-
1
-
-
20044376702
-
The pathobiology of diabetic complications: A unifying mechanism
-
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–1625.
-
(2005)
Diabetes
, vol.54
, pp. 1615-1625
-
-
Brownlee, M.1
-
2
-
-
84898598807
-
TIAM1-RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy
-
Kowluru RA, Kowluru A, Veluthakal R, et al. TIAM1-RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy. Diabetologia. 2014;57:1047–1056.
-
(2014)
Diabetologia
, vol.57
, pp. 1047-1056
-
-
Kowluru, R.A.1
Kowluru, A.2
Veluthakal, R.3
-
3
-
-
84897008089
-
Phagocyte-like NADPH oxidase [Nox2] in cellular dysfunction in models of glucolipotoxicity and diabetes
-
Kowluru A, Kowluru RA. Phagocyte-like NADPH oxidase [Nox2] in cellular dysfunction in models of glucolipotoxicity and diabetes. Biochem Pahrmacol. 2014;88:275–283.
-
(2014)
Biochem Pahrmacol
, vol.88
, pp. 275-283
-
-
Kowluru, A.1
Kowluru, R.A.2
-
4
-
-
33750924781
-
Regulation of the phagocyte NADPH oxidase by Rac GTPase
-
Bokoch GM, Zhao T. Regulation of the phagocyte NADPH oxidase by Rac GTPase. Antioxid Redox Signal. 2006;8:1533– 1548.
-
(2006)
Antioxid Redox Signal
, vol.8
, pp. 1533-1548
-
-
Bokoch, G.M.1
Zhao, T.2
-
5
-
-
84929931841
-
Tiam1-Rac1 axis promotes activation of p38 MAP Kinase in the development of diabetic retinopathy: Evidence for a requisite role for protein palmitoylation
-
Veluthakal R, Kumar B, Mohammad G, Kowluru A, Kowluru RA. Tiam1-Rac1 axis promotes activation of p38 MAP Kinase in the development of diabetic retinopathy: evidence for a requisite role for protein palmitoylation. Cell Physiol Biochem. 2015;36:208–220.
-
(2015)
Cell Physiol Biochem
, vol.36
, pp. 208-220
-
-
Veluthakal, R.1
Kumar, B.2
Mohammad, G.3
Kowluru, A.4
Kowluru, R.A.5
-
6
-
-
84965036171
-
Diabetic retinopathy and transcriptional regulation of a small molecular weight G-Protein, Rac1
-
Kowluru RA, Mishra M, Kumar B. Diabetic retinopathy and transcriptional regulation of a small molecular weight G-Protein, Rac1. Exp Eye Res. 2016;147:72–77.
-
(2016)
Exp Eye Res
, vol.147
, pp. 72-77
-
-
Kowluru, R.A.1
Mishra, M.2
Kumar, B.3
-
7
-
-
79957463780
-
Epigenetic modifications: Basic mechanisms and role in cardiovascular disease
-
Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123:2145–2156.
-
(2011)
Circulation
, vol.123
, pp. 2145-2156
-
-
Handy, D.E.1
Castro, R.2
Loscalzo, J.3
-
8
-
-
84878774334
-
Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy
-
Zhong Q, Kowluru RA. Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy. Diabetes. 2013;62:2559–2568.
-
(2013)
Diabetes
, vol.62
, pp. 2559-2568
-
-
Zhong, Q.1
Kowluru, R.A.2
-
9
-
-
84988622288
-
Dynamic DNA methylation of matrix metalloproteinase-9 in the development of diabetic retinopathy
-
Kowluru RA, Shan Y, Mishra M. Dynamic DNA methylation of matrix metalloproteinase-9 in the development of diabetic retinopathy. Lab Invest. 2016;96:1040–1049.
-
(2016)
Lab Invest
, vol.96
, pp. 1040-1049
-
-
Kowluru, R.A.1
Shan, Y.2
Mishra, M.3
-
10
-
-
53349101264
-
Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia
-
El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205:2409–2417.
-
(2008)
J Exp Med
, vol.205
, pp. 2409-2417
-
-
El-Osta, A.1
Brasacchio, D.2
Yao, D.3
-
11
-
-
77955205559
-
Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus
-
Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genomics. 2010;3:33.
-
(2010)
BMC Med Genomics
, vol.3
, pp. 33
-
-
Bell, C.G.1
Teschendorff, A.E.2
Rakyan, V.K.3
Maxwell, A.P.4
Beck, S.5
Savage, D.A.6
-
12
-
-
84925519612
-
Epigenetic mechanisms in diabetic complications and metabolic memory
-
Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia. 2015;58:443–455.
-
(2015)
Diabetologia
, vol.58
, pp. 443-455
-
-
Reddy, M.A.1
Zhang, E.2
Natarajan, R.3
-
13
-
-
84886860116
-
TET enzymes, TDG and the dynamics of DNA demethylation
-
Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502:472–479.
-
(2013)
Nature
, vol.502
, pp. 472-479
-
-
Kohli, R.M.1
Zhang, Y.2
-
14
-
-
84892763878
-
Reversing DNA methylation: Mechanisms, genomics, and biological functions
-
Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell. 2014;156:45–68.
-
(2014)
Cell
, vol.156
, pp. 45-68
-
-
Wu, H.1
Zhang, Y.2
-
15
-
-
66149146320
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
-
Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–935.
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
Koh, K.P.2
Shen, Y.3
-
16
-
-
84948381421
-
TET family of dioxygenases: Crucial roles and underlying mechanisms
-
Li D, Guo B, Wu H, Tan L, Lu Q. TET family of dioxygenases: crucial roles and underlying mechanisms. Cytogenet Genome Res. 2015;146:171–180.
-
(2015)
Cytogenet Genome Res
, vol.146
, pp. 171-180
-
-
Li, D.1
Guo, B.2
Wu, H.3
Tan, L.4
Lu, Q.5
-
17
-
-
85019872482
-
Role of PARP-1 as a novel transcriptional regulator of MMP-9 in diabetic retinopathy
-
Mishra M, Kowluru RA. Role of PARP-1 as a novel transcriptional regulator of MMP-9 in diabetic retinopathy. Biochim Biophys Acta. 2017;1863:1761–1769.
-
(2017)
Biochim Biophys Acta
, vol.1863
, pp. 1761-1769
-
-
Mishra, M.1
Kowluru, R.A.2
-
18
-
-
84993968381
-
The role of DNA methylation in the metabolic memory phenomenon associated with the continued progression of diabetic retinopathy
-
Mishra M, Kowluru RA. The role of DNA methylation in the metabolic memory phenomenon associated with the continued progression of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2016;57:5748–5757.
-
(2016)
Invest Ophthalmol Vis Sci
, vol.57
, pp. 5748-5757
-
-
Mishra, M.1
Kowluru, R.A.2
-
19
-
-
0142180047
-
Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants
-
Kowluru RA, Koppolu P, Chakrabarti S, Chen S. Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Radic Res. 2003;37:1169–1180.
-
(2003)
Free Radic Res
, vol.37
, pp. 1169-1180
-
-
Kowluru, R.A.1
Koppolu, P.2
Chakrabarti, S.3
Chen, S.4
-
20
-
-
84952683674
-
Molecular mechanism of transcriptional regulation of matrix metalloproteinase-9 in diabetic retinopathy
-
Mishra M, Flaga J, Kowluru RA. Molecular mechanism of transcriptional regulation of matrix metalloproteinase-9 in diabetic retinopathy. J Cell Physiol. 2016;231:1709–1718.
-
(2016)
J Cell Physiol
, vol.231
, pp. 1709-1718
-
-
Mishra, M.1
Flaga, J.2
Kowluru, R.A.3
-
21
-
-
64349116492
-
Anti-inflammatory effect of pigment epithelium-derived factor in DBA/2J mice
-
Zhou X, Li F, Kong L, Chodosh J, Cao W. Anti-inflammatory effect of pigment epithelium-derived factor in DBA/2J mice. Mol Vis. 2009;15:438–450.
-
(2009)
Mol Vis
, vol.15
, pp. 438-450
-
-
Zhou, X.1
Li, F.2
Kong, L.3
Chodosh, J.4
Cao, W.5
-
22
-
-
84939838760
-
Lipotoxicity augments glucotoxicity-induced mitochondrial damage in the development of diabetic retinopathy
-
Kumar B, Kowluru A, Kowluru RA. Lipotoxicity augments glucotoxicity-induced mitochondrial damage in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2015;56:2985–2992.
-
(2015)
Invest Ophthalmol Vis Sci
, vol.56
, pp. 2985-2992
-
-
Kumar, B.1
Kowluru, A.2
Kowluru, R.A.3
-
23
-
-
0142221070
-
Diabetes-induced mitochondrial dysfunction in the retina
-
Kowluru RA, Abbas SN. Diabetes-induced mitochondrial dysfunction in the retina. Invest Ophthalmol Vis Sci. 2003; 44:5327–5334.
-
(2003)
Invest Ophthalmol Vis Sci
, vol.44
, pp. 5327-5334
-
-
Kowluru, R.A.1
Abbas, S.N.2
-
24
-
-
84863986133
-
Functions of DNA methylation: Islands, start sites, gene bodies and beyond
-
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–492.
-
(2012)
Nat Rev Genet
, vol.13
, pp. 484-492
-
-
Jones, P.A.1
-
25
-
-
77949593677
-
Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases
-
Leto TL, Morand S, Hurt D, Ueyama T. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal. 2009;11: 2607–2619.
-
(2009)
Antioxid Redox Signal
, vol.11
, pp. 2607-2619
-
-
Leto, T.L.1
Morand, S.2
Hurt, D.3
Ueyama, T.4
-
27
-
-
84875129831
-
DNA methylation dynamics in health and disease
-
Bergman Y, Cedar H. DNA methylation dynamics in health and disease. Nat Struct Mol Biol. 2013;20:274–281.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 274-281
-
-
Bergman, Y.1
Cedar, H.2
-
28
-
-
84983057048
-
Peripheral blood mitochondrial DNA damage as a potential noninvasive biomarker of diabetic retinopathy
-
Mishra M, Lillvis J, Seyoum B, Kowluru RA. Peripheral blood mitochondrial DNA damage as a potential noninvasive biomarker of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2016;57:4035–4044.
-
(2016)
Invest Ophthalmol Vis Sci
, vol.57
, pp. 4035-4044
-
-
Mishra, M.1
Lillvis, J.2
Seyoum, B.3
Kowluru, R.A.4
-
29
-
-
84969776770
-
Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort
-
Chen Z, Miao F, Paterson AD, et al. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc Natl Acad Sci U S A. 2016;113: E3002–E3011.
-
(2016)
Proc Natl Acad Sci U S A
, vol.113
, pp. E3002-E3011
-
-
Chen, Z.1
Miao, F.2
Paterson, A.D.3
-
30
-
-
0034597710
-
Small GTPase Rac1: Structure, localization, and expression of the human gene
-
Matos P, Skaug J, Marques B, et al. Small GTPase Rac1: structure, localization, and expression of the human gene. Biochem Biophys Res Commun. 2000;277:741–751.
-
(2000)
Biochem Biophys Res Commun
, vol.277
, pp. 741-751
-
-
Matos, P.1
Skaug, J.2
Marques, B.3
-
31
-
-
0033753779
-
The DNA methyltransferases of mammals
-
Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395–2402.
-
(2000)
Hum Mol Genet
, vol.9
, pp. 2395-2402
-
-
Bestor, T.H.1
-
32
-
-
85034612746
-
Effect of diabetes status and hyperglycemia on global DNA methylation and hydroxymethylation
-
Pinzon-Cortes JA, Perna-Chaux A, Rojas-Villamizar NS, et al. Effect of diabetes status and hyperglycemia on global DNA methylation and hydroxymethylation. Endocr Connect. 2017; 6:708–725.
-
(2017)
Endocr Connect
, vol.6
, pp. 708-725
-
-
Pinzon-Cortes, J.A.1
Perna-Chaux, A.2
Rojas-Villamizar, N.S.3
-
33
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
-
Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–1303.
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
Shen, L.2
Dai, Q.3
-
34
-
-
60849100524
-
Decline in genomic DNA methylation through aging in a cohort of elderly subjects
-
Bollati V, Schwartz J, Wright R, et al. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev. 2009;130:234–239.
-
(2009)
Mech Ageing Dev
, vol.130
, pp. 234-239
-
-
Bollati, V.1
Schwartz, J.2
Wright, R.3
-
35
-
-
84899110910
-
Decrease in cytosine methylation at CpG island shores and increase in DNA fragmentation during zebrafish aging
-
Shimoda N, Izawa T, Yoshizawa A, Yokoi H, Kikuchi Y, Hashimoto N. Decrease in cytosine methylation at CpG island shores and increase in DNA fragmentation during zebrafish aging. Age (Dordr). 2014;36:103–115.
-
(2014)
Age (Dordr)
, vol.36
, pp. 103-115
-
-
Shimoda, N.1
Izawa, T.2
Yoshizawa, A.3
Yokoi, H.4
Kikuchi, Y.5
Hashimoto, N.6
-
36
-
-
84938293899
-
The epigenetics of aging and neurodegeneration
-
Lardenoije R, Iatrou A, Kenis G, et al. The epigenetics of aging and neurodegeneration. Prog Neurobiol. 2015;131:21–64.
-
(2015)
Prog Neurobiol
, vol.131
, pp. 21-64
-
-
Lardenoije, R.1
Iatrou, A.2
Kenis, G.3
-
37
-
-
84981218712
-
Change in epigenome-wide DNA methylation over 9 years and subsequent mortality: Results from the In CHIANTI Study
-
Moore AZ, Hernandez DG, Tanaka T, et al. Change in epigenome-wide DNA methylation over 9 years and subsequent mortality: results from the In CHIANTI Study. J Gerontol A Biol Sci Med Sci. 2016;71:1029–1035.
-
(2016)
J Gerontol a Biol Sci Med Sci
, vol.71
, pp. 1029-1035
-
-
Moore, A.Z.1
Hernandez, D.G.2
Tanaka, T.3
-
38
-
-
84954117142
-
Locus-and site-specific DNA methylation of 19 kDa zein genes in maize
-
Xu JH, Wang R, Li X, Miclaus M, Messing J. Locus-and site-specific DNA methylation of 19 kDa zein genes in maize. PLoS One. 2016;11:e0146416.
-
(2016)
Plos One
, vol.11
-
-
Xu, J.H.1
Wang, R.2
Li, X.3
Miclaus, M.4
Messing, J.5
-
39
-
-
84857062545
-
DNA methylation signatures in development and aging of the human prefrontal cortex
-
Numata S, Ye T, Hyde TM, et al. DNA methylation signatures in development and aging of the human prefrontal cortex. Am J Hum Genet. 2012;90:260–272.
-
(2012)
Am J Hum Genet
, vol.90
, pp. 260-272
-
-
Numata, S.1
Ye, T.2
Hyde, T.M.3
-
40
-
-
84886111619
-
DNA methylation age of human tissues and cell types
-
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115.
-
(2013)
Genome Biol
, vol.14
, pp. 115
-
-
Horvath, S.1
-
41
-
-
0032529103
-
Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin
-
Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998;102:783–791.
-
(1998)
J Clin Invest
, vol.102
, pp. 783-791
-
-
Barber, A.J.1
Lieth, E.2
Khin, S.A.3
Antonetti, D.A.4
Buchanan, A.G.5
Gardner, T.W.6
-
42
-
-
0029973474
-
Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy
-
Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 1996;97:2883–2890.
-
(1996)
J Clin Invest
, vol.97
, pp. 2883-2890
-
-
Mizutani, M.1
Kern, T.S.2
Lorenzi, M.3
-
43
-
-
84885357617
-
Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina
-
Du Y, Veenstra A, Palczewski K, Kern TS. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci U S A. 2013;110:16586–16591.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 16586-16591
-
-
Du, Y.1
Veenstra, A.2
Palczewski, K.3
Kern, T.S.4
-
44
-
-
33644689817
-
Vascular damage in a mouse model of diabetic retinopathy: Relation to neuronal and glial changes
-
Feit-Leichman RA, Kinouchi R, Takeda M, et al. Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Invest Ophthalmol Vis Sci. 2005; 46:4281–4287.
-
(2005)
Invest Ophthalmol Vis Sci
, vol.46
, pp. 4281-4287
-
-
Feit-Leichman, R.A.1
Kinouchi, R.2
Takeda, M.3
-
45
-
-
85044482709
-
Sirt1: A guardian of the development of diabetic retinopathy
-
Mishra M, Duraisamy AJ, Kowluru RA. Sirt1: a guardian of the development of diabetic retinopathy. Diabetes. 2018;67:745– 754.
-
(2018)
Diabetes
, vol.67
, pp. 745-754
-
-
Mishra, M.1
Duraisamy, A.J.2
Kowluru, R.A.3
-
46
-
-
84939838944
-
Epigenetic modification of mitochondrial DNA in the development of diabetic retinopathy
-
Mishra M, Kowluru RA. Epigenetic modification of mitochondrial DNA in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2015;56:5133–5142.
-
(2015)
Invest Ophthalmol Vis Sci
, vol.56
, pp. 5133-5142
-
-
Mishra, M.1
Kowluru, R.A.2
-
47
-
-
84992524643
-
Epigenetic silencing of HOPX contributes to cancer aggressiveness in breast cancer
-
Kikuchi M, Katoh H, Waraya M, et al. Epigenetic silencing of HOPX contributes to cancer aggressiveness in breast cancer. Cancer Lett. 2017;384:70–78.
-
(2017)
Cancer Lett
, vol.384
, pp. 70-78
-
-
Kikuchi, M.1
Katoh, H.2
Waraya, M.3
|