-
1
-
-
84901295482
-
Supercapacitor/biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: autonomous reloading after high power pulses in neutral buffered glucose solutions
-
Agnès, C., Holzinger, M., Le Goff, A., Reuillard, B., Elouarzaki, K., Tingry, S., et al. (2014). Supercapacitor/biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: autonomous reloading after high power pulses in neutral buffered glucose solutions. Energy Environ. Sci. 7, 1884-1888. doi: 10.1039/C3EE43986K
-
(2014)
Energy Environ. Sci
, vol.7
, pp. 1884-1888
-
-
Agnès, C.1
Holzinger, M.2
Le Goff, A.3
Reuillard, B.4
Elouarzaki, K.5
Tingry, S.6
-
2
-
-
84880358743
-
Biofuel cell operating in vivo in rat
-
Andoralov, V., Falk, M., Suyatin, D. B., Granmo, M., Sotres, J., Ludwig, R., et al. (2013). Biofuel cell operating in vivo in rat. Electroanalysis 25, 1579-1584. doi:10.1002/elan.201300136
-
(2013)
Electroanalysis
, vol.25
, pp. 1579-1584
-
-
Andoralov, V.1
Falk, M.2
Suyatin, D.B.3
Granmo, M.4
Sotres, J.5
Ludwig, R.6
-
3
-
-
84880516191
-
Design of experiments and principal component analysis as approaches for enhancing performance of gas-diffusional air-breathing bilirubin oxidase cathode
-
Babanova, S., Artyushkova, K., Ulyanova, Y., Singhal, S., and Atanassov, P. (2014). Design of experiments and principal component analysis as approaches for enhancing performance of gas-diffusional air-breathing bilirubin oxidase cathode. J. Power Sources 245, 389-397. doi:10.1016/j.jpowsour.2013.06.031
-
(2014)
J. Power Sources
, vol.245
, pp. 389-397
-
-
Babanova, S.1
Artyushkova, K.2
Ulyanova, Y.3
Singhal, S.4
Atanassov, P.5
-
4
-
-
7544227821
-
Enzymatic biofuel cells for implantable and microscale devices
-
Barton, S. C., Gallaway, J., and Atanassov, P. (2004). Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104, 4867-4886. doi:10.1021/cr020719k
-
(2004)
Chem. Rev
, vol.104
, pp. 4867-4886
-
-
Barton, S.C.1
Gallaway, J.2
Atanassov, P.3
-
5
-
-
55049095938
-
Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons
-
Blanford, C. F., Foster, C. E., Heath, R. S., and Armstrong, F. A. (2009). Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons. Faraday Discuss. 140, 319-335. doi:10.1039/B808939F
-
(2009)
Faraday Discuss
, vol.140
, pp. 319-335
-
-
Blanford, C.F.1
Foster, C.E.2
Heath, R.S.3
Armstrong, F.A.4
-
6
-
-
84901831477
-
Freestanding redox buckypaper electrodes from multi-wall carbon nanotubes for bioelectrocatalytic oxygen reduction via mediated electron transfer
-
Bourourou, M., Elouarzaki, K., Holzinger, M., Agnès, C., Le Goff, A., Reverdy-Bruas, N., et al. (2014). Freestanding redox buckypaper electrodes from multi-wall carbon nanotubes for bioelectrocatalytic oxygen reduction via mediated electron transfer. Chem. Sci. 5, 2885-2888. doi:10.1039/C3SC53544D
-
(2014)
Chem. Sci
, vol.5
, pp. 2885-2888
-
-
Bourourou, M.1
Elouarzaki, K.2
Holzinger, M.3
Agnès, C.4
Le Goff, A.5
Reverdy-Bruas, N.6
-
7
-
-
84879887829
-
Supramolecular immobilization of laccases on carbon nanotube electrodes functionalized with (methylpyrenylaminomethyl)anthraquinone for direct electron reduction of oxygen
-
Bourourou, M., Elouarzaki, K., Lalaoui, N., Agnès, C., Le, G. offA., Holzinger, M., et al. (2013). Supramolecular immobilization of laccases on carbon nanotube electrodes functionalized with (methylpyrenylaminomethyl)anthraquinone for direct electron reduction of oxygen. Chemistry 19, 9371-9375. doi:10.1002/chem.201301043
-
(2013)
Chemistry
, vol.19
, pp. 9371-9375
-
-
Bourourou, M.1
Elouarzaki, K.2
Lalaoui, N.3
Agnès, C.4
Le Goff, A.5
Holzinger, M.6
-
8
-
-
84884561261
-
Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain
-
Cheng, H., Yu, P., Lu, X., Lin, Y., Ohsaka, T., and Mao, L. (2013). Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain. Analyst 138, 179-185. doi:10.1039/C2AN36385B
-
(2013)
Analyst
, vol.138
, pp. 179-185
-
-
Cheng, H.1
Yu, P.2
Lu, X.3
Lin, Y.4
Ohsaka, T.5
Mao, L.6
-
9
-
-
77956420559
-
A glucose biofuel cell implanted in rats
-
Cinquin, P., Gondran, C., Giroud, F., Mazabrard, S., Pellissier, A., and Boucher, F. (2010). A glucose biofuel cell implanted in rats. PLoS ONE 5:e10476. doi:10.1371/journal.pone.0010476
-
(2010)
PLoS ONE
, vol.5
-
-
Cinquin, P.1
Gondran, C.2
Giroud, F.3
Mazabrard, S.4
Pellissier, A.5
Boucher, F.6
-
10
-
-
85051911187
-
-
19 August 2010 extended PCT/FR10.56672/051931 (19/08/2010)
-
Cosnier, S., Holzinger, M., Goff, A. L., and Zebda, A. (2010). Université Joseph Fourier-CNRS France patent number FR10.56672. 19 August 2010 extended PCT/FR10.56672/051931 (19/08/2010).
-
(2010)
Université Joseph Fourier-CNRS France patent number FR10.56672
-
-
Cosnier, S.1
Holzinger, M.2
Goff, A.L.3
Zebda, A.4
-
11
-
-
84887569786
-
Towards glucose biofuel cells implanted in human body for powering artificial organs: review
-
Cosnier, S., Le Goff, A., and Holzinger, M. (2014). Towards glucose biofuel cells implanted in human body for powering artificial organs: review. Electrochem. Commun. 38, 19-23. doi:10.1016/j.elecom.2013.09.021
-
(2014)
Electrochem. Commun
, vol.38
, pp. 19-23
-
-
Cosnier, S.1
Le Goff, A.2
Holzinger, M.3
-
12
-
-
49049118534
-
Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis
-
Cracknell, J. A., Vincent, K. A., and Armstrong, F. A. (2008). Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 108, 2439-2461. doi:10.1021/cr0680639
-
(2008)
Chem. Rev
, vol.108
, pp. 2439-2461
-
-
Cracknell, J.A.1
Vincent, K.A.2
Armstrong, F.A.3
-
13
-
-
0036924402
-
Carbon nanotubes: synthesis, integration, and properties
-
Dai, H. (2002). Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35, 1035. doi:10.1021/ar0101640
-
(2002)
Acc. Chem. Res
, vol.35
, pp. 1035
-
-
Dai, H.1
-
14
-
-
84875873527
-
A novel three-dimensional macrocellular carbonaceous biofuel cell
-
Flexer, V., Brun, N., Destribats, M., Backov, R., and Mano, N. (2013). A novel three-dimensional macrocellular carbonaceous biofuel cell. Phys. Chem. Chem. Phys. 15, 6437-6445. doi:10.1039/C3CP50807B
-
(2013)
Phys. Chem. Chem. Phys
, vol.15
, pp. 6437-6445
-
-
Flexer, V.1
Brun, N.2
Destribats, M.3
Backov, R.4
Mano, N.5
-
15
-
-
84900248543
-
Wired pyrroloquinoline quinone soluble glucose dehydrogenase enzyme electrodes operating at unprecedented low redox potential
-
Flexer, V., and Mano, N. (2014). Wired pyrroloquinoline quinone soluble glucose dehydrogenase enzyme electrodes operating at unprecedented low redox potential. Anal. Chem. 86, 2465-2473. doi:10.1021/ac403334w
-
(2014)
Anal. Chem
, vol.86
, pp. 2465-2473
-
-
Flexer, V.1
Mano, N.2
-
16
-
-
1242288145
-
Modulating the redox properties of an osmium-containing metallopolymer through the supporting electrolyte and cross-linking
-
Forster, R. J., Walsh, D. A., Mano, N., Mao, F., and Heller, A. (2003). Modulating the redox properties of an osmium-containing metallopolymer through the supporting electrolyte and cross-linking. Langmuir 20, 862-868. doi:10.1021/la035229h
-
(2003)
Langmuir
, vol.20
, pp. 862-868
-
-
Forster, R.J.1
Walsh, D.A.2
Mano, N.3
Mao, F.4
Heller, A.5
-
17
-
-
84858683374
-
Implanted biofuel cell operating in a living snail
-
Halámková, L., Halámek, J., Bocharova, V., Szczupak, A., Alfonta, L., and Katz, E. (2012). Implanted biofuel cell operating in a living snail. J. Am. Chem. Soc. 134, 5040-5043. doi:10.1021/ja211714w
-
(2012)
J. Am. Chem. Soc
, vol.134
, pp. 5040-5043
-
-
Halámková, L.1
Halámek, J.2
Bocharova, V.3
Szczupak, A.4
Alfonta, L.5
Katz, E.6
-
18
-
-
84866434367
-
Carbon nanotube/enzyme biofuel cells
-
Holzinger, M., Le Goff, A., and Cosnier, S. (2012). Carbon nanotube/enzyme biofuel cells. Electrochim. Acta 82, 179-190. doi:10.1016/j.electacta.2011.12.135
-
(2012)
Electrochim. Acta
, vol.82
, pp. 179-190
-
-
Holzinger, M.1
Le Goff, A.2
Cosnier, S.3
-
19
-
-
79956353334
-
A highly efficient buckypaper-based electrode material for mediatorless laccase-catalyzed dioxygen reduction
-
Hussein, L., Rubenwolf, S., von Tetten, S. F., Urban, G., Zengerle, R., Krueger, M., et al. (2011). A highly efficient buckypaper-based electrode material for mediatorless laccase-catalyzed dioxygen reduction. Biosens. Bioelectron. 26, 4133-4138. doi:10.1016/j.bios.2011.04.008
-
(2011)
Biosens. Bioelectron
, vol.26
, pp. 4133-4138
-
-
Hussein, L.1
Rubenwolf, S.2
von Tetten, S.F.3
Urban, G.4
Zengerle, R.5
Krueger, M.6
-
20
-
-
77952038997
-
Recent advances in enzymatic fuel cells: experiments and modeling
-
Ivanov, I., Vidakovic-Koch, T., and Sundmacher, K. (2010). Recent advances in enzymatic fuel cells: experiments and modeling. Energies 3, 803-846. doi:10.3390/en3040803
-
(2010)
Energies
, vol.3
, pp. 803-846
-
-
Ivanov, I.1
Vidakovic-Koch, T.2
Sundmacher, K.3
-
21
-
-
84880168760
-
Epidermal biofuel cells: energy harvesting from human perspiration
-
Jia, W., Valdés-Ramírez, G., Bandodkar, A. J., Windmiller, J. R., and Wang, J. (2013). Epidermal biofuel cells: energy harvesting from human perspiration. Angew. Chem. Int. Ed. 52, 7233-7236. doi:10.1002/anie.201302922
-
(2013)
Angew. Chem. Int. Ed
, vol.52
, pp. 7233-7236
-
-
Jia, W.1
Valdés-Ramírez, G.2
Bandodkar, A.J.3
Windmiller, J.R.4
Wang, J.5
-
22
-
-
84884538876
-
Implanted biofuel cells operating in vivo-methods, applications and perspectives-feature article
-
Katz, E., and MacVittie, K. (2013). Implanted biofuel cells operating in vivo-methods, applications and perspectives-feature article. Energy Environ. Sci. 6, 2791-2803. doi:10.1039/C3EE42126K
-
(2013)
Energy Environ. Sci
, vol.6
, pp. 2791-2803
-
-
Katz, E.1
MacVittie, K.2
-
23
-
-
84884327796
-
Efficient direct oxygen reduction by laccases attached and oriented on pyrene-functionalized polypyrrole/carbon nanotube electrodes
-
Lalaoui, N., Elouarzaki, K., Le Goff, A., Holzinger, M., and Cosnier, S. (2013). Efficient direct oxygen reduction by laccases attached and oriented on pyrene-functionalized polypyrrole/carbon nanotube electrodes. Chem. Commun. 49, 9281-9283. doi:10.1039/C3CC44994G
-
(2013)
Chem. Commun
, vol.49
, pp. 9281-9283
-
-
Lalaoui, N.1
Elouarzaki, K.2
Le Goff, A.3
Holzinger, M.4
Cosnier, S.5
-
25
-
-
84869085132
-
Enzymatic fuel cells: recent progress
-
Leech, D., Kavanagh, P., and Schuhmann, W. (2012). Enzymatic fuel cells: recent progress. Electrochim. Acta 84, 223-234. doi:10.1016/j.electacta.2012.02.087
-
(2012)
Electrochim. Acta
, vol.84
, pp. 223-234
-
-
Leech, D.1
Kavanagh, P.2
Schuhmann, W.3
-
26
-
-
79960951054
-
A novel enzymatic bioelectrode system combining a redox hydrogel with a carbon NanoWeb
-
Little, S. J., Ralph, S. F., Mano, N., Chen, J., and Wallace, G. G. (2011). A novel enzymatic bioelectrode system combining a redox hydrogel with a carbon NanoWeb. Chem. Commun. 47, 8886-8888. doi:10.1039/C1CC11088H
-
(2011)
Chem. Commun
, vol.47
, pp. 8886-8888
-
-
Little, S.J.1
Ralph, S.F.2
Mano, N.3
Chen, J.4
Wallace, G.G.5
-
27
-
-
0038513973
-
2 biofuel cell and its operation in a living plant
-
2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 125, 6588-6594. doi:10.1021/ja0346328
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 6588-6594
-
-
Mano, N.1
Mao, F.2
Heller, A.3
-
28
-
-
82955194837
-
Anthracene-modified multi-walled carbon nanotubes as direct electron transfer scaffolds for enzymatic oxygen reduction
-
Meredith, M. T., Minson, M., Hickey, D., Artyushkova, K., Glatzhofer, D. T., and Minteer, S. D. (2011). Anthracene-modified multi-walled carbon nanotubes as direct electron transfer scaffolds for enzymatic oxygen reduction. ACS Catal. 1, 1683-1690. doi:10.1021/cs200475q
-
(2011)
ACS Catal
, vol.1
, pp. 1683-1690
-
-
Meredith, M.T.1
Minson, M.2
Hickey, D.3
Artyushkova, K.4
Glatzhofer, D.T.5
Minteer, S.D.6
-
29
-
-
84863317977
-
Biofuel cells: enhanced enzymatic bioelectrocatalysis
-
Meredith, M. T., and Minteer, S. D. (2012). Biofuel cells: enhanced enzymatic bioelectrocatalysis. Annu. Rev. Anal. Chem. 5, 157-179. doi:10.1146/annurev-anchem-062011-143049
-
(2012)
Annu. Rev. Anal. Chem
, vol.5
, pp. 157-179
-
-
Meredith, M.T.1
Minteer, S.D.2
-
30
-
-
79953902587
-
Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells
-
Miyake, T., Yoshino, S., Yamada, T., Hata, K., and Nishizawa, M. (2011a). Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells. J. Am. Chem. Soc. 133, 5129-5134. doi:10.1021/ja111517e
-
(2011)
J. Am. Chem. Soc
, vol.133
, pp. 5129-5134
-
-
Miyake, T.1
Yoshino, S.2
Yamada, T.3
Hata, K.4
Nishizawa, M.5
-
31
-
-
82555193617
-
Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms
-
Miyake, T., Haneda, K., Nagai, N., Yatagawa, Y., Onami, H., Yoshino, S., et al. (2011b). Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms. Energy Environ. Sci. 4, 5008-5012. doi:10.1039/C1EE02200H
-
(2011)
Energy Environ. Sci
, vol.4
, pp. 5008-5012
-
-
Miyake, T.1
Haneda, K.2
Nagai, N.3
Yatagawa, Y.4
Onami, H.5
Yoshino, S.6
-
32
-
-
0035311846
-
Specific surface area of carbon nanotubes and bundles of carbon nanotubes
-
Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R., and Rousset, A. (2001). Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon N. Y. 39, 507-514. doi:10.1016/S0008-6223(00)00155-X
-
(2001)
Carbon N. Y
, vol.39
, pp. 507-514
-
-
Peigney, A.1
Laurent, C.2
Flahaut, E.3
Bacsa, R.R.4
Rousset, A.5
-
33
-
-
84906547688
-
A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage
-
Plumeré, N., Rüdiger, O., Oughli, A. A., Williams, R., Vivekananthan, J., Pöller, S., et al. (2014). A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage. Nat. Chem. 6, 822-827. doi:10.1038/nchem.2022
-
(2014)
Nat. Chem
, vol.6
, pp. 822-827
-
-
Plumeré, N.1
Rüdiger, O.2
Oughli, A.A.3
Williams, R.4
Vivekananthan, J.5
Pöller, S.6
-
34
-
-
85043540550
-
Electrical "wiring" of enzymes
-
Webster JG, editor (New York: John Wiley & Sons, Inc.)
-
Polsky, R., Brozik, S. M., Xiao, X., and Holland, J. T. (2001). Electrical "wiring" of enzymes. In: Webster JG, editor. Wiley Encyclopedia of Electrical and Electronics Engineering (New York: John Wiley & Sons, Inc.). p. 1-18.
-
(2001)
Wiley Encyclopedia of Electrical and Electronics Engineering
, pp. 1-18
-
-
Polsky, R.1
Brozik, S.M.2
Xiao, X.3
Holland, J.T.4
-
35
-
-
84856288432
-
An implantable biofuel cell for a live insect
-
Rasmussen, M., Ritzmann, R. E., Lee, I., Pollack, A. J., and Scherson, D. (2012). An implantable biofuel cell for a live insect. J. Am. Chem. Soc. 134, 1458-1460. doi:10.1021/ja210794c
-
(2012)
J. Am. Chem. Soc
, vol.134
, pp. 1458-1460
-
-
Rasmussen, M.1
Ritzmann, R.E.2
Lee, I.3
Pollack, A.J.4
Scherson, D.5
-
36
-
-
84876565676
-
High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix
-
Reuillard, B., Le, G. offA., Agnès, C., Holzinger, M., Zebda, A., Gondran, C., et al. (2013). High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix. Phys. Chem. Chem. Phys. 15, 4892-4896. doi:10.1039/C3CP50767J
-
(2013)
Phys. Chem. Chem. Phys
, vol.15
, pp. 4892-4896
-
-
Reuillard, B.1
Le Goff, A.2
Agnès, C.3
Holzinger, M.4
Zebda, A.5
Gondran, C.6
-
37
-
-
77951574482
-
Electrochemical biosensors
-
Ronkainen, N. J., Halsall, H. B., and Heineman, W. R. (2010). Electrochemical biosensors. Chem. Soc. Rev. 39, 1747-1763. doi:10.1039/B714449K
-
(2010)
Chem. Soc. Rev
, vol.39
, pp. 1747-1763
-
-
Ronkainen, N.J.1
Halsall, H.B.2
Heineman, W.R.3
-
38
-
-
84867577283
-
Prolongation of electrode lifetime in biofuel cells by periodic enzyme renewal
-
Rubenwolf, S., Sané, S., Hussein, L., Kestel, J., von Tetten, S. F., Urban, G., et al. (2012). Prolongation of electrode lifetime in biofuel cells by periodic enzyme renewal. Appl. Microbiol. Biotechnol. 96, 841-849. doi:10.1007/s00253-012-4374-8
-
(2012)
Appl. Microbiol. Biotechnol
, vol.96
, pp. 841-849
-
-
Rubenwolf, S.1
Sané, S.2
Hussein, L.3
Kestel, J.4
von Tetten, S.F.5
Urban, G.6
-
39
-
-
84872093852
-
An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes
-
Sales, F. C. P. F., Iost, R. M., Martins, M. V. A., Almeida, M. C., and Crespilho, F. N. (2013). An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab. Chip 13, 468-474. doi:10.1039/C2LC41007A
-
(2013)
Lab. Chip
, vol.13
, pp. 468-474
-
-
Sales, F.C.P.F.1
Iost, R.M.2
Martins, M.V.A.3
Almeida, M.C.4
Crespilho, F.N.5
-
40
-
-
79954617313
-
Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications
-
Samanta, D., and Sarkar, A. (2011). Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications. Chem. Soc. Rev. 40, 2567-2592. doi:10.1039/C0CS00056F
-
(2011)
Chem. Soc. Rev
, vol.40
, pp. 2567-2592
-
-
Samanta, D.1
Sarkar, A.2
-
41
-
-
84879984426
-
Overcoming bottlenecks of enzymatic biofuel cell cathodes: crude fungal culture supernatant can help to extend lifetime and reduce cost
-
Sané, S., Jolivalt, C., Mittler, G., Nielsen, P. J., Rubenwolf, S., Zengerle, R., et al. (2013). Overcoming bottlenecks of enzymatic biofuel cell cathodes: crude fungal culture supernatant can help to extend lifetime and reduce cost. ChemSusChem 6, 1114-1114. doi:10.1002/cssc.201300520
-
(2013)
ChemSusChem
, vol.6
, pp. 1114-1114
-
-
Sané, S.1
Jolivalt, C.2
Mittler, G.3
Nielsen, P.J.4
Rubenwolf, S.5
Zengerle, R.6
-
42
-
-
84896755848
-
Using planktonic microorganisms to supply the unpurified multi-copper oxidases laccase and copper efflux oxidases at a biofuel cell cathode
-
Sané, S., Richter, K., Rubenwolf, S., Matschke, N. J., Jolivalt, C., Madzak, C., et al. (2014). Using planktonic microorganisms to supply the unpurified multi-copper oxidases laccase and copper efflux oxidases at a biofuel cell cathode. Bioresour. Technol. 158, 231-238. doi:10.1016/j.biortech.2014.02.038
-
(2014)
Bioresour. Technol
, vol.158
, pp. 231-238
-
-
Sané, S.1
Richter, K.2
Rubenwolf, S.3
Matschke, N.J.4
Jolivalt, C.5
Madzak, C.6
-
43
-
-
84899464695
-
Cellobiose dehydrogenase entrapped within specifically designed Os-complex modified electrodeposition polymers as potential anodes for biofuel cells
-
Shaoa, M., Guschina, D. A., Kawahb, Z., Beyla, Y., Stoicaa, L., and Ludwig, R. (2014). Cellobiose dehydrogenase entrapped within specifically designed Os-complex modified electrodeposition polymers as potential anodes for biofuel cells. Electrochim. Acta 128, 318-325. doi:10.1016/j.electacta.2013.11.019
-
(2014)
Electrochim. Acta
, vol.128
, pp. 318-325
-
-
Shaoa, M.1
Guschina, D.A.2
Kawahb, Z.3
Beyla, Y.4
Stoicaa, L.5
Ludwig, R.6
-
44
-
-
32044445745
-
The biocompatibility of carbon nanotubes
-
Smart, S. K., Cassady, A. I., Lu, G. Q., and Martin, D. J. (2006). The biocompatibility of carbon nanotubes. Carbon N. Y. 44, 1034-1047. doi:10.1016/j.carbon.2005.10.011
-
(2006)
Carbon N. Y
, vol.44
, pp. 1034-1047
-
-
Smart, S.K.1
Cassady, A.I.2
Lu, G.Q.3
Martin, D.J.4
-
45
-
-
3142719124
-
2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V
-
2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V. J. Am. Chem. Soc. 126, 8368-8369. doi:10.1021/ja0475510
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 8368-8369
-
-
Soukharev, V.1
Mano, N.2
Heller, A.3
-
46
-
-
84871307662
-
From "Cyborg" lobsters to a pacemaker powered by implantable biofuel cells
-
Southcott, M., MacVittie, K., Halámek, J., Halámková, L., Jemison, W. D., Lobel, R., et al. (2013). From "Cyborg" lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ. Sci. 6, 81-86. doi:10.1039/C2EE23209J
-
(2013)
Energy Environ. Sci
, vol.6
, pp. 81-86
-
-
Southcott, M.1
MacVittie, K.2
Halámek, J.3
Halámková, L.4
Jemison, W.D.5
Lobel, R.6
-
47
-
-
79953276829
-
Fast and easy enzyme immobilization by photoinitiated polymerization for efficient bioelectrochemical devices
-
Suraniti, E., Studer, V., Sojic, N., and Mano, N. (2011). Fast and easy enzyme immobilization by photoinitiated polymerization for efficient bioelectrochemical devices. Anal. Chem. 83, 2824-2828. doi:10.1021/ac200297r
-
(2011)
Anal. Chem
, vol.83
, pp. 2824-2828
-
-
Suraniti, E.1
Studer, V.2
Sojic, N.3
Mano, N.4
-
48
-
-
84870042797
-
Living battery-biofuel cells operating in vivo in clams
-
Szczupak, A., Halámek, J., Halámková, L., Bocharova, V., Alfontac, L., and Katz, E. (2012). Living battery-biofuel cells operating in vivo in clams. Energy Environ. Sci. 5, 8891-8895. doi:10.1039/C2EE21626D
-
(2012)
Energy Environ. Sci
, vol.5
, pp. 8891-8895
-
-
Szczupak, A.1
Halámek, J.2
Halámková, L.3
Bocharova, V.4
Alfontac, L.5
Katz, E.6
-
49
-
-
84906075663
-
Microneedle-based self-powered glucose sensor
-
Valdés-Ramírez, G., Ya-Chieh, L., Kima, J., Jiaa, W., Bandodkara, A. J., and Nuñez-Flores, R. (2014). Microneedle-based self-powered glucose sensor. Electrochem. Commun. 47, 58-62. doi:10.1016/j.elecom.2014.07.014
-
(2014)
Electrochem. Commun
, vol.47
, pp. 58-62
-
-
Valdés-Ramírez, G.1
Ya-Chieh, L.2
Kima, J.3
Jiaa, W.4
Bandodkara, A.J.5
Nuñez-Flores, R.6
-
51
-
-
33751222848
-
Electrical contacting of redox proteins by nanotechnological means
-
Willner, B., Katz, E., and Willner, I. (2006). Electrical contacting of redox proteins by nanotechnological means. Curr. Opin. Biotechnol. 17, 589-596. doi:10.1016/j.copbio.2006.10.008
-
(2006)
Curr. Opin. Biotechnol
, vol.17
, pp. 589-596
-
-
Willner, B.1
Katz, E.2
Willner, I.3
-
52
-
-
60849107722
-
Integrated enzyme-based biofuel cells-a review
-
Willner, I., Yan, Y.-M., Willner, B., and Tel-Vered, R. (2009). Integrated enzyme-based biofuel cells-a review. Fuel Cells 9, 7-24. doi:10.1002/fuce.200800115
-
(2009)
Fuel Cells
, vol.9
, pp. 7-24
-
-
Willner, I.1
Yan, Y.-M.2
Willner, B.3
Tel-Vered, R.4
-
53
-
-
0041993216
-
Bioelectrochemistry: I. enzyme utilizing bio-fuel cell studies
-
Yahiro, A. T., Lee, S. M., and Kimble, D. O. (1964). Bioelectrochemistry: I. enzyme utilizing bio-fuel cell studies. Biochim Biophys Acta 88, 375-383. doi:10.1016/0926-6577(64)90192-5
-
(1964)
Biochim Biophys Acta
, vol.88
, pp. 375-383
-
-
Yahiro, A.T.1
Lee, S.M.2
Kimble, D.O.3
-
54
-
-
54549096952
-
Design of amperometric biosensors and biofuel cells by the reconstitution of electrically contacted enzyme electrodes
-
Zayats, M., Willner, B., and Willner, I. (2008). Design of amperometric biosensors and biofuel cells by the reconstitution of electrically contacted enzyme electrodes. Electroanalysis 20, 583-601. doi:10.1002/elan.200704128
-
(2008)
Electroanalysis
, vol.20
, pp. 583-601
-
-
Zayats, M.1
Willner, B.2
Willner, I.3
-
55
-
-
84875766734
-
Single glucose biofuel cells implanted in rats power electronic devices
-
Zebda, A., Cosnier, S., Alcaraz, J. P., Holzinger, M., Le Goff, A., Gondran, C., et al. (2013). Single glucose biofuel cells implanted in rats power electronic devices. Sci. Rep. 3, 1516. doi:10.1038/srep01516
-
(2013)
Sci. Rep
, vol.3
, pp. 1516
-
-
Zebda, A.1
Cosnier, S.2
Alcaraz, J.P.3
Holzinger, M.4
Le Goff, A.5
Gondran, C.6
-
57
-
-
84867862483
-
Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes
-
Zebda, A., Gondran, C., Le, G. offA., Holzinger, M., Cinquin, P., and Cosnier, S. (2011b). Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat. Commun. 2, 370. doi:10.1038/ncomms1365
-
(2011)
Nat. Commun
, vol.2
, pp. 370
-
-
Zebda, A.1
Gondran, C.2
Le Goff, A.3
Holzinger, M.4
Cinquin, P.5
Cosnier, S.6
-
59
-
-
84876226857
-
The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage
-
Zhang, Q., Huang, J.-Q., Qian, W.-Z., Zhang, Y.-Y., and Wei, F. (2013). The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9, 1237-1265. doi:10.1002/smll.201203252
-
(2013)
Small
, vol.9
, pp. 1237-1265
-
-
Zhang, Q.1
Huang, J.-Q.2
Qian, W.-Z.3
Zhang, Y.-Y.4
Wei, F.5
|