905
-
DNA polymerases ImuC and DinB are involved in DNA alkylation damage tolerance in Pseudomonas aeruginosa and Pseudomonas putida
-
Jatsenko T, Sidorenko J, Saumaa S, Kivisaar M. 2017. DNA polymerases ImuC and DinB are involved in DNA alkylation damage tolerance in Pseudomonas aeruginosa and Pseudomonas putida. PLoS One 12: e0170719. https://doi.org/10.1371/journal.pone.0170719.
-
(2017)
Plos One
, vol.12
-
-
Jatsenko, T.1
Sidorenko, J.2
Saumaa, S.3
Kivisaar, M.4
-
79
-
-
23944475626
-
Mechanisms of, and barriers to, horizontal gene transfer between bacteria
-
Thomas CM, Nielsen KM. 2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721. https://doi.org/10.1038/nrmicro1234.
-
(2005)
Nat Rev Microbiol
, vol.3
, pp. 711-721
-
-
Thomas, C.M.1
Nielsen, K.M.2
-
80
-
-
84937405121
-
Horizontal gene transfer: Building the web of life
-
Soucy SM, Huang J, Gogarten JP. 2015. Horizontal gene transfer: building the web of life. Nat Rev Genet 16:472–482. https://doi.org/10.1038/nrg3962.
-
(2015)
Nat Rev Genet
, vol.16
, pp. 472-482
-
-
Soucy, S.M.1
Huang, J.2
Gogarten, J.P.3
-
81
-
-
85011004599
-
Horizontal gene transfer: Essentiality and evolvability in prokaryotes, and roles in evolutionary transitions
-
Koonin EV. 2016. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000Res 5:1805. https://doi.org/10.12688/f1000research.8737.1.
-
(2016)
F1000res
, vol.5
, pp. 1805
-
-
Koonin, E.V.1
-
82
-
-
66149138823
-
Elevated mutation frequency in surviving populations of carbon-starved rpoS-deficient Pseudomonas putida is caused by reduced expression of superoxide dismutase and catalase
-
Tarassova K, Tegova R, Tover A, Teras R, Tark M, Saumaa S, Kivisaar M. 2009. Elevated mutation frequency in surviving populations of carbon-starved rpoS-deficient Pseudomonas putida is caused by reduced expression of superoxide dismutase and catalase. J Bacteriol 191: 3604–3614. https://doi.org/10.1128/JB.01803-08.
-
(2009)
J Bacteriol
, vol.191
, pp. 3604-3614
-
-
Tarassova, K.1
Tegova, R.2
Tover, A.3
Teras, R.4
Tark, M.5
Saumaa, S.6
Kivisaar, M.7
-
83
-
-
84865515927
-
Homologous recombination is facilitated in starving populations of Pseudomonas putida by phenol stress and affected by chromosomal location of the recombination target
-
Tavita K, Mikkel K, Tark-Dame M, Jerabek H, Teras R, Sidorenko J, Tegova R, Tover A, Dame RT, Kivisaar M. 2012. Homologous recombination is facilitated in starving populations of Pseudomonas putida by phenol stress and affected by chromosomal location of the recombination target. Mutat Res 737:12–24. https://doi.org/10.1016/j.mrfmmm.2012.07.004.
-
(2012)
Mutat Res
, vol.737
, pp. 12-24
-
-
Tavita, K.1
Mikkel, K.2
Tark-Dame, M.3
Jerabek, H.4
Teras, R.5
Sidorenko, J.6
Tegova, R.7
Tover, A.8
Dame, R.T.9
Kivisaar, M.10
-
84
-
-
81855175401
-
The diversity of microbial responses to nitric oxide and agents of nitrosative stress: Close cousins but not identical twins
-
Bowman LAH, McLean S, Poole RK, Fukuto JM. 2011. The diversity of microbial responses to nitric oxide and agents of nitrosative stress: close cousins but not identical twins. Adv Microb Physiol 59:135–219. https://doi.org/10.1016/B978-0-12-387661-4.00006-9.
-
(2011)
Adv Microb Physiol
, vol.59
, pp. 135-219
-
-
Bowman, L.A.H.1
McLean, S.2
Poole, R.K.3
Fukuto, J.M.4
-
85
-
-
0344154463
-
Oxidative damage to DNA: Formation, measurement and biochemical features
-
Cadet J, Douki T, Gasparutto D, Ravanat JL. 2003. Oxidative damage to DNA: formation, measurement and biochemical features. Mutat Res 531:5–23. https://doi.org/10.1016/j.mrfmmm.2003.09.001.
-
(2003)
Mutat Res
, vol.531
, pp. 5-23
-
-
Cadet, J.1
Douki, T.2
Gasparutto, D.3
Ravanat, J.L.4
-
86
-
-
27544477399
-
Rieske business: Structure-function of Rieske non-heme oxygenases
-
Ferraro DJ, Gakhar L, Ramaswamy S. 2005. Rieske business: structure-function of Rieske non-heme oxygenases. Biochem Biophys Res Commun 338:175–190. https://doi.org/10.1016/j.bbrc.2005.08.222.
-
(2005)
Biochem Biophys Res Commun
, vol.338
, pp. 175-190
-
-
Ferraro, D.J.1
Gakhar, L.2
Ramaswamy, S.3
-
87
-
-
80054757000
-
Microbial degradation of aromatic compounds—from one strategy to four
-
Fuchs G, Boll M, Heider J. 2011. Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol 9:803–816. https://doi.org/10.1038/nrmicro2652.
-
(2011)
Nat Rev Microbiol
, vol.9
, pp. 803-816
-
-
Fuchs, G.1
Boll, M.2
Heider, J.3
-
88
-
-
84055199606
-
Antifragility and tinkering in biology (And in business) flexibility provides an efficient epigenetic way to manage risk
-
Danchin A, Binder PM, Noria S. 2011. Antifragility and tinkering in biology (and in business) flexibility provides an efficient epigenetic way to manage risk. Genes 2:998–1016. https://doi.org/10.3390/genes 2040998.
-
(2011)
Genes
, vol.2
, pp. 998-1016
-
-
Danchin, A.1
Binder, P.M.2
Noria, S.3
-
89
-
-
0038728786
-
Hormesis: The dose-response revolution
-
Calabrese EJ, Baldwin LA. 2003. Hormesis: the dose-response revolution. Annu Rev Pharmacol Toxicol 43:175–197. https://doi.org/10.1146/annurev.pharmtox.43.100901.140223.
-
(2003)
Annu Rev Pharmacol Toxicol
, vol.43
, pp. 175-197
-
-
Calabrese, E.J.1
Baldwin, L.A.2
-
90
-
-
22544476468
-
Paradigm lost, paradigm found: The re-emergence of hormesis as a fundamental dose response model in the toxicological sciences
-
Calabrese EJ. 2005. Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut 138:379–411. https://doi.org/10.1016/j.envpol.2004.10.001.
-
(2005)
Environ Pollut
, vol.138
, pp. 379-411
-
-
Calabrese, E.J.1
-
91
-
-
39649110574
-
Stress-response hormesis and aging: “that which does not kill us makes us stronger”
-
Gems D, Partridge L. 2008. Stress-response hormesis and aging: “that which does not kill us makes us stronger”. Cell Metab 7:200–203. https://doi.org/10.1016/j.cmet.2008.01.001.
-
(2008)
Cell Metab
, vol.7
, pp. 200-203
-
-
Gems, D.1
Partridge, L.2
-
92
-
-
37749036931
-
Hormesis defined
-
Mattson MP. 2008. Hormesis defined. Ageing Res Rev 7:1–7. https://doi.org/10.1016/j.arr.2007.08.007.
-
(2008)
Ageing Res Rev
, vol.7
, pp. 1-7
-
-
Mattson, M.P.1
-
93
-
-
84888793806
-
Low doses of tetracycline trigger the E. Coli growth: A case of hormetic response
-
Migliore L, Rotini A, Thaller MC. 2013. Low doses of tetracycline trigger the E. coli growth: A case of hormetic response. Dose-Response 11: 565–572. https://doi.org/10.2203/dose-response.13-002.Migliore.
-
(2013)
Dose-Response
, vol.11
, pp. 565-572
-
-
Migliore, L.1
Rotini, A.2
Thaller, M.C.3
-
94
-
-
84989952692
-
Discovery and function of a general core hormetic stress response in E. Coli induced by sublethal concentrations of antibiotics
-
Mathieu A, Fleurier S, Frénoy A, Dairou J, Bredeche MF, Sanchez-Vizuete P, Song X, Matic I. 2016. Discovery and function of a general core hormetic stress response in E. coli induced by sublethal concentrations of antibiotics. Cell Rep 17:46–57. https://doi.org/10.1016/j.celrep.2016.09.001.
-
(2016)
Cell Rep
, vol.17
, pp. 46-57
-
-
Mathieu, A.1
Fleurier, S.2
Frénoy, A.3
Dairou, J.4
Bredeche, M.F.5
Sanchez-Vizuete, P.6
Song, X.7
Matic, I.8
-
95
-
-
85047420197
-
A swinging seesaw as a novel model mechanism for time-dependent hormesis under dose-dependent stimulatory and inhibitory effects: A case study on the toxicity of antibacterial chemicals to Aliivibrio fischeri
-
Sun H, Calabrese EJ, Zheng M, Wang D, Pan Y, Lin Z, Liu Y. 2018. A swinging seesaw as a novel model mechanism for time-dependent hormesis under dose-dependent stimulatory and inhibitory effects: A case study on the toxicity of antibacterial chemicals to Aliivibrio fischeri. Chemosphere 205:15–23. https://doi.org/10.1016/j.chemosphere.2018.04.043.
-
(2018)
Chemosphere
, vol.205
, pp. 15-23
-
-
Sun, H.1
Calabrese, E.J.2
Zheng, M.3
Wang, D.4
Pan, Y.5
Lin, Z.6
Liu, Y.7
-
96
-
-
2442678163
-
Growth of polychlorinated-biphenyl-degrading bacteria in the presence of biphenyl and chloro-biphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate
-
Chávez FP, Lünsdorf H, Jérez CA. 2004. Growth of polychlorinated-biphenyl-degrading bacteria in the presence of biphenyl and chloro-biphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate. Appl Environ Microbiol 70:3064–3072. https://doi.org/10.1128/AEM.70.5.3064-3072.2004.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 3064-3072
-
-
Chávez, F.P.1
Lünsdorf, H.2
Jérez, C.A.3
-
97
-
-
84855974367
-
Reversible and irreversible pollutant-induced bacterial cellular stress effects measured by ethidium bromide uptake and efflux
-
Czechowska K, van der Meer JR. 2012. Reversible and irreversible pollutant-induced bacterial cellular stress effects measured by ethidium bromide uptake and efflux. Environ Sci Technol 46: 1201–1208. https://doi.org/10.1021/es203352y.
-
(2012)
Environ Sci Technol
, vol.46
, pp. 1201-1208
-
-
Czechowska, K.1
van der Meer, J.R.2
-
98
-
-
77953548943
-
Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria
-
Kanaly RA, Harayama S. 2010. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 3:136–164. https://doi.org/10.1111/j.1751-7915.2009.00130.x.
-
(2010)
Microb Biotechnol
, vol.3
, pp. 136-164
-
-
Kanaly, R.A.1
Harayama, S.2
-
99
-
-
35448988447
-
Overex-pressing antioxidant enzymes enhances naphthalene biodegradation in Pseudomonas sp. Strain As1
-
Kang YS, Lee Y, Jung H, Jeon CO, Madsen EL, Park W. 2007. Overex-pressing antioxidant enzymes enhances naphthalene biodegradation in Pseudomonas sp. strain As1. Microbiology 153:3246–3254. https://doi.org/10.1099/mic.0.2007/008896-0.
-
(2007)
Microbiology
, vol.153
, pp. 3246-3254
-
-
Kang, Y.S.1
Lee, Y.2
Jung, H.3
Jeon, C.O.4
Madsen, E.L.5
Park, W.6
-
100
-
-
85047192966
-
Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism
-
Nikel PI, de Lorenzo V. 2018. Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab Eng https://doi.org/10.1016/j.ymben.2018.05.005.
-
(2018)
Metab Eng
-
-
Nikel, P.I.1
de Lorenzo, V.2
-
102
-
-
82355181976
-
Transposon-based and plasmid-based genetic tools for editing genomes of Gram-negative bacteria
-
Martínez-García E, de Lorenzo V. 2012. Transposon-based and plasmid-based genetic tools for editing genomes of Gram-negative bacteria. Methods Mol Biol 813:267–283. https://doi.org/10.1007/978-1-61779-412-4_16.
-
(2012)
Methods Mol Biol
, vol.813
, pp. 267-283
-
-
Martínez-García, E.1
de Lorenzo, V.2
-
103
-
-
84891635026
-
Metabolic and regulatory rearrangements underlying glycerol metabolism in Pseudomonas putida KT2440
-
Nikel PI, Kim J, de Lorenzo V. 2014. Metabolic and regulatory rearrangements underlying glycerol metabolism in Pseudomonas putida KT2440. Environ Microbiol 16:239–254. https://doi.org/10.1111/1462-2920.12224.
-
(2014)
Environ Microbiol
, vol.16
, pp. 239-254
-
-
Nikel, P.I.1
Kim, J.2
de Lorenzo, V.3
-
104
-
-
10444253273
-
Stress responses and genetic variation in bacteria
-
Foster PL. 2005. Stress responses and genetic variation in bacteria. Mutat Res 569:3–11. https://doi.org/10.1016/j.mrfmmm.2004.07.017.
-
(2005)
Mutat Res
, vol.569
, pp. 3-11
-
-
Foster, P.L.1
-
105
-
-
0034006621
-
Determining mutation rates in bacterial populations
-
Rosche WA, Foster PL. 2000. Determining mutation rates in bacterial populations. Methods 20:4–17. https://doi.org/10.1006/meth.1999.0901.
-
(2000)
Methods
, vol.20
, pp. 4-17
-
-
Rosche, W.A.1
Foster, P.L.2
-
106
-
-
84946019816
-
New transposon tools tailored for metabolic engineering of Gram-negative microbial cell factories
-
Martínez-García E, Aparicio T, de Lorenzo V, Nikel PI. 2014. New transposon tools tailored for metabolic engineering of Gram-negative microbial cell factories. Front Bioeng Biotechnol 2:46. https://doi.org/10.3389/fbioe.2014.00046.
-
(2014)
Front Bioeng Biotechnol
, vol.2
, pp. 46
-
-
Martínez-García, E.1
Aparicio, T.2
de Lorenzo, V.3
Nikel, P.I.4
-
107
-
-
84872193848
-
Implantation of unmarked regulatory and metabolic modules in Gram-negative bacteria with specialised mini-transposon delivery vectors
-
Nikel PI, de Lorenzo V. 2013. Implantation of unmarked regulatory and metabolic modules in Gram-negative bacteria with specialised mini-transposon delivery vectors. J Biotechnol 163:143–154. https://doi.org/10.1016/j.jbiotec.2012.05.002.
-
(2013)
J Biotechnol
, vol.163
, pp. 143-154
-
-
Nikel, P.I.1
de Lorenzo, V.2
-
108
-
-
84871436225
-
Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene
-
Nikel PI, de Lorenzo V. 2013. Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene. Metab Eng 15:98–112. https://doi.org/10.1016/j.ymben.2012.09.006.
-
(2013)
Metab Eng
, vol.15
, pp. 98-112
-
-
Nikel, P.I.1
de Lorenzo, V.2
-
109
-
-
84954144197
-
Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway
-
Dvořák P, Chrást L, Nikel PI, Fedr R, Soucek K, Sedlacková M, Chaloup-ková R, de Lorenzo V, Prokop Z, Damborský J. 2015. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microb Cell Fact 14:201. https://doi.org/10.1186/s12934-015-0393-3.
-
(2015)
Microb Cell Fact
, vol.14
, Issue.201
-
-
Dvořák, P.1
Chrást, L.2
Nikel, P.I.3
Fedr, R.4
Soucek, K.5
Sedlacková, M.6
Chaloup-Ková, R.7
de Lorenzo, V.8
Prokop, Z.9
Damborský, J.10
-
110
-
-
64349101860
-
Side effects of antibiotics on genetic variability
-
Couce A, Blázquez J. 2009. Side effects of antibiotics on genetic variability. FEMS Microbiol Rev 33:531–538. https://doi.org/10.1111/j.1574-6976.2009.00165.x.
-
(2009)
FEMS Microbiol Rev
, vol.33
, pp. 531-538
-
-
Couce, A.1
Blázquez, J.2
|