메뉴 건너뛰기




Volumn 2, Issue OCT, 2014, Pages

New transposon tools tailored for metabolic engineering of Gram-negative microbial cell factories

Author keywords

Central metabolism; Chromosomal integration; Escherichia coli; Metabolic engineering; Polyhydroxyalkanoates; Pseudomonas putida; Transposon mini Tn5

Indexed keywords

ANTIBIOTICS; BIODEGRADABLE POLYMERS; CELL ENGINEERING; CHROMOSOMES; CLONE CELLS; CLONING; COMPLEX NETWORKS; ESCHERICHIA COLI; GENES; METABOLIC ENGINEERING; METABOLISM; MOLECULAR BIOLOGY; PLASTICS APPLICATIONS; VECTORS;

EID: 84946019816     PISSN: None     EISSN: 22964185     Source Type: Journal    
DOI: 10.3389/fbioe.2014.00046     Document Type: Article
Times cited : (84)

References (59)
  • 1
    • 84901295482 scopus 로고    scopus 로고
    • Supercapacitor/biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: autonomous reloading after high power pulses in neutral buffered glucose solutions
    • Agnès, C., Holzinger, M., Le Goff, A., Reuillard, B., Elouarzaki, K., Tingry, S., et al. (2014). Supercapacitor/biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: autonomous reloading after high power pulses in neutral buffered glucose solutions. Energy Environ. Sci. 7, 1884-1888. doi: 10.1039/C3EE43986K
    • (2014) Energy Environ. Sci , vol.7 , pp. 1884-1888
    • Agnès, C.1    Holzinger, M.2    Le Goff, A.3    Reuillard, B.4    Elouarzaki, K.5    Tingry, S.6
  • 3
    • 84880516191 scopus 로고    scopus 로고
    • Design of experiments and principal component analysis as approaches for enhancing performance of gas-diffusional air-breathing bilirubin oxidase cathode
    • Babanova, S., Artyushkova, K., Ulyanova, Y., Singhal, S., and Atanassov, P. (2014). Design of experiments and principal component analysis as approaches for enhancing performance of gas-diffusional air-breathing bilirubin oxidase cathode. J. Power Sources 245, 389-397. doi:10.1016/j.jpowsour.2013.06.031
    • (2014) J. Power Sources , vol.245 , pp. 389-397
    • Babanova, S.1    Artyushkova, K.2    Ulyanova, Y.3    Singhal, S.4    Atanassov, P.5
  • 4
    • 7544227821 scopus 로고    scopus 로고
    • Enzymatic biofuel cells for implantable and microscale devices
    • Barton, S. C., Gallaway, J., and Atanassov, P. (2004). Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104, 4867-4886. doi:10.1021/cr020719k
    • (2004) Chem. Rev , vol.104 , pp. 4867-4886
    • Barton, S.C.1    Gallaway, J.2    Atanassov, P.3
  • 5
    • 55049095938 scopus 로고    scopus 로고
    • Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons
    • Blanford, C. F., Foster, C. E., Heath, R. S., and Armstrong, F. A. (2009). Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons. Faraday Discuss. 140, 319-335. doi:10.1039/B808939F
    • (2009) Faraday Discuss , vol.140 , pp. 319-335
    • Blanford, C.F.1    Foster, C.E.2    Heath, R.S.3    Armstrong, F.A.4
  • 6
    • 84901831477 scopus 로고    scopus 로고
    • Freestanding redox buckypaper electrodes from multi-wall carbon nanotubes for bioelectrocatalytic oxygen reduction via mediated electron transfer
    • Bourourou, M., Elouarzaki, K., Holzinger, M., Agnès, C., Le Goff, A., Reverdy-Bruas, N., et al. (2014). Freestanding redox buckypaper electrodes from multi-wall carbon nanotubes for bioelectrocatalytic oxygen reduction via mediated electron transfer. Chem. Sci. 5, 2885-2888. doi:10.1039/C3SC53544D
    • (2014) Chem. Sci , vol.5 , pp. 2885-2888
    • Bourourou, M.1    Elouarzaki, K.2    Holzinger, M.3    Agnès, C.4    Le Goff, A.5    Reverdy-Bruas, N.6
  • 7
    • 84879887829 scopus 로고    scopus 로고
    • Supramolecular immobilization of laccases on carbon nanotube electrodes functionalized with (methylpyrenylaminomethyl)anthraquinone for direct electron reduction of oxygen
    • Bourourou, M., Elouarzaki, K., Lalaoui, N., Agnès, C., Le, G. offA., Holzinger, M., et al. (2013). Supramolecular immobilization of laccases on carbon nanotube electrodes functionalized with (methylpyrenylaminomethyl)anthraquinone for direct electron reduction of oxygen. Chemistry 19, 9371-9375. doi:10.1002/chem.201301043
    • (2013) Chemistry , vol.19 , pp. 9371-9375
    • Bourourou, M.1    Elouarzaki, K.2    Lalaoui, N.3    Agnès, C.4    Le Goff, A.5    Holzinger, M.6
  • 8
    • 84884561261 scopus 로고    scopus 로고
    • Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain
    • Cheng, H., Yu, P., Lu, X., Lin, Y., Ohsaka, T., and Mao, L. (2013). Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain. Analyst 138, 179-185. doi:10.1039/C2AN36385B
    • (2013) Analyst , vol.138 , pp. 179-185
    • Cheng, H.1    Yu, P.2    Lu, X.3    Lin, Y.4    Ohsaka, T.5    Mao, L.6
  • 11
    • 84887569786 scopus 로고    scopus 로고
    • Towards glucose biofuel cells implanted in human body for powering artificial organs: review
    • Cosnier, S., Le Goff, A., and Holzinger, M. (2014). Towards glucose biofuel cells implanted in human body for powering artificial organs: review. Electrochem. Commun. 38, 19-23. doi:10.1016/j.elecom.2013.09.021
    • (2014) Electrochem. Commun , vol.38 , pp. 19-23
    • Cosnier, S.1    Le Goff, A.2    Holzinger, M.3
  • 12
    • 49049118534 scopus 로고    scopus 로고
    • Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis
    • Cracknell, J. A., Vincent, K. A., and Armstrong, F. A. (2008). Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 108, 2439-2461. doi:10.1021/cr0680639
    • (2008) Chem. Rev , vol.108 , pp. 2439-2461
    • Cracknell, J.A.1    Vincent, K.A.2    Armstrong, F.A.3
  • 13
    • 0036924402 scopus 로고    scopus 로고
    • Carbon nanotubes: synthesis, integration, and properties
    • Dai, H. (2002). Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35, 1035. doi:10.1021/ar0101640
    • (2002) Acc. Chem. Res , vol.35 , pp. 1035
    • Dai, H.1
  • 14
    • 84875873527 scopus 로고    scopus 로고
    • A novel three-dimensional macrocellular carbonaceous biofuel cell
    • Flexer, V., Brun, N., Destribats, M., Backov, R., and Mano, N. (2013). A novel three-dimensional macrocellular carbonaceous biofuel cell. Phys. Chem. Chem. Phys. 15, 6437-6445. doi:10.1039/C3CP50807B
    • (2013) Phys. Chem. Chem. Phys , vol.15 , pp. 6437-6445
    • Flexer, V.1    Brun, N.2    Destribats, M.3    Backov, R.4    Mano, N.5
  • 15
    • 84900248543 scopus 로고    scopus 로고
    • Wired pyrroloquinoline quinone soluble glucose dehydrogenase enzyme electrodes operating at unprecedented low redox potential
    • Flexer, V., and Mano, N. (2014). Wired pyrroloquinoline quinone soluble glucose dehydrogenase enzyme electrodes operating at unprecedented low redox potential. Anal. Chem. 86, 2465-2473. doi:10.1021/ac403334w
    • (2014) Anal. Chem , vol.86 , pp. 2465-2473
    • Flexer, V.1    Mano, N.2
  • 16
    • 1242288145 scopus 로고    scopus 로고
    • Modulating the redox properties of an osmium-containing metallopolymer through the supporting electrolyte and cross-linking
    • Forster, R. J., Walsh, D. A., Mano, N., Mao, F., and Heller, A. (2003). Modulating the redox properties of an osmium-containing metallopolymer through the supporting electrolyte and cross-linking. Langmuir 20, 862-868. doi:10.1021/la035229h
    • (2003) Langmuir , vol.20 , pp. 862-868
    • Forster, R.J.1    Walsh, D.A.2    Mano, N.3    Mao, F.4    Heller, A.5
  • 18
    • 84866434367 scopus 로고    scopus 로고
    • Carbon nanotube/enzyme biofuel cells
    • Holzinger, M., Le Goff, A., and Cosnier, S. (2012). Carbon nanotube/enzyme biofuel cells. Electrochim. Acta 82, 179-190. doi:10.1016/j.electacta.2011.12.135
    • (2012) Electrochim. Acta , vol.82 , pp. 179-190
    • Holzinger, M.1    Le Goff, A.2    Cosnier, S.3
  • 19
    • 79956353334 scopus 로고    scopus 로고
    • A highly efficient buckypaper-based electrode material for mediatorless laccase-catalyzed dioxygen reduction
    • Hussein, L., Rubenwolf, S., von Tetten, S. F., Urban, G., Zengerle, R., Krueger, M., et al. (2011). A highly efficient buckypaper-based electrode material for mediatorless laccase-catalyzed dioxygen reduction. Biosens. Bioelectron. 26, 4133-4138. doi:10.1016/j.bios.2011.04.008
    • (2011) Biosens. Bioelectron , vol.26 , pp. 4133-4138
    • Hussein, L.1    Rubenwolf, S.2    von Tetten, S.F.3    Urban, G.4    Zengerle, R.5    Krueger, M.6
  • 20
    • 77952038997 scopus 로고    scopus 로고
    • Recent advances in enzymatic fuel cells: experiments and modeling
    • Ivanov, I., Vidakovic-Koch, T., and Sundmacher, K. (2010). Recent advances in enzymatic fuel cells: experiments and modeling. Energies 3, 803-846. doi:10.3390/en3040803
    • (2010) Energies , vol.3 , pp. 803-846
    • Ivanov, I.1    Vidakovic-Koch, T.2    Sundmacher, K.3
  • 22
    • 84884538876 scopus 로고    scopus 로고
    • Implanted biofuel cells operating in vivo-methods, applications and perspectives-feature article
    • Katz, E., and MacVittie, K. (2013). Implanted biofuel cells operating in vivo-methods, applications and perspectives-feature article. Energy Environ. Sci. 6, 2791-2803. doi:10.1039/C3EE42126K
    • (2013) Energy Environ. Sci , vol.6 , pp. 2791-2803
    • Katz, E.1    MacVittie, K.2
  • 23
    • 84884327796 scopus 로고    scopus 로고
    • Efficient direct oxygen reduction by laccases attached and oriented on pyrene-functionalized polypyrrole/carbon nanotube electrodes
    • Lalaoui, N., Elouarzaki, K., Le Goff, A., Holzinger, M., and Cosnier, S. (2013). Efficient direct oxygen reduction by laccases attached and oriented on pyrene-functionalized polypyrrole/carbon nanotube electrodes. Chem. Commun. 49, 9281-9283. doi:10.1039/C3CC44994G
    • (2013) Chem. Commun , vol.49 , pp. 9281-9283
    • Lalaoui, N.1    Elouarzaki, K.2    Le Goff, A.3    Holzinger, M.4    Cosnier, S.5
  • 25
    • 84869085132 scopus 로고    scopus 로고
    • Enzymatic fuel cells: recent progress
    • Leech, D., Kavanagh, P., and Schuhmann, W. (2012). Enzymatic fuel cells: recent progress. Electrochim. Acta 84, 223-234. doi:10.1016/j.electacta.2012.02.087
    • (2012) Electrochim. Acta , vol.84 , pp. 223-234
    • Leech, D.1    Kavanagh, P.2    Schuhmann, W.3
  • 26
    • 79960951054 scopus 로고    scopus 로고
    • A novel enzymatic bioelectrode system combining a redox hydrogel with a carbon NanoWeb
    • Little, S. J., Ralph, S. F., Mano, N., Chen, J., and Wallace, G. G. (2011). A novel enzymatic bioelectrode system combining a redox hydrogel with a carbon NanoWeb. Chem. Commun. 47, 8886-8888. doi:10.1039/C1CC11088H
    • (2011) Chem. Commun , vol.47 , pp. 8886-8888
    • Little, S.J.1    Ralph, S.F.2    Mano, N.3    Chen, J.4    Wallace, G.G.5
  • 27
    • 0038513973 scopus 로고    scopus 로고
    • 2 biofuel cell and its operation in a living plant
    • 2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 125, 6588-6594. doi:10.1021/ja0346328
    • (2003) J. Am. Chem. Soc , vol.125 , pp. 6588-6594
    • Mano, N.1    Mao, F.2    Heller, A.3
  • 28
    • 82955194837 scopus 로고    scopus 로고
    • Anthracene-modified multi-walled carbon nanotubes as direct electron transfer scaffolds for enzymatic oxygen reduction
    • Meredith, M. T., Minson, M., Hickey, D., Artyushkova, K., Glatzhofer, D. T., and Minteer, S. D. (2011). Anthracene-modified multi-walled carbon nanotubes as direct electron transfer scaffolds for enzymatic oxygen reduction. ACS Catal. 1, 1683-1690. doi:10.1021/cs200475q
    • (2011) ACS Catal , vol.1 , pp. 1683-1690
    • Meredith, M.T.1    Minson, M.2    Hickey, D.3    Artyushkova, K.4    Glatzhofer, D.T.5    Minteer, S.D.6
  • 29
    • 84863317977 scopus 로고    scopus 로고
    • Biofuel cells: enhanced enzymatic bioelectrocatalysis
    • Meredith, M. T., and Minteer, S. D. (2012). Biofuel cells: enhanced enzymatic bioelectrocatalysis. Annu. Rev. Anal. Chem. 5, 157-179. doi:10.1146/annurev-anchem-062011-143049
    • (2012) Annu. Rev. Anal. Chem , vol.5 , pp. 157-179
    • Meredith, M.T.1    Minteer, S.D.2
  • 30
    • 79953902587 scopus 로고    scopus 로고
    • Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells
    • Miyake, T., Yoshino, S., Yamada, T., Hata, K., and Nishizawa, M. (2011a). Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells. J. Am. Chem. Soc. 133, 5129-5134. doi:10.1021/ja111517e
    • (2011) J. Am. Chem. Soc , vol.133 , pp. 5129-5134
    • Miyake, T.1    Yoshino, S.2    Yamada, T.3    Hata, K.4    Nishizawa, M.5
  • 31
    • 82555193617 scopus 로고    scopus 로고
    • Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms
    • Miyake, T., Haneda, K., Nagai, N., Yatagawa, Y., Onami, H., Yoshino, S., et al. (2011b). Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms. Energy Environ. Sci. 4, 5008-5012. doi:10.1039/C1EE02200H
    • (2011) Energy Environ. Sci , vol.4 , pp. 5008-5012
    • Miyake, T.1    Haneda, K.2    Nagai, N.3    Yatagawa, Y.4    Onami, H.5    Yoshino, S.6
  • 32
    • 0035311846 scopus 로고    scopus 로고
    • Specific surface area of carbon nanotubes and bundles of carbon nanotubes
    • Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R., and Rousset, A. (2001). Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon N. Y. 39, 507-514. doi:10.1016/S0008-6223(00)00155-X
    • (2001) Carbon N. Y , vol.39 , pp. 507-514
    • Peigney, A.1    Laurent, C.2    Flahaut, E.3    Bacsa, R.R.4    Rousset, A.5
  • 33
    • 84906547688 scopus 로고    scopus 로고
    • A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage
    • Plumeré, N., Rüdiger, O., Oughli, A. A., Williams, R., Vivekananthan, J., Pöller, S., et al. (2014). A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage. Nat. Chem. 6, 822-827. doi:10.1038/nchem.2022
    • (2014) Nat. Chem , vol.6 , pp. 822-827
    • Plumeré, N.1    Rüdiger, O.2    Oughli, A.A.3    Williams, R.4    Vivekananthan, J.5    Pöller, S.6
  • 36
    • 84876565676 scopus 로고    scopus 로고
    • High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix
    • Reuillard, B., Le, G. offA., Agnès, C., Holzinger, M., Zebda, A., Gondran, C., et al. (2013). High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix. Phys. Chem. Chem. Phys. 15, 4892-4896. doi:10.1039/C3CP50767J
    • (2013) Phys. Chem. Chem. Phys , vol.15 , pp. 4892-4896
    • Reuillard, B.1    Le Goff, A.2    Agnès, C.3    Holzinger, M.4    Zebda, A.5    Gondran, C.6
  • 39
    • 84872093852 scopus 로고    scopus 로고
    • An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes
    • Sales, F. C. P. F., Iost, R. M., Martins, M. V. A., Almeida, M. C., and Crespilho, F. N. (2013). An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab. Chip 13, 468-474. doi:10.1039/C2LC41007A
    • (2013) Lab. Chip , vol.13 , pp. 468-474
    • Sales, F.C.P.F.1    Iost, R.M.2    Martins, M.V.A.3    Almeida, M.C.4    Crespilho, F.N.5
  • 40
    • 79954617313 scopus 로고    scopus 로고
    • Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications
    • Samanta, D., and Sarkar, A. (2011). Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications. Chem. Soc. Rev. 40, 2567-2592. doi:10.1039/C0CS00056F
    • (2011) Chem. Soc. Rev , vol.40 , pp. 2567-2592
    • Samanta, D.1    Sarkar, A.2
  • 41
    • 84879984426 scopus 로고    scopus 로고
    • Overcoming bottlenecks of enzymatic biofuel cell cathodes: crude fungal culture supernatant can help to extend lifetime and reduce cost
    • Sané, S., Jolivalt, C., Mittler, G., Nielsen, P. J., Rubenwolf, S., Zengerle, R., et al. (2013). Overcoming bottlenecks of enzymatic biofuel cell cathodes: crude fungal culture supernatant can help to extend lifetime and reduce cost. ChemSusChem 6, 1114-1114. doi:10.1002/cssc.201300520
    • (2013) ChemSusChem , vol.6 , pp. 1114-1114
    • Sané, S.1    Jolivalt, C.2    Mittler, G.3    Nielsen, P.J.4    Rubenwolf, S.5    Zengerle, R.6
  • 42
    • 84896755848 scopus 로고    scopus 로고
    • Using planktonic microorganisms to supply the unpurified multi-copper oxidases laccase and copper efflux oxidases at a biofuel cell cathode
    • Sané, S., Richter, K., Rubenwolf, S., Matschke, N. J., Jolivalt, C., Madzak, C., et al. (2014). Using planktonic microorganisms to supply the unpurified multi-copper oxidases laccase and copper efflux oxidases at a biofuel cell cathode. Bioresour. Technol. 158, 231-238. doi:10.1016/j.biortech.2014.02.038
    • (2014) Bioresour. Technol , vol.158 , pp. 231-238
    • Sané, S.1    Richter, K.2    Rubenwolf, S.3    Matschke, N.J.4    Jolivalt, C.5    Madzak, C.6
  • 43
    • 84899464695 scopus 로고    scopus 로고
    • Cellobiose dehydrogenase entrapped within specifically designed Os-complex modified electrodeposition polymers as potential anodes for biofuel cells
    • Shaoa, M., Guschina, D. A., Kawahb, Z., Beyla, Y., Stoicaa, L., and Ludwig, R. (2014). Cellobiose dehydrogenase entrapped within specifically designed Os-complex modified electrodeposition polymers as potential anodes for biofuel cells. Electrochim. Acta 128, 318-325. doi:10.1016/j.electacta.2013.11.019
    • (2014) Electrochim. Acta , vol.128 , pp. 318-325
    • Shaoa, M.1    Guschina, D.A.2    Kawahb, Z.3    Beyla, Y.4    Stoicaa, L.5    Ludwig, R.6
  • 44
    • 32044445745 scopus 로고    scopus 로고
    • The biocompatibility of carbon nanotubes
    • Smart, S. K., Cassady, A. I., Lu, G. Q., and Martin, D. J. (2006). The biocompatibility of carbon nanotubes. Carbon N. Y. 44, 1034-1047. doi:10.1016/j.carbon.2005.10.011
    • (2006) Carbon N. Y , vol.44 , pp. 1034-1047
    • Smart, S.K.1    Cassady, A.I.2    Lu, G.Q.3    Martin, D.J.4
  • 45
    • 3142719124 scopus 로고    scopus 로고
    • 2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V
    • 2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V. J. Am. Chem. Soc. 126, 8368-8369. doi:10.1021/ja0475510
    • (2004) J. Am. Chem. Soc , vol.126 , pp. 8368-8369
    • Soukharev, V.1    Mano, N.2    Heller, A.3
  • 47
    • 79953276829 scopus 로고    scopus 로고
    • Fast and easy enzyme immobilization by photoinitiated polymerization for efficient bioelectrochemical devices
    • Suraniti, E., Studer, V., Sojic, N., and Mano, N. (2011). Fast and easy enzyme immobilization by photoinitiated polymerization for efficient bioelectrochemical devices. Anal. Chem. 83, 2824-2828. doi:10.1021/ac200297r
    • (2011) Anal. Chem , vol.83 , pp. 2824-2828
    • Suraniti, E.1    Studer, V.2    Sojic, N.3    Mano, N.4
  • 51
    • 33751222848 scopus 로고    scopus 로고
    • Electrical contacting of redox proteins by nanotechnological means
    • Willner, B., Katz, E., and Willner, I. (2006). Electrical contacting of redox proteins by nanotechnological means. Curr. Opin. Biotechnol. 17, 589-596. doi:10.1016/j.copbio.2006.10.008
    • (2006) Curr. Opin. Biotechnol , vol.17 , pp. 589-596
    • Willner, B.1    Katz, E.2    Willner, I.3
  • 52
    • 60849107722 scopus 로고    scopus 로고
    • Integrated enzyme-based biofuel cells-a review
    • Willner, I., Yan, Y.-M., Willner, B., and Tel-Vered, R. (2009). Integrated enzyme-based biofuel cells-a review. Fuel Cells 9, 7-24. doi:10.1002/fuce.200800115
    • (2009) Fuel Cells , vol.9 , pp. 7-24
    • Willner, I.1    Yan, Y.-M.2    Willner, B.3    Tel-Vered, R.4
  • 53
    • 0041993216 scopus 로고
    • Bioelectrochemistry: I. enzyme utilizing bio-fuel cell studies
    • Yahiro, A. T., Lee, S. M., and Kimble, D. O. (1964). Bioelectrochemistry: I. enzyme utilizing bio-fuel cell studies. Biochim Biophys Acta 88, 375-383. doi:10.1016/0926-6577(64)90192-5
    • (1964) Biochim Biophys Acta , vol.88 , pp. 375-383
    • Yahiro, A.T.1    Lee, S.M.2    Kimble, D.O.3
  • 54
    • 54549096952 scopus 로고    scopus 로고
    • Design of amperometric biosensors and biofuel cells by the reconstitution of electrically contacted enzyme electrodes
    • Zayats, M., Willner, B., and Willner, I. (2008). Design of amperometric biosensors and biofuel cells by the reconstitution of electrically contacted enzyme electrodes. Electroanalysis 20, 583-601. doi:10.1002/elan.200704128
    • (2008) Electroanalysis , vol.20 , pp. 583-601
    • Zayats, M.1    Willner, B.2    Willner, I.3
  • 55
    • 84875766734 scopus 로고    scopus 로고
    • Single glucose biofuel cells implanted in rats power electronic devices
    • Zebda, A., Cosnier, S., Alcaraz, J. P., Holzinger, M., Le Goff, A., Gondran, C., et al. (2013). Single glucose biofuel cells implanted in rats power electronic devices. Sci. Rep. 3, 1516. doi:10.1038/srep01516
    • (2013) Sci. Rep , vol.3 , pp. 1516
    • Zebda, A.1    Cosnier, S.2    Alcaraz, J.P.3    Holzinger, M.4    Le Goff, A.5    Gondran, C.6
  • 57
    • 84867862483 scopus 로고    scopus 로고
    • Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes
    • Zebda, A., Gondran, C., Le, G. offA., Holzinger, M., Cinquin, P., and Cosnier, S. (2011b). Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat. Commun. 2, 370. doi:10.1038/ncomms1365
    • (2011) Nat. Commun , vol.2 , pp. 370
    • Zebda, A.1    Gondran, C.2    Le Goff, A.3    Holzinger, M.4    Cinquin, P.5    Cosnier, S.6
  • 59
    • 84876226857 scopus 로고    scopus 로고
    • The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage
    • Zhang, Q., Huang, J.-Q., Qian, W.-Z., Zhang, Y.-Y., and Wei, F. (2013). The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9, 1237-1265. doi:10.1002/smll.201203252
    • (2013) Small , vol.9 , pp. 1237-1265
    • Zhang, Q.1    Huang, J.-Q.2    Qian, W.-Z.3    Zhang, Y.-Y.4    Wei, F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.