-
1
-
-
70249134919
-
Molecular networks as sensors and drivers of common human diseases
-
Schadt E.E. Molecular networks as sensors and drivers of common human diseases. Nature 2009, 461:218-223.
-
(2009)
Nature
, vol.461
, pp. 218-223
-
-
Schadt, E.E.1
-
2
-
-
41649119247
-
Protein networks in disease
-
Ideker T., Sharan R. Protein networks in disease. Genome Res. 2008, 18:644-652.
-
(2008)
Genome Res.
, vol.18
, pp. 644-652
-
-
Ideker, T.1
Sharan, R.2
-
3
-
-
21044446187
-
Finding disease specific alterations in the co-expression of genes
-
Kostka D., Spang R. Finding disease specific alterations in the co-expression of genes. Bioinformatics 2004, 20(Suppl. 1):i194-199.
-
(2004)
Bioinformatics
, vol.20
, Issue.1 SUPPL.
-
-
Kostka, D.1
Spang, R.2
-
4
-
-
5044245707
-
Gene co-expression network topology provides a framework for molecular characterization of cellular state
-
Carter S.L., et al. Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 2004, 20:2242-2250.
-
(2004)
Bioinformatics
, vol.20
, pp. 2242-2250
-
-
Carter, S.L.1
-
5
-
-
10244219943
-
A statistical method for identifying differential gene-gene co-expression patterns
-
Lai Y., et al. A statistical method for identifying differential gene-gene co-expression patterns. Bioinformatics 2004, 20:3146-3155.
-
(2004)
Bioinformatics
, vol.20
, pp. 3146-3155
-
-
Lai, Y.1
-
6
-
-
28944444652
-
Differential coexpression analysis using microarray data and its application to human cancer
-
Choi J.K., et al. Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics 2005, 21:4348-4355.
-
(2005)
Bioinformatics
, vol.21
, pp. 4348-4355
-
-
Choi, J.K.1
-
7
-
-
33749988857
-
Simultaneous identification of differential gene expression and connectivity in inflammation, adipogenesis and cancer
-
Reverter A., et al. Simultaneous identification of differential gene expression and connectivity in inflammation, adipogenesis and cancer. Bioinformatics 2006, 22:2396-2404.
-
(2006)
Bioinformatics
, vol.22
, pp. 2396-2404
-
-
Reverter, A.1
-
8
-
-
34548550573
-
Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process
-
Elo L.L., et al. Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process. Bioinformatics 2007, 23:2096-2103.
-
(2007)
Bioinformatics
, vol.23
, pp. 2096-2103
-
-
Elo, L.L.1
-
9
-
-
34548442971
-
Weighted gene coexpression network analysis strategies applied to mouse weight
-
Fuller T.F., et al. Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm. Genome 2007, 18:463-472.
-
(2007)
Mamm. Genome
, vol.18
, pp. 463-472
-
-
Fuller, T.F.1
-
10
-
-
67049159812
-
A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation
-
Hudson N.J., et al. A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation. PLoS Comput. Biol. 2009, 5:e1000382.
-
(2009)
PLoS Comput. Biol.
, vol.5
-
-
Hudson, N.J.1
-
11
-
-
62749083987
-
Detecting intergene correlation changes in microarray analysis: a new approach to gene selection
-
Hu R., et al. Detecting intergene correlation changes in microarray analysis: a new approach to gene selection. BMC Bioinformatics 2009, 10:20.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 20
-
-
Hu, R.1
-
12
-
-
74049143935
-
Dissecting the dynamics of dysregulation of cellular processes in mouse mammary gland tumor
-
Mentzen W.I., et al. Dissecting the dynamics of dysregulation of cellular processes in mouse mammary gland tumor. BMC Genomics 2009, 10:601.
-
(2009)
BMC Genomics
, vol.10
, pp. 601
-
-
Mentzen, W.I.1
-
13
-
-
0038281453
-
Observing and interpreting correlations in metabolomic networks
-
Steuer R., et al. Observing and interpreting correlations in metabolomic networks. Bioinformatics 2003, 19:1019-1026.
-
(2003)
Bioinformatics
, vol.19
, pp. 1019-1026
-
-
Steuer, R.1
-
14
-
-
10644224417
-
A systems biology study of two distinct growth phases of Saccharomyces cerevisiae
-
Martins A.M., et al. A systems biology study of two distinct growth phases of Saccharomyces cerevisiae. Curr. Genomics 2004, 5:649-663.
-
(2004)
Curr. Genomics
, vol.5
, pp. 649-663
-
-
Martins, A.M.1
-
15
-
-
2442647715
-
Differential metabolic networks unravel the effects of silent plant phenotypes
-
Weckwerth W., et al. Differential metabolic networks unravel the effects of silent plant phenotypes. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:7809-7814.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 7809-7814
-
-
Weckwerth, W.1
-
16
-
-
20344365760
-
The origin of correlations in metabolomics data
-
Camacho D., et al. The origin of correlations in metabolomics data. Metabolomics 2005, 1:53-63.
-
(2005)
Metabolomics
, vol.1
, pp. 53-63
-
-
Camacho, D.1
-
17
-
-
33748475897
-
On the analysis and interpretation of correlations in metabolomic data Brief
-
Steuer R. On the analysis and interpretation of correlations in metabolomic data Brief. Bioinformatics 2006, 7:151-158.
-
(2006)
Bioinformatics
, vol.7
, pp. 151-158
-
-
Steuer, R.1
-
18
-
-
70449358722
-
A methodology for the analysis of differential coexpression across the human lifespan
-
Gillis J., Pavlidis P. A methodology for the analysis of differential coexpression across the human lifespan. BMC Bioinformatics 2009, 10:306.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 306
-
-
Gillis, J.1
Pavlidis, P.2
-
19
-
-
0037276175
-
Statistical tests for differential expression in cDNA microarray experiments
-
Cui X., Churchill G.A. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 2003, 4:210.
-
(2003)
Genome Biol.
, vol.4
, pp. 210
-
-
Cui, X.1
Churchill, G.A.2
-
20
-
-
27344435774
-
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
-
Subramanian A., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:15545-15550.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 15545-15550
-
-
Subramanian, A.1
-
21
-
-
34547483895
-
Improving gene set analysis of microarray data by SAM-GS
-
Dinu I., et al. Improving gene set analysis of microarray data by SAM-GS. BMC Bioinformatics 2007, 8:242.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 242
-
-
Dinu, I.1
-
22
-
-
63449107173
-
A general modular framework for gene set enrichment analysis
-
Ackermann M., Strimmer K. A general modular framework for gene set enrichment analysis. BMC Bioinformatics 2009, 10:47.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 47
-
-
Ackermann, M.1
Strimmer, K.2
-
23
-
-
23944458138
-
A general framework for weighted gene co-expression network analysis
-
Article17
-
Zhang B., Horvath S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 2005, 4. Article17.
-
(2005)
Stat. Appl. Genet. Mol. Biol.
, vol.4
-
-
Zhang, B.1
Horvath, S.2
-
24
-
-
33748040439
-
Integrating genetic and network analysis to characterize genes related to mouse weight
-
Ghazalpour A., et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2006, 2:e130.
-
(2006)
PLoS Genet.
, vol.2
-
-
Ghazalpour, A.1
-
25
-
-
0001677717
-
Controlling the false discovery rate - a practical and powerful approach to multiple testing
-
Benjamini Y., Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B 1995, 57:289-300.
-
(1995)
J. Roy. Stat. Soc. B
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
27
-
-
0033736476
-
Genetic network inference: from co-expression clustering to reverse engineering
-
D'Haeseleer P., et al. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 2000, 16:707-726.
-
(2000)
Bioinformatics
, vol.16
, pp. 707-726
-
-
D'Haeseleer, P.1
-
28
-
-
0036843965
-
Gene networks: how to put the function in genomics
-
Brazhnik P., et al. Gene networks: how to put the function in genomics. Trends Biotechnol. 2002, 20:467-472.
-
(2002)
Trends Biotechnol.
, vol.20
, pp. 467-472
-
-
Brazhnik, P.1
-
29
-
-
14844286390
-
Reverse-engineering transcription control networks
-
Gardner T.S., Faith J. Reverse-engineering transcription control networks. Phys. Life Rev. 2005, 2:65-88.
-
(2005)
Phys. Life Rev.
, vol.2
, pp. 65-88
-
-
Gardner, T.S.1
Faith, J.2
-
30
-
-
33847055114
-
How to infer gene networks from expression profiles
-
Bansal M., et al. How to infer gene networks from expression profiles. Mol. Syst. Biol. 2007, 3:78.
-
(2007)
Mol. Syst. Biol.
, vol.3
, pp. 78
-
-
Bansal, M.1
-
31
-
-
63849195202
-
Inferring gene networks: dream or nightmare?
-
Scheinine A., et al. Inferring gene networks: dream or nightmare?. Ann, N.Y. Acad. Sci. 2009, 1158:287-301.
-
(2009)
Ann, N.Y. Acad. Sci.
, vol.1158
, pp. 287-301
-
-
Scheinine, A.1
-
32
-
-
36249019789
-
Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference
-
Stolovitzky G., et al. Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann. N. Y. Acad. Sci. 2007, 1115:1-22.
-
(2007)
Ann. N. Y. Acad. Sci.
, vol.1115
, pp. 1-22
-
-
Stolovitzky, G.1
-
34
-
-
63849210631
-
Lessons from the DREAM2 Challenges
-
Stolovitzky G., et al. Lessons from the DREAM2 Challenges. Ann. N. Y. Acad. Sci. 2009, 1158:159-195.
-
(2009)
Ann. N. Y. Acad. Sci.
, vol.1158
, pp. 159-195
-
-
Stolovitzky, G.1
-
35
-
-
63849083754
-
Inferring gene networks: dream or nightmare?
-
Baralla A., et al. Inferring gene networks: dream or nightmare?. Ann. N. Y. Acad. Sci. 2009, 1158:246-256.
-
(2009)
Ann. N. Y. Acad. Sci.
, vol.1158
, pp. 246-256
-
-
Baralla, A.1
-
36
-
-
77649293496
-
The effect of food intake on gene expression in human peripheral blood
-
Leonardson A.S., et al. The effect of food intake on gene expression in human peripheral blood. Hum. Mol. Genet. 2010, 19:159-169.
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 159-169
-
-
Leonardson, A.S.1
-
37
-
-
0742305866
-
Network biology: understanding the cell's functional organization
-
Barabasi A.L., Oltvai Z.N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 2004, 5:101-113.
-
(2004)
Nat. Rev. Genet.
, vol.5
, pp. 101-113
-
-
Barabasi, A.L.1
Oltvai, Z.N.2
-
38
-
-
34547649056
-
CoXpress: differential co-expression in gene expression data
-
Watson M. CoXpress: differential co-expression in gene expression data. BMC Bioinformatics 2006, 7:509.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 509
-
-
Watson, M.1
-
39
-
-
12344321571
-
Discovery of meaningful associations in genomic data using partial correlation coefficients
-
de la Fuente A., et al. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 2004, 20:3565-3574.
-
(2004)
Bioinformatics
, vol.20
, pp. 3565-3574
-
-
de la Fuente, A.1
-
40
-
-
15944367731
-
Reconstructing biological networks using conditional correlation analysis
-
Rice J.J., et al. Reconstructing biological networks using conditional correlation analysis. Bioinformatics 2005, 21:765-773.
-
(2005)
Bioinformatics
, vol.21
, pp. 765-773
-
-
Rice, J.J.1
-
41
-
-
15944364151
-
An empirical Bayes approach to inferring large-scale gene association networks
-
Schäfer J., Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 2005, 21:754-764.
-
(2005)
Bioinformatics
, vol.21
, pp. 754-764
-
-
Schäfer, J.1
Strimmer, K.2
-
42
-
-
60149089400
-
Differential dependency network analysis to identify condition-specific topological changes in biological networks
-
Zhang B., et al. Differential dependency network analysis to identify condition-specific topological changes in biological networks. Bioinformatics 2009, 25:526-532.
-
(2009)
Bioinformatics
, vol.25
, pp. 526-532
-
-
Zhang, B.1
-
43
-
-
70350682038
-
Statistical methods for gene set co-expression analysis
-
Choi Y., Kendziorski C. Statistical methods for gene set co-expression analysis. Bioinformatics 2009, 25:2780-2786.
-
(2009)
Bioinformatics
, vol.25
, pp. 2780-2786
-
-
Choi, Y.1
Kendziorski, C.2
-
44
-
-
65549155929
-
Identifying set-wise differential co-expression in gene expression microarray data
-
Cho S.B., et al. Identifying set-wise differential co-expression in gene expression microarray data. BMC Bioinformatics 2009, 10:109.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 109
-
-
Cho, S.B.1
-
45
-
-
33646145739
-
Algorithm to find gene expression profiles of deregulation and identify families of disease-altered genes
-
Prieto C., et al. Algorithm to find gene expression profiles of deregulation and identify families of disease-altered genes. Bioinformatics 2006, 22:1103-1110.
-
(2006)
Bioinformatics
, vol.22
, pp. 1103-1110
-
-
Prieto, C.1
-
46
-
-
46249103142
-
Differential variability analysis of gene expression and its application to human diseases
-
Ho J.W., et al. Differential variability analysis of gene expression and its application to human diseases. Bioinformatics 2008, 24:i390-398.
-
(2008)
Bioinformatics
, vol.24
-
-
Ho, J.W.1
-
48
-
-
33745580270
-
The genetics of plant metabolism
-
Keurentjes J.J., et al. The genetics of plant metabolism. Nat. Genet. 2006, 38:842-849.
-
(2006)
Nat. Genet.
, vol.38
, pp. 842-849
-
-
Keurentjes, J.J.1
-
49
-
-
59149100506
-
System-wide molecular evidence for phenotypic buffering in Arabidopsis
-
Fu J., et al. System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nat. Genet. 2009, 41:166-167.
-
(2009)
Nat. Genet.
, vol.41
, pp. 166-167
-
-
Fu, J.1
-
50
-
-
0035400051
-
Genetical genomics: the added value from segregation
-
Jansen R.C., Nap J.P. Genetical genomics: the added value from segregation. Trends Genet. 2001, 17:388-391.
-
(2001)
Trends Genet.
, vol.17
, pp. 388-391
-
-
Jansen, R.C.1
Nap, J.P.2
-
51
-
-
0037306536
-
Studying complex biological systems using multifactorial perturbation
-
Jansen R.C. Studying complex biological systems using multifactorial perturbation. Nat. Rev. Genet. 2003, 4:145-151.
-
(2003)
Nat. Rev. Genet.
, vol.4
, pp. 145-151
-
-
Jansen, R.C.1
-
52
-
-
3242806720
-
An integrative genomics approach to the reconstruction of gene networks in segregating populations
-
Zhu J., et al. An integrative genomics approach to the reconstruction of gene networks in segregating populations. Cytogenet. Genome Res. 2004, 105:363-374.
-
(2004)
Cytogenet. Genome Res.
, vol.105
, pp. 363-374
-
-
Zhu, J.1
-
53
-
-
22144454660
-
Genetical genomics analysis of a yeast segregant population for transcription network inference
-
Bing N., Hoeschele I. Genetical genomics analysis of a yeast segregant population for transcription network inference. Genetics 2005, 170:533-542.
-
(2005)
Genetics
, vol.170
, pp. 533-542
-
-
Bing, N.1
Hoeschele, I.2
-
54
-
-
20144383240
-
Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'
-
Bystrykh L., et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nat. Genet. 2005, 37:225-232.
-
(2005)
Nat. Genet.
, vol.37
, pp. 225-232
-
-
Bystrykh, L.1
-
55
-
-
22844446947
-
An integrative genomics approach to infer causal associations between gene expression and disease
-
Schadt E.E., et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 2005, 37:710-717.
-
(2005)
Nat. Genet.
, vol.37
, pp. 710-717
-
-
Schadt, E.E.1
-
56
-
-
33646841491
-
Elucidating the murine brain transcriptional network in a segregating mouse population to identify core functional modules for obesity and diabetes
-
Lum P.Y., et al. Elucidating the murine brain transcriptional network in a segregating mouse population to identify core functional modules for obesity and diabetes. J. Neurochem. 2006, 97(Suppl. 1):50-62.
-
(2006)
J. Neurochem.
, vol.97
, Issue.1 SUPPL.
, pp. 50-62
-
-
Lum, P.Y.1
-
57
-
-
33745483785
-
Causal inference of regulator-target pairs by gene mapping of expression phenotypes
-
Kulp D., Jagalur M. Causal inference of regulator-target pairs by gene mapping of expression phenotypes. BMC Genomics 2006, 7:125.
-
(2006)
BMC Genomics
, vol.7
, pp. 125
-
-
Kulp, D.1
Jagalur, M.2
-
58
-
-
45149096374
-
Gene network inference via structural equation modeling in genetical genomics experiments
-
Liu B., et al. Gene network inference via structural equation modeling in genetical genomics experiments. Genetics 2008, 178:1763-1776.
-
(2008)
Genetics
, vol.178
, pp. 1763-1776
-
-
Liu, B.1
-
59
-
-
44149084690
-
Using genetic markers to orient the edges in quantitative trait networks: the NEO software
-
Aten J.E., et al. Using genetic markers to orient the edges in quantitative trait networks: the NEO software. BMC Syst. Biol. 2008, 2:34.
-
(2008)
BMC Syst. Biol.
, vol.2
, pp. 34
-
-
Aten, J.E.1
-
60
-
-
49849090353
-
Inferring causal phenotype networks from segregating populations
-
Chaibub Neto E., et al. Inferring causal phenotype networks from segregating populations. Genetics 2008, 179:1089-1100.
-
(2008)
Genetics
, vol.179
, pp. 1089-1100
-
-
Chaibub Neto, E.1
-
61
-
-
57649124192
-
Reverse engineering the genotype-phenotype map with natural genetic variation
-
Rockman M.V. Reverse engineering the genotype-phenotype map with natural genetic variation. Nature 2008, 456:738-744.
-
(2008)
Nature
, vol.456
, pp. 738-744
-
-
Rockman, M.V.1
-
62
-
-
84898535406
-
-
Inferring Gene Regulatory Networks from Genetical Genomics Data. In: Handbook of Research on Computational Methodologies in Gene Regulatory Networks (Das, S. et al., eds), IGI Global
-
Liu, B. et al. (2009) Inferring Gene Regulatory Networks from Genetical Genomics Data. In: Handbook of Research on Computational Methodologies in Gene Regulatory Networks (Das, S. et al., eds), pp. 79-107, IGI Global.
-
(2009)
, pp. 79-107
-
-
Liu, B.1
-
63
-
-
6944244084
-
A module map showing conditional activity of expression modules in cancer
-
Segal E., et al. A module map showing conditional activity of expression modules in cancer. Nat. Genet. 2004, 36:1090-1098.
-
(2004)
Nat. Genet.
, vol.36
, pp. 1090-1098
-
-
Segal, E.1
-
64
-
-
20044388557
-
From signatures to models: understanding cancer using microarrays
-
Segal E., et al. From signatures to models: understanding cancer using microarrays. Nat. Genet. 2005, 37(Suppl.):S38-45.
-
(2005)
Nat. Genet.
, vol.37
, Issue.SUPPL.
-
-
Segal, E.1
-
65
-
-
75149195336
-
The transcriptional network for mesenchymal transformation of brain tumours
-
Carro M.S., et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 2010, 463:318-325.
-
(2010)
Nature
, vol.463
, pp. 318-325
-
-
Carro, M.S.1
-
66
-
-
44449102274
-
An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer
-
Xu M., et al. An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer. BMC Genomics 2008, 9(Suppl. 1):S12.
-
(2008)
BMC Genomics
, vol.9
, Issue.1 SUPPL.
-
-
Xu, M.1
-
67
-
-
0141993704
-
A gene-coexpression network for global discovery of conserved genetic modules
-
Stuart J.M., et al. A gene-coexpression network for global discovery of conserved genetic modules. Science 2003, 302:249-255.
-
(2003)
Science
, vol.302
, pp. 249-255
-
-
Stuart, J.M.1
-
68
-
-
0842267618
-
Comparing genomic expression patterns across species identifies shared transcriptional profile in aging
-
McCarroll S.A., et al. Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat. Genet. 2004, 36:197-204.
-
(2004)
Nat. Genet.
, vol.36
, pp. 197-204
-
-
McCarroll, S.A.1
-
69
-
-
33751327438
-
Comparative gene expression analysis by differential clustering approach: application to the Candida albicans transcription program
-
Ihmels J., et al. Comparative gene expression analysis by differential clustering approach: application to the Candida albicans transcription program. PLoS Genet 2005, 1:e39.
-
(2005)
PLoS Genet
, vol.1
-
-
Ihmels, J.1
-
70
-
-
0038483826
-
Emergence of scaling in random networks
-
Barabasi A.L., Albert R. Emergence of scaling in random networks. Science 1999, 286:509-512.
-
(1999)
Science
, vol.286
, pp. 509-512
-
-
Barabasi, A.L.1
Albert, R.2
-
71
-
-
0032482432
-
Collective dynamics of 'small-world' networks
-
Watts D.J., Strogatz S.H. Collective dynamics of 'small-world' networks. Nature 1998, 393:440-442.
-
(1998)
Nature
, vol.393
, pp. 440-442
-
-
Watts, D.J.1
Strogatz, S.H.2
-
72
-
-
40549110559
-
Protein networking: insights into global functional organization of proteomes
-
Pieroni E., et al. Protein networking: insights into global functional organization of proteomes. Proteomics 2008, 8:799-816.
-
(2008)
Proteomics
, vol.8
, pp. 799-816
-
-
Pieroni, E.1
-
73
-
-
0037212568
-
Understanding complex signaling networks through models and metaphors
-
Bhalla U.S. Understanding complex signaling networks through models and metaphors. Prog. Biophys. Mol. Biol. 2003, 81:45-65.
-
(2003)
Prog. Biophys. Mol. Biol.
, vol.81
, pp. 45-65
-
-
Bhalla, U.S.1
-
74
-
-
67049098922
-
Hypergraphs and cellular networks
-
Klamt S., et al. Hypergraphs and cellular networks. PLoS Comput. Biol. 2009, 5:e1000385.
-
(2009)
PLoS Comput. Biol.
, vol.5
-
-
Klamt, S.1
-
75
-
-
84898521305
-
-
What are gene regulatory networks? In Handbook of Research on Computational Methodologies in Gene Regulatory Networks (Das, S. et al., eds), IGI Global
-
de la Fuente, A., (2009) What are gene regulatory networks? In Handbook of Research on Computational Methodologies in Gene Regulatory Networks (Das, S. et al., eds), pp. 1-27, IGI Global.
-
(2009)
, pp. 1-27
-
-
de la Fuente, A.1
-
76
-
-
0036683181
-
Linking the genes: inferring quantitative gene networks from microarray data
-
de la Fuente A., et al. Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet. 2002, 18:395-398.
-
(2002)
Trends Genet.
, vol.18
, pp. 395-398
-
-
de la Fuente, A.1
-
78
-
-
34848903220
-
From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
-
Opgen-Rhein R., Strimmer K. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol. 2007, 1:37.
-
(2007)
BMC Syst. Biol.
, vol.1
, pp. 37
-
-
Opgen-Rhein, R.1
Strimmer, K.2
-
79
-
-
25444494145
-
Correlation test to assess low-level processing of high-density oligonucleotide microarray data
-
Ploner A., et al. Correlation test to assess low-level processing of high-density oligonucleotide microarray data. BMC Bioinformatics 2005, 6:80.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 80
-
-
Ploner, A.1
-
80
-
-
34547830867
-
Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks
-
Lim W.K., et al. Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics 2007, 23:i282-288.
-
(2007)
Bioinformatics
, vol.23
-
-
Lim, W.K.1
|