메뉴 건너뛰기




Volumn 9, Issue 4, 2018, Pages

The metabolic redox regime of Pseudomonas putida tunes its evolvability toward novel xenobiotic substrates

Author keywords

Biodegradation; Dinitrotoluene; Evolution; NADPH oxidases; Oxidative stress; Pseudomonas putida; Reactive oxygen species

Indexed keywords

AROMATIC NITRO COMPOUND; REACTIVE OXYGEN METABOLITE; XENOBIOTIC AGENT; 2,4-DINITROTOLUENE; BACTERIAL PROTEIN; NITROBENZENE DERIVATIVE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE OXIDASE;

EID: 85055461090     PISSN: 21612129     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.01512-18     Document Type: Article
Times cited : (54)

References (110)
  • 1
    • 68049085674 scopus 로고    scopus 로고
    • Evolution of efficient pathways for degradation of anthropogenic chemicals
    • Copley SD. 2009. Evolution of efficient pathways for degradation of anthropogenic chemicals. Nat Chem Biol 5:559–566. https://doi.org/10.1038/nchembio.197.
    • (2009) Nat Chem Biol , vol.5 , pp. 559-566
    • Copley, S.D.1
  • 2
    • 4744339316 scopus 로고    scopus 로고
    • Evolution of enzymes for the metabolism of new chemical inputs into the environment
    • Wackett LP. 2004. Evolution of enzymes for the metabolism of new chemical inputs into the environment. J Biol Chem 279:41259–41262. https://doi.org/10.1074/jbc.R400014200.
    • (2004) J Biol Chem , vol.279 , pp. 41259-41262
    • Wackett, L.P.1
  • 3
    • 85041924132 scopus 로고    scopus 로고
    • Toward prediction and control of antibiotic-resistance evolution
    • Furusawa C, Horinouchi T, Maeda T. 2018. Toward prediction and control of antibiotic-resistance evolution. Curr Opin Biotechnol 54:45–49. https://doi.org/10.1016/j.copbio.2018.01.026.
    • (2018) Curr Opin Biotechnol , vol.54 , pp. 45-49
    • Furusawa, C.1    Horinouchi, T.2    Maeda, T.3
  • 4
    • 85044768181 scopus 로고    scopus 로고
    • Evolutionary mechanisms shaping the maintenance of antibiotic resistance
    • Durão P, Balbontín R, Gordo I. 2018. Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends Microbiol 26:677–691. https://doi.org/10.1016/j.tim.2018.01.005.
    • (2018) Trends Microbiol , vol.26 , pp. 677-691
    • Durão, P.1    Balbontín, R.2    Gordo, I.3
  • 5
    • 84875212396 scopus 로고    scopus 로고
    • Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance
    • Palmer AC, Kishony R. 2013. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nat Rev Genet 14:243–248. https://doi.org/10.1038/nrg3351.
    • (2013) Nat Rev Genet , vol.14 , pp. 243-248
    • Palmer, A.C.1    Kishony, R.2
  • 6
    • 85039843874 scopus 로고    scopus 로고
    • Interventions on metabolism: Making antibiotic-susceptible bacteria
    • Baquero F, Martínez JL. 2017. Interventions on metabolism: making antibiotic-susceptible bacteria. mBio 8:e01950-17. https://doi.org/10.1128/mBio.01950-17.
    • (2017) Mbio , vol.8
    • Baquero, F.1    Martínez, J.L.2
  • 7
    • 84961267108 scopus 로고    scopus 로고
    • Ancient evolution and recent evolution converge for the biodegradation of cyanuric acid and related triazines
    • Seffernick JL, Wackett LP. 2016. Ancient evolution and recent evolution converge for the biodegradation of cyanuric acid and related triazines. Appl Environ Microbiol 82:1638–1645. https://doi.org/10.1128/AEM.03594-15.
    • (2016) Appl Environ Microbiol , vol.82 , pp. 1638-1645
    • Seffernick, J.L.1    Wackett, L.P.2
  • 8
    • 0034061462 scopus 로고    scopus 로고
    • Aerobic degradation of dinitro-toluenes and pathway for bacterial degradation of 2,6-dinitrotoluene
    • Nishino SF, Paoli GC, Spain JC. 2000. Aerobic degradation of dinitro-toluenes and pathway for bacterial degradation of 2,6-dinitrotoluene. Appl Environ Microbiol 66:2139–2147. https://doi.org/10.1128/aem.66.5.2139-2147.2000.
    • (2000) Appl Environ Microbiol , vol.66 , pp. 2139-2147
    • Nishino, S.F.1    Paoli, G.C.2    Spain, J.C.3
  • 9
    • 0028841595 scopus 로고
    • Biodegradation of nitroaromatic compounds
    • Spain JC. 1995. Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555. https://doi.org/10.1146/annurev.mi.49.100 195.002515.
    • (1995) Annu Rev Microbiol , vol.49 , pp. 523-555
    • Spain, J.C.1
  • 10
    • 85046707542 scopus 로고    scopus 로고
    • Resveratrol as a growth substrate for bacteria from the rhizosphere
    • Kurt Z, Minoia M, Spain JC. 2018. Resveratrol as a growth substrate for bacteria from the rhizosphere. Appl Environ Microbiol 84:e00104-18. https://doi.org/10.1128/AEM.00104-18.
    • (2018) Appl Environ Microbiol , vol.84
    • Kurt, Z.1    Minoia, M.2    Spain, J.C.3
  • 11
    • 84875059461 scopus 로고    scopus 로고
    • Why are chlorinated pollutants so difficult to degrade aerobically? Redox stress limits 1,3-dichloroprop-1-ene metabolism by Pseudomonas pavonaceae
    • Nikel PI, Pérez-Pantoja D, de Lorenzo V. 2013. Why are chlorinated pollutants so difficult to degrade aerobically? Redox stress limits 1,3-dichloroprop-1-ene metabolism by Pseudomonas pavonaceae. Philos Trans R Soc Lond B Biol Sci 368:20120377. https://doi.org/10.1098/rstb.2012.0377.
    • (2013) Philos Trans R Soc Lond B Biol Sci , vol.368 , pp. 20120377
    • Nikel, P.I.1    Pérez-Pantoja, D.2    de Lorenzo, V.3
  • 12
    • 0031028986 scopus 로고    scopus 로고
    • Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds
    • van der Meer JR. 1997. Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie Van Leeuwenhoek 71:159–178. https://doi.org/10.1023/A:1000166400935.
    • (1997) Antonie Van Leeuwenhoek , vol.71 , pp. 159-178
    • van der Meer, J.R.1
  • 13
    • 80054009620 scopus 로고    scopus 로고
    • Evolution of catabolic pathways and their regulatory systems in synthetic nitroaromatic compounds degrading bacteria
    • Kivisaar M. 2011. Evolution of catabolic pathways and their regulatory systems in synthetic nitroaromatic compounds degrading bacteria. Mol Microbiol 82:265–268. https://doi.org/10.1111/j.1365-2958.2011.07824.x.
    • (2011) Mol Microbiol , vol.82 , pp. 265-268
    • Kivisaar, M.1
  • 14
    • 0041661967 scopus 로고    scopus 로고
    • Evolution of catabolic pathways for synthetic compounds: Bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene
    • Johnson GR, Spain JC. 2003. Evolution of catabolic pathways for synthetic compounds: bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene. Appl Microbiol Biotechnol 62: 110–123. https://doi.org/10.1007/s00253-003-1341-4.
    • (2003) Appl Microbiol Biotechnol , vol.62 , pp. 110-123
    • Johnson, G.R.1    Spain, J.C.2
  • 16
  • 17
    • 84898874640 scopus 로고    scopus 로고
    • Biotechnological domestication of pseudomonads using synthetic biology
    • Nikel PI, Martínez-García E, de Lorenzo V. 2014. Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12:368–379. https://doi.org/10.1038/nrmicro3253.
    • (2014) Nat Rev Microbiol , vol.12 , pp. 368-379
    • Nikel, P.I.1    Martínez-García, E.2    de Lorenzo, V.3
  • 18
    • 84896710626 scopus 로고    scopus 로고
    • The private life of environmental bacteria: Pollutant biodegradation at the single cell level
    • Nikel PI, Silva-Rocha R, Benedetti I, de Lorenzo V. 2014. The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environ Microbiol 16:628–642. https://doi.org/10.1111/1462-2920.12360.
    • (2014) Environ Microbiol , vol.16 , pp. 628-642
    • Nikel, P.I.1    Silva-Rocha, R.2    Benedetti, I.3    de Lorenzo, V.4
  • 20
    • 85028355868 scopus 로고    scopus 로고
    • Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology
    • Dvořák P, Nikel PI, Damborský J, de Lorenzo V. 2017. Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol Adv 35:845–866. https://doi.org/10.1016/j.biotechadv.2017.08.001.
    • (2017) Biotechnol Adv , vol.35 , pp. 845-866
    • Dvořák, P.1    Nikel, P.I.2    Damborský, J.3    de Lorenzo, V.4
  • 21
    • 77952926530 scopus 로고    scopus 로고
    • Nitroaromatic compounds, from synthesis to biodegradation
    • Ju KS, Parales RE. 2010. Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev 74:250–272. https://doi.org/10.1128/MMBR.00006-10.
    • (2010) Microbiol Mol Biol Rev , vol.74 , pp. 250-272
    • Ju, K.S.1    Parales, R.E.2
  • 22
    • 33646533034 scopus 로고    scopus 로고
    • Aromatic hydrocarbon dioxygenases
    • Singh A, Ward OP, vol, Springer, Berlin, Germany
    • Parales RE, Resnick SM. 2004. Aromatic hydrocarbon dioxygenases, p 175–195. In Singh A, Ward OP (ed), Biodegradation and bioremediation, vol 2. Springer, Berlin, Germany.
    • (2004) Biodegradation and Bioremediation , vol.2 , pp. 175-195
    • Parales, R.E.1    Resnick, S.M.2
  • 23
    • 0034029015 scopus 로고    scopus 로고
    • Aromatic hydrocarbon dioxygenases in environmental biotechnology
    • Gibson DT, Parales RE. 2000. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243. https://doi.org/10.1016/S0958-1669(00)00090-2.
    • (2000) Curr Opin Biotechnol , vol.11 , pp. 236-243
    • Gibson, D.T.1    Parales, R.E.2
  • 24
    • 34547644103 scopus 로고    scopus 로고
    • Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme
    • Gómez-Gil L, Kumar P, Barriault D, Bolin JT, Sylvestre M, Eltis LD. 2007. Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme. J Bacteriol 189:5705–5715. https://doi.org/10.1128/JB.01476-06.
    • (2007) J Bacteriol , vol.189 , pp. 5705-5715
    • Gómez-Gil, L.1    Kumar, P.2    Barriault, D.3    Bolin, J.T.4    Sylvestre, M.5    Eltis, L.D.6
  • 25
    • 0034724877 scopus 로고    scopus 로고
    • Steady-state kinetic characterization and crystallization of a polychlorinated biphenyl-transforming dioxygenase
    • Imbeault NYR, Powlowski JB, Colbert CL, Bolin JT, Eltis LD. 2000. Steady-state kinetic characterization and crystallization of a polychlorinated biphenyl-transforming dioxygenase. J Biol Chem 275:12430–12437. https://doi.org/10.1074/jbc.275.17.12430.
    • (2000) J Biol Chem , vol.275 , pp. 12430-12437
    • Imbeault, N.Y.R.1    Powlowski, J.B.2    Colbert, C.L.3    Bolin, J.T.4    Eltis, L.D.5
  • 26
    • 0032900895 scopus 로고    scopus 로고
    • Benzene-induced uncoupling of naphthalene dioxygenase activity and enzyme inactivation by production of hydrogen peroxide
    • Lee K. 1999. Benzene-induced uncoupling of naphthalene dioxygenase activity and enzyme inactivation by production of hydrogen peroxide. J Bacteriol 181:2719–2725.
    • (1999) J Bacteriol , vol.181 , pp. 2719-2725
    • Lee, K.1
  • 28
    • 0031958521 scopus 로고    scopus 로고
    • Substrate specificities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenase enzyme systems
    • Parales RE, Emig MD, Lynch NA, Gibson DT. 1998. Substrate specificities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenase enzyme systems. J Bacteriol 180:2337–2344.
    • (1998) J Bacteriol , vol.180 , pp. 2337-2344
    • Parales, R.E.1    Emig, M.D.2    Lynch, N.A.3    Gibson, D.T.4
  • 30
    • 84949233426 scopus 로고    scopus 로고
    • Electron flow through biological molecules: Does hole hopping protect proteins from oxidative damage?
    • Winkler JR, Gray HB. 2015. Electron flow through biological molecules: does hole hopping protect proteins from oxidative damage? Q Rev Biophys 48:411–420. https://doi.org/10.1017/S0033583515000062.
    • (2015) Q Rev Biophys , vol.48 , pp. 411-420
    • Winkler, J.R.1    Gray, H.B.2
  • 31
    • 35148834805 scopus 로고    scopus 로고
    • Mutation as a stress response and the regulation of evolvability
    • Galhardo RS, Hastings PJ, Rosenberg SM. 2007. Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42:399–435. https://doi.org/10.1080/10409230701648502.
    • (2007) Crit Rev Biochem Mol Biol , vol.42 , pp. 399-435
    • Galhardo, R.S.1    Hastings, P.J.2    Rosenberg, S.M.3
  • 32
    • 85026830700 scopus 로고    scopus 로고
    • Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria
    • Ilmjärv T, Naanuri E, Kivisaar M. 2017. Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria. PLoS One 12:e0182484. https://doi.org/10.1371/journal.pone.0182484.
    • (2017) Plos One , vol.12
    • Ilmjärv, T.1    Naanuri, E.2    Kivisaar, M.3
  • 34
    • 0036064709 scopus 로고    scopus 로고
    • Origins of the 2,4-dinitrotoluene pathway
    • Johnson GR, Jain RK, Spain JC. 2002. Origins of the 2,4-dinitrotoluene pathway. J Bacteriol 184:4219–4232. https://doi.org/10.1128/jb.184.15.4219-4232.2002.
    • (2002) J Bacteriol , vol.184 , pp. 4219-4232
    • Johnson, G.R.1    Jain, R.K.2    Spain, J.C.3
  • 35
    • 84884653783 scopus 로고    scopus 로고
    • Endogenous stress caused by faulty oxidation reactions fosters evolution of 2,4-dinitrotoluene-degrading bacteria
    • Pérez-Pantoja D, Nikel PI, Chavarría M, de Lorenzo V. 2013. Endogenous stress caused by faulty oxidation reactions fosters evolution of 2,4-dinitrotoluene-degrading bacteria. PLoS Genet 9:e1003764. https://doi.org/10.1371/journal.pgen.1003764.
    • (2013) Plos Genet , vol.9
    • Pérez-Pantoja, D.1    Nikel, P.I.2    Chavarría, M.3    de Lorenzo, V.4
  • 36
    • 85027563788 scopus 로고    scopus 로고
    • Hfq links translation repression to stress-induced mutagenesis in E. Coli
    • Chen J, Gottesman S. 2017. Hfq links translation repression to stress-induced mutagenesis in E. coli. Genes Dev 31:1382–1395. https://doi.org/10.1101/gad.302547.117.
    • (2017) Genes Dev , vol.31 , pp. 1382-1395
    • Chen, J.1    Gottesman, S.2
  • 38
    • 78651472662 scopus 로고    scopus 로고
    • Mechanisms of stationary-phase mutagenesis in bacteria: Mutational processes in pseudomonads
    • Kivisaar M. 2010. Mechanisms of stationary-phase mutagenesis in bacteria: mutational processes in pseudomonads. FEMS Microbiol Lett 312:1–14. https://doi.org/10.1111/j.1574-6968.2010.02027.x.
    • (2010) FEMS Microbiol Lett , vol.312 , pp. 1-14
    • Kivisaar, M.1
  • 39
    • 84905965348 scopus 로고    scopus 로고
    • Oxidative stress response in Pseudomonas putida
    • Kim J, Park W. 2014. Oxidative stress response in Pseudomonas putida. Appl Microbiol Biotechnol 98:6933–6946. https://doi.org/10.1007/s00253-014-5883-4.
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 6933-6946
    • Kim, J.1    Park, W.2
  • 40
    • 85029591389 scopus 로고    scopus 로고
    • Metabolic defence against oxidative stress: The road less travelled so far
    • Lemire J, Alhasawi A, Appanna VP, Tharmalingam S, Appanna VD. 2017. Metabolic defence against oxidative stress: the road less travelled so far. J Appl Microbiol 123:798–809. https://doi.org/10.1111/jam.13509.
    • (2017) J Appl Microbiol , vol.123 , pp. 798-809
    • Lemire, J.1    Alhasawi, A.2    Appanna, V.P.3    Tharmalingam, S.4    Appanna, V.D.5
  • 41
    • 34548563918 scopus 로고    scopus 로고
    • Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens
    • Singh R, Mailloux RJ, Puiseux-Dao S, Appanna VD. 2007. Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. J Bacteriol 189:6665–6675. https://doi.org/10.1128/JB.00555-07.
    • (2007) J Bacteriol , vol.189 , pp. 6665-6675
    • Singh, R.1    Mailloux, R.J.2    Puiseux-Dao, S.3    Appanna, V.D.4
  • 42
    • 84955475683 scopus 로고    scopus 로고
    • Measurement and meaning of cellular thiol:Disulfide redox status
    • Comini MA. 2016. Measurement and meaning of cellular thiol:disulfide redox status. Free Radic Res 50:246–271. https://doi.org/10.3109/1071 5762.2015.1110241.
    • (2016) Free Radic Res , vol.50 , pp. 246-271
    • Comini, M.A.1
  • 43
    • 10444278093 scopus 로고    scopus 로고
    • Expression of glutathione S-transferase and peptide methionine sulphoxide reductase in Ochrobactrum anthropi is correlated to the production of reactive oxygen species caused by aromatic substrates
    • Tamburro A, Robuffo I, Heipieper HJ, Allocati N, Rotilio D, Di Ilio C, Favaloro B. 2004. Expression of glutathione S-transferase and peptide methionine sulphoxide reductase in Ochrobactrum anthropi is correlated to the production of reactive oxygen species caused by aromatic substrates. FEMS Microbiol Lett 241:151–156. https://doi.org/10.1016/j.femsle.2004.10.013.
    • (2004) FEMS Microbiol Lett , vol.241 , pp. 151-156
    • Tamburro, A.1    Robuffo, I.2    Heipieper, H.J.3    Allocati, N.4    Rotilio, D.5    Di Ilio, C.6    Favaloro, B.7
  • 44
    • 84969963522 scopus 로고    scopus 로고
    • From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions
    • Nikel PI, Chavarría M, Danchin A, de Lorenzo V. 2016. From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol 34:20–29. https://doi.org/10.1016/j.cbpa.2016.05.011.
    • (2016) Curr Opin Chem Biol , vol.34 , pp. 20-29
    • Nikel, P.I.1    Chavarría, M.2    Danchin, A.3    de Lorenzo, V.4
  • 45
    • 85058870980 scopus 로고    scopus 로고
    • Chasing bacterial chassis for metabolic engineering: A perspective review from classical to non-traditional microorganisms
    • June 2018
    • Calero P, Nikel PI. 21 June 2018. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb Biotechnol https://doi.org/10.1111/1751-7915.13292.
    • (2018) Microb Biotechnol
    • Calero, P.1    Nikel, P.I.2
  • 46
    • 84870996383 scopus 로고    scopus 로고
    • Making green polymers even greener: Towards sustainable production of polyhydroxyalkanoates from agroindustrial by-products
    • Petre M, InTech, Rijeka, Croatia
    • Gomez JGC, Méndez BS, Nikel PI, Pettinari MJ, Prieto MA, Silva LF. 2012. Making green polymers even greener: towards sustainable production of polyhydroxyalkanoates from agroindustrial by-products, p 41–62. In Petre M (ed), Advances in applied biotechnology. InTech, Rijeka, Croatia.
    • (2012) Advances in Applied Biotechnology , pp. 41-62
    • Gomez, J.G.C.1    Méndez, B.S.2    Nikel, P.I.3    Pettinari, M.J.4    Prieto, M.A.5    Silva, L.F.6
  • 47
    • 84944910018 scopus 로고    scopus 로고
    • Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways
    • Nikel PI, Chavarría M, Fuhrer T, Sauer U, de Lorenzo V. 2015. Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J Biol Chem 290:25920–25932. https://doi.org/10.1074/jbc.M115.687749.
    • (2015) J Biol Chem , vol.290 , pp. 25920-25932
    • Nikel, P.I.1    Chavarría, M.2    Fuhrer, T.3    Sauer, U.4    de Lorenzo, V.5
  • 48
    • 85019615262 scopus 로고    scopus 로고
    • Quantitative physiology approaches to understand and optimize reducing power availability in environmental bacteria
    • McGenity TJ, Timmis KN, Nogales-Fernández B, Humana Press, Heidelberg, Germany
    • Nikel PI, Chavarría M. 2016. Quantitative physiology approaches to understand and optimize reducing power availability in environmental bacteria, p 39–70. In McGenity TJ, Timmis KN, Nogales-Fernández B (ed), Hydrocarbon and lipid microbiology protocols–synthetic and systems biology–tools. Humana Press, Heidelberg, Germany. https://doi.org/10.1007/8623_2015_84.
    • (2016) Hydrocarbon and Lipid Microbiology protocols–synthetic and Systems biology–tools , pp. 39-70
    • Nikel, P.I.1    Chavarría, M.2
  • 49
    • 84991447132 scopus 로고    scopus 로고
    • Pyridine nucleotide transhydrogenases enable redox balance of Pseudomonas putida during biodegradation of aromatic compounds
    • Nikel PI, Pérez-Pantoja D, de Lorenzo V. 2016. Pyridine nucleotide transhydrogenases enable redox balance of Pseudomonas putida during biodegradation of aromatic compounds. Environ Microbiol 18: 3565–3582. https://doi.org/10.1111/1462-2920.13434.
    • (2016) Environ Microbiol , vol.18 , pp. 3565-3582
    • Nikel, P.I.1    Pérez-Pantoja, D.2    de Lorenzo, V.3
  • 50
    • 80053934387 scopus 로고    scopus 로고
    • Association of dnt genes of Burkholderia sp. DNT with the substrate-blind regulator DntR draws the evolutionary itinerary of 2,4-dinitrotoluene biodegradation
    • de las Heras A, Chavarría M, de Lorenzo V. 2011. Association of dnt genes of Burkholderia sp. DNT with the substrate-blind regulator DntR draws the evolutionary itinerary of 2,4-dinitrotoluene biodegradation. Mol Microbiol 82:287–299. https://doi.org/10.1111/j.1365-2958.2011.07825.x.
    • (2011) Mol Microbiol , vol.82 , pp. 287-299
    • de las Heras, A.1    Chavarría, M.2    de Lorenzo, V.3
  • 51
    • 84921889421 scopus 로고    scopus 로고
    • Freeing Pseudomonas putida KT2440 of its proviral load strengthens endurance to environmental stresses
    • Martínez-García E, Jatsenko T, Kivisaar M, de Lorenzo V. 2015. Freeing Pseudomonas putida KT2440 of its proviral load strengthens endurance to environmental stresses. Environ Microbiol 17:76–90. https://doi.org/10.1111/1462-2920.12492.
    • (2015) Environ Microbiol , vol.17 , pp. 76-90
    • Martínez-García, E.1    Jatsenko, T.2    Kivisaar, M.3    de Lorenzo, V.4
  • 52
    • 84928718106 scopus 로고    scopus 로고
    • Genome reduction boosts heterologous gene expression in Pseudomonas putida
    • Lieder S, Nikel PI, de Lorenzo V, Takors R. 2015. Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microb Cell Fact 14:23. https://doi.org/10.1186/s12934-015-0207-7.
    • (2015) Microb Cell Fact , vol.14 , pp. 23
    • Lieder, S.1    Nikel, P.I.2    de Lorenzo, V.3    Takors, R.4
  • 53
    • 0028241454 scopus 로고
    • Biodegradation of 4-methyl-5-nitrocatechol by Pseudomonas sp. Strain DNT
    • Haigler BE, Nishino SF, Spain JC. 1994. Biodegradation of 4-methyl-5-nitrocatechol by Pseudomonas sp. strain DNT. J Bacteriol 176: 3433–3437. https://doi.org/10.1128/jb.176.11.3433-3437.1994.
    • (1994) J Bacteriol , vol.176 , pp. 3433-3437
    • Haigler, B.E.1    Nishino, S.F.2    Spain, J.C.3
  • 54
    • 0029820893 scopus 로고    scopus 로고
    • Purification and sequence analysis of 4-methyl-5-nitrocatechol oxygenase from Burkholderia sp. Strain DNT
    • Haigler BE, Suen WC, Spain JC. 1996. Purification and sequence analysis of 4-methyl-5-nitrocatechol oxygenase from Burkholderia sp. strain DNT. J Bacteriol 178:6019–6024. https://doi.org/10.1128/jb.178.20.6019-6024.1996.
    • (1996) J Bacteriol , vol.178 , pp. 6019-6024
    • Haigler, B.E.1    Suen, W.C.2    Spain, J.C.3
  • 57
    • 13544273854 scopus 로고    scopus 로고
    • Adaptation of the yeast URA3 selection system to Gram-negative bacteria and generation of a ΔbetCDE Pseudomonas putida strain
    • Galvão TC, de Lorenzo V. 2005. Adaptation of the yeast URA3 selection system to Gram-negative bacteria and generation of a ΔbetCDE Pseudomonas putida strain. Appl Environ Microbiol 71:883–892. https://doi.org/10.1128/AEM.71.2.883-892.2005.
    • (2005) Appl Environ Microbiol , vol.71 , pp. 883-892
    • Galvão, T.C.1    de Lorenzo, V.2
  • 58
    • 84964313870 scopus 로고    scopus 로고
    • Pseudomonas 2.0: Genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression
    • Martínez-García E, Nikel PI, Aparicio T, de Lorenzo V. 2014. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Fact 13:159. https://doi.org/10.1186/s12934-014-0159-3.
    • (2014) Microb Cell Fact , vol.13 , pp. 159
    • Martínez-García, E.1    Nikel, P.I.2    Aparicio, T.3    de Lorenzo, V.4
  • 59
    • 0031407768 scopus 로고    scopus 로고
    • DNA gyrase, topoisomerase IV, and the 4-quinolones
    • Drlica K, Zhao X. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392.
    • (1997) Microbiol Mol Biol Rev , vol.61 , pp. 377-392
    • Drlica, K.1    Zhao, X.2
  • 60
    • 85006247350 scopus 로고    scopus 로고
    • Mechanisms of bacterial persistence during stress and antibiotic exposure
    • Harms A, Maisonneuve E, Gerdes K. 2016. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354:aaf4268. https://doi.org/10.1126/science.aaf4268.
    • (2016) Science , vol.354
    • Harms, A.1    Maisonneuve, E.2    Gerdes, K.3
  • 61
    • 84924921744 scopus 로고    scopus 로고
    • SOS, the formidable strategy of bacteria against aggressions
    • Baharoglu Z, Mazel D. 2014. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 38:1126–1145. https://doi.org/10.1111/1574-6976.12077.
    • (2014) FEMS Microbiol Rev , vol.38 , pp. 1126-1145
    • Baharoglu, Z.1    Mazel, D.2
  • 62
    • 37449019352 scopus 로고    scopus 로고
    • Cohabitation of two different lexA regulons in Pseudomonas putida
    • Abella M, Campoy S, Erill I, Rojo F, Barbé J. 2007. Cohabitation of two different lexA regulons in Pseudomonas putida. J Bacteriol 189: 8855–8862. https://doi.org/10.1128/JB.01213-07.
    • (2007) J Bacteriol , vol.189 , pp. 8855-8862
    • Abella, M.1    Campoy, S.2    Erill, I.3    Rojo, F.4    Barbé, J.5
  • 63
    • 84871700696 scopus 로고    scopus 로고
    • Quantitative, non-disruptive monitoring of transcription in single cells with a broad-host range GFP-luxCDABE dual reporter system
    • Benedetti IM, de Lorenzo V, Silva-Rocha R. 2012. Quantitative, non-disruptive monitoring of transcription in single cells with a broad-host range GFP-luxCDABE dual reporter system. PLoS One 7:e52000. https://doi.org/10.1371/journal.pone.0052000.
    • (2012) Plos One , vol.7
    • Benedetti, I.M.1    de Lorenzo, V.2    Silva-Rocha, R.3
  • 64
    • 0035937403 scopus 로고    scopus 로고
    • Structural mechanism for rifampicin inhibition of bacterial RNA polymerase
    • Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA. 2001. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901–912. https://doi.org/10.1016/S0092-8674(01)00286-0.
    • (2001) Cell , vol.104 , pp. 901-912
    • Campbell, E.A.1    Korzheva, N.2    Mustaev, A.3    Murakami, K.4    Nair, S.5    Goldfarb, A.6    Darst, S.A.7
  • 65
    • 71549137129 scopus 로고    scopus 로고
    • R mutations in Pseudomonas aeruginosa and Pseudomonas putida
    • R mutations in Pseudomonas aeruginosa and Pseudomonas putida. Mutat Res 683:106–114. https://doi.org/10.1016/j.mrfmmm.2009.10.015.
    • (2010) Mutat Res , vol.683 , pp. 106-114
    • Jatsenko, T.1    Tover, A.2    Tegova, R.3    Kivisaar, M.4
  • 67
    • 84877842924 scopus 로고    scopus 로고
    • Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440
    • Nikel PI, Chavarría M, Martínez-García E, Taylor AC, de Lorenzo V. 2013. Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440. Microb Cell Fact 12:50. https://doi.org/10.1186/1475-2859-12-50.
    • (2013) Microb Cell Fact , vol.12 , pp. 50
    • Nikel, P.I.1    Chavarría, M.2    Martínez-García, E.3    Taylor, A.C.4    de Lorenzo, V.5
  • 68
    • 84928793736 scopus 로고    scopus 로고
    • The glycerol-dependent metabolic persistence of Pseudomonas putida KT2440 reflects the regulatory logic of the GlpR repressor
    • Nikel PI, Romero-Campero FJ, Zeidman JA, Goñi-Moreno Á, de Lorenzo V. 2015. The glycerol-dependent metabolic persistence of Pseudomonas putida KT2440 reflects the regulatory logic of the GlpR repressor. mBio 6:e00340-15. https://doi.org/10.1128/mBio.00340-15.
    • (2015) Mbio , vol.6
    • Nikel, P.I.1    Romero-Campero, F.J.2    Zeidman, J.A.3    Goñi-Moreno, Á.4    de Lorenzo, V.5
  • 69
    • 84910027662 scopus 로고    scopus 로고
    • Robustness of Pseudomonas putida KT2440 as a host for ethanol biosynthesis
    • Nikel PI, de Lorenzo V. 2014. Robustness of Pseudomonas putida KT2440 as a host for ethanol biosynthesis. New Biotechnol 31:562–571. https://doi.org/10.1016/j.nbt.2014.02.006.
    • (2014) New Biotechnol , vol.31 , pp. 562-571
    • Nikel, P.I.1    de Lorenzo, V.2
  • 70
    • 84864574150 scopus 로고    scopus 로고
    • Why do bacteria use so many enzymes to scavenge hydrogen peroxide?
    • Mishra S, Imlay J. 2012. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch Biochem Biophys 525:145–160. https://doi.org/10.1016/j.abb.2012.04.014.
    • (2012) Arch Biochem Biophys , vol.525 , pp. 145-160
    • Mishra, S.1    Imlay, J.2
  • 72
    • 79958041001 scopus 로고    scopus 로고
    • Identification of a conserved sequence in flavoproteins essential for the correct conformation and activity of the NADH oxidase NoxE of Lactococcus lactis
    • Tachon S, Chambellon E, Yvon M. 2011. Identification of a conserved sequence in flavoproteins essential for the correct conformation and activity of the NADH oxidase NoxE of Lactococcus lactis. J Bacteriol 193:3000–3008. https://doi.org/10.1128/JB.01466-10.
    • (2011) J Bacteriol , vol.193 , pp. 3000-3008
    • Tachon, S.1    Chambellon, E.2    Yvon, M.3
  • 73
    • 80052787409 scopus 로고    scopus 로고
    • Response of Pseudomonas putida KT2440 to increased NADH and ATP demand
    • Ebert BE, Kurth F, Grund M, Blank LM, Schmid A. 2011. Response of Pseudomonas putida KT2440 to increased NADH and ATP demand. Appl Environ Microbiol 77:6597–6605. https://doi.org/10.1128/AEM.05588-11.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 6597-6605
    • Ebert, B.E.1    Kurth, F.2    Grund, M.3    Blank, L.M.4    Schmid, A.5
  • 74
    • 84949495478 scopus 로고    scopus 로고
    • Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes
    • Benedetti I, de Lorenzo V, Nikel PI. 2016. Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metab Eng 33:109–118. https://doi.org/10.1016/j.ymben.2015.11.004.
    • (2016) Metab Eng , vol.33 , pp. 109-118
    • Benedetti, I.1    de Lorenzo, V.2    Nikel, P.I.3
  • 75
    • 84956522448 scopus 로고    scopus 로고
    • Data on the standardization of a cyclohexanone-responsive expression system for Gram-negative bacteria
    • Benedetti I, Nikel PI, de Lorenzo V. 2016. Data on the standardization of a cyclohexanone-responsive expression system for Gram-negative bacteria. Data Brief 6:738–744. https://doi.org/10.1016/j.dib.2016.01.022.
    • (2016) Data Brief , vol.6 , pp. 738-744
    • Benedetti, I.1    Nikel, P.I.2    de Lorenzo, V.3
  • 76
    • 0027215203 scopus 로고
    • Mutations in the mutY gene of Escherichia coli enhance the frequency of targeted G:C¡T:A transversions induced by a single 8-oxoguanine residue in single-stranded DNA
    • Moriya M, Grollman AP. 1993. Mutations in the mutY gene of Escherichia coli enhance the frequency of targeted G:C¡T:A transversions induced by a single 8-oxoguanine residue in single-stranded DNA. Mol Gen Genet 239:72–76. https://doi.org/10.1007/bf00281603.
    • (1993) Mol Gen Genet , vol.239 , pp. 72-76
    • Moriya, M.1    Grollman, A.P.2
  • 78
    • 85010722905 scopus 로고    scopus 로고
    • DNA polymerases ImuC and DinB are involved in DNA alkylation damage tolerance in Pseudomonas aeruginosa and Pseudomonas putida
    • Jatsenko T, Sidorenko J, Saumaa S, Kivisaar M. 2017. DNA polymerases ImuC and DinB are involved in DNA alkylation damage tolerance in Pseudomonas aeruginosa and Pseudomonas putida. PLoS One 12: e0170719. https://doi.org/10.1371/journal.pone.0170719.
    • (2017) Plos One , vol.12
    • Jatsenko, T.1    Sidorenko, J.2    Saumaa, S.3    Kivisaar, M.4
  • 79
    • 23944475626 scopus 로고    scopus 로고
    • Mechanisms of, and barriers to, horizontal gene transfer between bacteria
    • Thomas CM, Nielsen KM. 2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721. https://doi.org/10.1038/nrmicro1234.
    • (2005) Nat Rev Microbiol , vol.3 , pp. 711-721
    • Thomas, C.M.1    Nielsen, K.M.2
  • 80
    • 84937405121 scopus 로고    scopus 로고
    • Horizontal gene transfer: Building the web of life
    • Soucy SM, Huang J, Gogarten JP. 2015. Horizontal gene transfer: building the web of life. Nat Rev Genet 16:472–482. https://doi.org/10.1038/nrg3962.
    • (2015) Nat Rev Genet , vol.16 , pp. 472-482
    • Soucy, S.M.1    Huang, J.2    Gogarten, J.P.3
  • 81
    • 85011004599 scopus 로고    scopus 로고
    • Horizontal gene transfer: Essentiality and evolvability in prokaryotes, and roles in evolutionary transitions
    • Koonin EV. 2016. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000Res 5:1805. https://doi.org/10.12688/f1000research.8737.1.
    • (2016) F1000res , vol.5 , pp. 1805
    • Koonin, E.V.1
  • 82
    • 66149138823 scopus 로고    scopus 로고
    • Elevated mutation frequency in surviving populations of carbon-starved rpoS-deficient Pseudomonas putida is caused by reduced expression of superoxide dismutase and catalase
    • Tarassova K, Tegova R, Tover A, Teras R, Tark M, Saumaa S, Kivisaar M. 2009. Elevated mutation frequency in surviving populations of carbon-starved rpoS-deficient Pseudomonas putida is caused by reduced expression of superoxide dismutase and catalase. J Bacteriol 191: 3604–3614. https://doi.org/10.1128/JB.01803-08.
    • (2009) J Bacteriol , vol.191 , pp. 3604-3614
    • Tarassova, K.1    Tegova, R.2    Tover, A.3    Teras, R.4    Tark, M.5    Saumaa, S.6    Kivisaar, M.7
  • 83
    • 84865515927 scopus 로고    scopus 로고
    • Homologous recombination is facilitated in starving populations of Pseudomonas putida by phenol stress and affected by chromosomal location of the recombination target
    • Tavita K, Mikkel K, Tark-Dame M, Jerabek H, Teras R, Sidorenko J, Tegova R, Tover A, Dame RT, Kivisaar M. 2012. Homologous recombination is facilitated in starving populations of Pseudomonas putida by phenol stress and affected by chromosomal location of the recombination target. Mutat Res 737:12–24. https://doi.org/10.1016/j.mrfmmm.2012.07.004.
    • (2012) Mutat Res , vol.737 , pp. 12-24
    • Tavita, K.1    Mikkel, K.2    Tark-Dame, M.3    Jerabek, H.4    Teras, R.5    Sidorenko, J.6    Tegova, R.7    Tover, A.8    Dame, R.T.9    Kivisaar, M.10
  • 84
    • 81855175401 scopus 로고    scopus 로고
    • The diversity of microbial responses to nitric oxide and agents of nitrosative stress: Close cousins but not identical twins
    • Bowman LAH, McLean S, Poole RK, Fukuto JM. 2011. The diversity of microbial responses to nitric oxide and agents of nitrosative stress: close cousins but not identical twins. Adv Microb Physiol 59:135–219. https://doi.org/10.1016/B978-0-12-387661-4.00006-9.
    • (2011) Adv Microb Physiol , vol.59 , pp. 135-219
    • Bowman, L.A.H.1    McLean, S.2    Poole, R.K.3    Fukuto, J.M.4
  • 85
    • 0344154463 scopus 로고    scopus 로고
    • Oxidative damage to DNA: Formation, measurement and biochemical features
    • Cadet J, Douki T, Gasparutto D, Ravanat JL. 2003. Oxidative damage to DNA: formation, measurement and biochemical features. Mutat Res 531:5–23. https://doi.org/10.1016/j.mrfmmm.2003.09.001.
    • (2003) Mutat Res , vol.531 , pp. 5-23
    • Cadet, J.1    Douki, T.2    Gasparutto, D.3    Ravanat, J.L.4
  • 86
    • 27544477399 scopus 로고    scopus 로고
    • Rieske business: Structure-function of Rieske non-heme oxygenases
    • Ferraro DJ, Gakhar L, Ramaswamy S. 2005. Rieske business: structure-function of Rieske non-heme oxygenases. Biochem Biophys Res Commun 338:175–190. https://doi.org/10.1016/j.bbrc.2005.08.222.
    • (2005) Biochem Biophys Res Commun , vol.338 , pp. 175-190
    • Ferraro, D.J.1    Gakhar, L.2    Ramaswamy, S.3
  • 87
    • 80054757000 scopus 로고    scopus 로고
    • Microbial degradation of aromatic compounds—from one strategy to four
    • Fuchs G, Boll M, Heider J. 2011. Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol 9:803–816. https://doi.org/10.1038/nrmicro2652.
    • (2011) Nat Rev Microbiol , vol.9 , pp. 803-816
    • Fuchs, G.1    Boll, M.2    Heider, J.3
  • 88
    • 84055199606 scopus 로고    scopus 로고
    • Antifragility and tinkering in biology (And in business) flexibility provides an efficient epigenetic way to manage risk
    • Danchin A, Binder PM, Noria S. 2011. Antifragility and tinkering in biology (and in business) flexibility provides an efficient epigenetic way to manage risk. Genes 2:998–1016. https://doi.org/10.3390/genes 2040998.
    • (2011) Genes , vol.2 , pp. 998-1016
    • Danchin, A.1    Binder, P.M.2    Noria, S.3
  • 89
    • 0038728786 scopus 로고    scopus 로고
    • Hormesis: The dose-response revolution
    • Calabrese EJ, Baldwin LA. 2003. Hormesis: the dose-response revolution. Annu Rev Pharmacol Toxicol 43:175–197. https://doi.org/10.1146/annurev.pharmtox.43.100901.140223.
    • (2003) Annu Rev Pharmacol Toxicol , vol.43 , pp. 175-197
    • Calabrese, E.J.1    Baldwin, L.A.2
  • 90
    • 22544476468 scopus 로고    scopus 로고
    • Paradigm lost, paradigm found: The re-emergence of hormesis as a fundamental dose response model in the toxicological sciences
    • Calabrese EJ. 2005. Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut 138:379–411. https://doi.org/10.1016/j.envpol.2004.10.001.
    • (2005) Environ Pollut , vol.138 , pp. 379-411
    • Calabrese, E.J.1
  • 91
    • 39649110574 scopus 로고    scopus 로고
    • Stress-response hormesis and aging: “that which does not kill us makes us stronger”
    • Gems D, Partridge L. 2008. Stress-response hormesis and aging: “that which does not kill us makes us stronger”. Cell Metab 7:200–203. https://doi.org/10.1016/j.cmet.2008.01.001.
    • (2008) Cell Metab , vol.7 , pp. 200-203
    • Gems, D.1    Partridge, L.2
  • 92
    • 37749036931 scopus 로고    scopus 로고
    • Hormesis defined
    • Mattson MP. 2008. Hormesis defined. Ageing Res Rev 7:1–7. https://doi.org/10.1016/j.arr.2007.08.007.
    • (2008) Ageing Res Rev , vol.7 , pp. 1-7
    • Mattson, M.P.1
  • 93
    • 84888793806 scopus 로고    scopus 로고
    • Low doses of tetracycline trigger the E. Coli growth: A case of hormetic response
    • Migliore L, Rotini A, Thaller MC. 2013. Low doses of tetracycline trigger the E. coli growth: A case of hormetic response. Dose-Response 11: 565–572. https://doi.org/10.2203/dose-response.13-002.Migliore.
    • (2013) Dose-Response , vol.11 , pp. 565-572
    • Migliore, L.1    Rotini, A.2    Thaller, M.C.3
  • 94
    • 84989952692 scopus 로고    scopus 로고
    • Discovery and function of a general core hormetic stress response in E. Coli induced by sublethal concentrations of antibiotics
    • Mathieu A, Fleurier S, Frénoy A, Dairou J, Bredeche MF, Sanchez-Vizuete P, Song X, Matic I. 2016. Discovery and function of a general core hormetic stress response in E. coli induced by sublethal concentrations of antibiotics. Cell Rep 17:46–57. https://doi.org/10.1016/j.celrep.2016.09.001.
    • (2016) Cell Rep , vol.17 , pp. 46-57
    • Mathieu, A.1    Fleurier, S.2    Frénoy, A.3    Dairou, J.4    Bredeche, M.F.5    Sanchez-Vizuete, P.6    Song, X.7    Matic, I.8
  • 95
    • 85047420197 scopus 로고    scopus 로고
    • A swinging seesaw as a novel model mechanism for time-dependent hormesis under dose-dependent stimulatory and inhibitory effects: A case study on the toxicity of antibacterial chemicals to Aliivibrio fischeri
    • Sun H, Calabrese EJ, Zheng M, Wang D, Pan Y, Lin Z, Liu Y. 2018. A swinging seesaw as a novel model mechanism for time-dependent hormesis under dose-dependent stimulatory and inhibitory effects: A case study on the toxicity of antibacterial chemicals to Aliivibrio fischeri. Chemosphere 205:15–23. https://doi.org/10.1016/j.chemosphere.2018.04.043.
    • (2018) Chemosphere , vol.205 , pp. 15-23
    • Sun, H.1    Calabrese, E.J.2    Zheng, M.3    Wang, D.4    Pan, Y.5    Lin, Z.6    Liu, Y.7
  • 96
    • 2442678163 scopus 로고    scopus 로고
    • Growth of polychlorinated-biphenyl-degrading bacteria in the presence of biphenyl and chloro-biphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate
    • Chávez FP, Lünsdorf H, Jérez CA. 2004. Growth of polychlorinated-biphenyl-degrading bacteria in the presence of biphenyl and chloro-biphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate. Appl Environ Microbiol 70:3064–3072. https://doi.org/10.1128/AEM.70.5.3064-3072.2004.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 3064-3072
    • Chávez, F.P.1    Lünsdorf, H.2    Jérez, C.A.3
  • 97
    • 84855974367 scopus 로고    scopus 로고
    • Reversible and irreversible pollutant-induced bacterial cellular stress effects measured by ethidium bromide uptake and efflux
    • Czechowska K, van der Meer JR. 2012. Reversible and irreversible pollutant-induced bacterial cellular stress effects measured by ethidium bromide uptake and efflux. Environ Sci Technol 46: 1201–1208. https://doi.org/10.1021/es203352y.
    • (2012) Environ Sci Technol , vol.46 , pp. 1201-1208
    • Czechowska, K.1    van der Meer, J.R.2
  • 98
    • 77953548943 scopus 로고    scopus 로고
    • Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria
    • Kanaly RA, Harayama S. 2010. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 3:136–164. https://doi.org/10.1111/j.1751-7915.2009.00130.x.
    • (2010) Microb Biotechnol , vol.3 , pp. 136-164
    • Kanaly, R.A.1    Harayama, S.2
  • 99
    • 35448988447 scopus 로고    scopus 로고
    • Overex-pressing antioxidant enzymes enhances naphthalene biodegradation in Pseudomonas sp. Strain As1
    • Kang YS, Lee Y, Jung H, Jeon CO, Madsen EL, Park W. 2007. Overex-pressing antioxidant enzymes enhances naphthalene biodegradation in Pseudomonas sp. strain As1. Microbiology 153:3246–3254. https://doi.org/10.1099/mic.0.2007/008896-0.
    • (2007) Microbiology , vol.153 , pp. 3246-3254
    • Kang, Y.S.1    Lee, Y.2    Jung, H.3    Jeon, C.O.4    Madsen, E.L.5    Park, W.6
  • 100
    • 85047192966 scopus 로고    scopus 로고
    • Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism
    • Nikel PI, de Lorenzo V. 2018. Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab Eng https://doi.org/10.1016/j.ymben.2018.05.005.
    • (2018) Metab Eng
    • Nikel, P.I.1    de Lorenzo, V.2
  • 102
    • 82355181976 scopus 로고    scopus 로고
    • Transposon-based and plasmid-based genetic tools for editing genomes of Gram-negative bacteria
    • Martínez-García E, de Lorenzo V. 2012. Transposon-based and plasmid-based genetic tools for editing genomes of Gram-negative bacteria. Methods Mol Biol 813:267–283. https://doi.org/10.1007/978-1-61779-412-4_16.
    • (2012) Methods Mol Biol , vol.813 , pp. 267-283
    • Martínez-García, E.1    de Lorenzo, V.2
  • 103
    • 84891635026 scopus 로고    scopus 로고
    • Metabolic and regulatory rearrangements underlying glycerol metabolism in Pseudomonas putida KT2440
    • Nikel PI, Kim J, de Lorenzo V. 2014. Metabolic and regulatory rearrangements underlying glycerol metabolism in Pseudomonas putida KT2440. Environ Microbiol 16:239–254. https://doi.org/10.1111/1462-2920.12224.
    • (2014) Environ Microbiol , vol.16 , pp. 239-254
    • Nikel, P.I.1    Kim, J.2    de Lorenzo, V.3
  • 104
    • 10444253273 scopus 로고    scopus 로고
    • Stress responses and genetic variation in bacteria
    • Foster PL. 2005. Stress responses and genetic variation in bacteria. Mutat Res 569:3–11. https://doi.org/10.1016/j.mrfmmm.2004.07.017.
    • (2005) Mutat Res , vol.569 , pp. 3-11
    • Foster, P.L.1
  • 105
    • 0034006621 scopus 로고    scopus 로고
    • Determining mutation rates in bacterial populations
    • Rosche WA, Foster PL. 2000. Determining mutation rates in bacterial populations. Methods 20:4–17. https://doi.org/10.1006/meth.1999.0901.
    • (2000) Methods , vol.20 , pp. 4-17
    • Rosche, W.A.1    Foster, P.L.2
  • 106
    • 84946019816 scopus 로고    scopus 로고
    • New transposon tools tailored for metabolic engineering of Gram-negative microbial cell factories
    • Martínez-García E, Aparicio T, de Lorenzo V, Nikel PI. 2014. New transposon tools tailored for metabolic engineering of Gram-negative microbial cell factories. Front Bioeng Biotechnol 2:46. https://doi.org/10.3389/fbioe.2014.00046.
    • (2014) Front Bioeng Biotechnol , vol.2 , pp. 46
    • Martínez-García, E.1    Aparicio, T.2    de Lorenzo, V.3    Nikel, P.I.4
  • 107
    • 84872193848 scopus 로고    scopus 로고
    • Implantation of unmarked regulatory and metabolic modules in Gram-negative bacteria with specialised mini-transposon delivery vectors
    • Nikel PI, de Lorenzo V. 2013. Implantation of unmarked regulatory and metabolic modules in Gram-negative bacteria with specialised mini-transposon delivery vectors. J Biotechnol 163:143–154. https://doi.org/10.1016/j.jbiotec.2012.05.002.
    • (2013) J Biotechnol , vol.163 , pp. 143-154
    • Nikel, P.I.1    de Lorenzo, V.2
  • 108
    • 84871436225 scopus 로고    scopus 로고
    • Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene
    • Nikel PI, de Lorenzo V. 2013. Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene. Metab Eng 15:98–112. https://doi.org/10.1016/j.ymben.2012.09.006.
    • (2013) Metab Eng , vol.15 , pp. 98-112
    • Nikel, P.I.1    de Lorenzo, V.2
  • 110
    • 64349101860 scopus 로고    scopus 로고
    • Side effects of antibiotics on genetic variability
    • Couce A, Blázquez J. 2009. Side effects of antibiotics on genetic variability. FEMS Microbiol Rev 33:531–538. https://doi.org/10.1111/j.1574-6976.2009.00165.x.
    • (2009) FEMS Microbiol Rev , vol.33 , pp. 531-538
    • Couce, A.1    Blázquez, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.