메뉴 건너뛰기




Volumn 26, Issue 7, 2010, Pages 326-333

From 'differential expression' to 'differential networking' - identification of dysfunctional regulatory networks in diseases

Author keywords

[No Author keywords available]

Indexed keywords

BREAST HYPERPLASIA; BREAST TUMOR; DOWN REGULATION; GENE CONTROL; GENE EXPRESSION PROFILING; GENE IDENTIFICATION; GENE REGULATORY NETWORK; GENETIC ASSOCIATION; GENETIC DISORDER; HUMAN; METABOLOMICS; NONHUMAN; PRIORITY JOURNAL; PROTEOMICS; REGULATORY MECHANISM; REVIEW; UPREGULATION;

EID: 77953913791     PISSN: 01689525     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tig.2010.05.001     Document Type: Review
Times cited : (370)

References (80)
  • 1
    • 70249134919 scopus 로고    scopus 로고
    • Molecular networks as sensors and drivers of common human diseases
    • Schadt E.E. Molecular networks as sensors and drivers of common human diseases. Nature 2009, 461:218-223.
    • (2009) Nature , vol.461 , pp. 218-223
    • Schadt, E.E.1
  • 2
    • 41649119247 scopus 로고    scopus 로고
    • Protein networks in disease
    • Ideker T., Sharan R. Protein networks in disease. Genome Res. 2008, 18:644-652.
    • (2008) Genome Res. , vol.18 , pp. 644-652
    • Ideker, T.1    Sharan, R.2
  • 3
    • 21044446187 scopus 로고    scopus 로고
    • Finding disease specific alterations in the co-expression of genes
    • Kostka D., Spang R. Finding disease specific alterations in the co-expression of genes. Bioinformatics 2004, 20(Suppl. 1):i194-199.
    • (2004) Bioinformatics , vol.20 , Issue.1 SUPPL.
    • Kostka, D.1    Spang, R.2
  • 4
    • 5044245707 scopus 로고    scopus 로고
    • Gene co-expression network topology provides a framework for molecular characterization of cellular state
    • Carter S.L., et al. Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 2004, 20:2242-2250.
    • (2004) Bioinformatics , vol.20 , pp. 2242-2250
    • Carter, S.L.1
  • 5
    • 10244219943 scopus 로고    scopus 로고
    • A statistical method for identifying differential gene-gene co-expression patterns
    • Lai Y., et al. A statistical method for identifying differential gene-gene co-expression patterns. Bioinformatics 2004, 20:3146-3155.
    • (2004) Bioinformatics , vol.20 , pp. 3146-3155
    • Lai, Y.1
  • 6
    • 28944444652 scopus 로고    scopus 로고
    • Differential coexpression analysis using microarray data and its application to human cancer
    • Choi J.K., et al. Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics 2005, 21:4348-4355.
    • (2005) Bioinformatics , vol.21 , pp. 4348-4355
    • Choi, J.K.1
  • 7
    • 33749988857 scopus 로고    scopus 로고
    • Simultaneous identification of differential gene expression and connectivity in inflammation, adipogenesis and cancer
    • Reverter A., et al. Simultaneous identification of differential gene expression and connectivity in inflammation, adipogenesis and cancer. Bioinformatics 2006, 22:2396-2404.
    • (2006) Bioinformatics , vol.22 , pp. 2396-2404
    • Reverter, A.1
  • 8
    • 34548550573 scopus 로고    scopus 로고
    • Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process
    • Elo L.L., et al. Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process. Bioinformatics 2007, 23:2096-2103.
    • (2007) Bioinformatics , vol.23 , pp. 2096-2103
    • Elo, L.L.1
  • 9
    • 34548442971 scopus 로고    scopus 로고
    • Weighted gene coexpression network analysis strategies applied to mouse weight
    • Fuller T.F., et al. Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm. Genome 2007, 18:463-472.
    • (2007) Mamm. Genome , vol.18 , pp. 463-472
    • Fuller, T.F.1
  • 10
    • 67049159812 scopus 로고    scopus 로고
    • A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation
    • Hudson N.J., et al. A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation. PLoS Comput. Biol. 2009, 5:e1000382.
    • (2009) PLoS Comput. Biol. , vol.5
    • Hudson, N.J.1
  • 11
    • 62749083987 scopus 로고    scopus 로고
    • Detecting intergene correlation changes in microarray analysis: a new approach to gene selection
    • Hu R., et al. Detecting intergene correlation changes in microarray analysis: a new approach to gene selection. BMC Bioinformatics 2009, 10:20.
    • (2009) BMC Bioinformatics , vol.10 , pp. 20
    • Hu, R.1
  • 12
    • 74049143935 scopus 로고    scopus 로고
    • Dissecting the dynamics of dysregulation of cellular processes in mouse mammary gland tumor
    • Mentzen W.I., et al. Dissecting the dynamics of dysregulation of cellular processes in mouse mammary gland tumor. BMC Genomics 2009, 10:601.
    • (2009) BMC Genomics , vol.10 , pp. 601
    • Mentzen, W.I.1
  • 13
    • 0038281453 scopus 로고    scopus 로고
    • Observing and interpreting correlations in metabolomic networks
    • Steuer R., et al. Observing and interpreting correlations in metabolomic networks. Bioinformatics 2003, 19:1019-1026.
    • (2003) Bioinformatics , vol.19 , pp. 1019-1026
    • Steuer, R.1
  • 14
    • 10644224417 scopus 로고    scopus 로고
    • A systems biology study of two distinct growth phases of Saccharomyces cerevisiae
    • Martins A.M., et al. A systems biology study of two distinct growth phases of Saccharomyces cerevisiae. Curr. Genomics 2004, 5:649-663.
    • (2004) Curr. Genomics , vol.5 , pp. 649-663
    • Martins, A.M.1
  • 15
    • 2442647715 scopus 로고    scopus 로고
    • Differential metabolic networks unravel the effects of silent plant phenotypes
    • Weckwerth W., et al. Differential metabolic networks unravel the effects of silent plant phenotypes. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:7809-7814.
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 7809-7814
    • Weckwerth, W.1
  • 16
    • 20344365760 scopus 로고    scopus 로고
    • The origin of correlations in metabolomics data
    • Camacho D., et al. The origin of correlations in metabolomics data. Metabolomics 2005, 1:53-63.
    • (2005) Metabolomics , vol.1 , pp. 53-63
    • Camacho, D.1
  • 17
    • 33748475897 scopus 로고    scopus 로고
    • On the analysis and interpretation of correlations in metabolomic data Brief
    • Steuer R. On the analysis and interpretation of correlations in metabolomic data Brief. Bioinformatics 2006, 7:151-158.
    • (2006) Bioinformatics , vol.7 , pp. 151-158
    • Steuer, R.1
  • 18
    • 70449358722 scopus 로고    scopus 로고
    • A methodology for the analysis of differential coexpression across the human lifespan
    • Gillis J., Pavlidis P. A methodology for the analysis of differential coexpression across the human lifespan. BMC Bioinformatics 2009, 10:306.
    • (2009) BMC Bioinformatics , vol.10 , pp. 306
    • Gillis, J.1    Pavlidis, P.2
  • 19
    • 0037276175 scopus 로고    scopus 로고
    • Statistical tests for differential expression in cDNA microarray experiments
    • Cui X., Churchill G.A. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 2003, 4:210.
    • (2003) Genome Biol. , vol.4 , pp. 210
    • Cui, X.1    Churchill, G.A.2
  • 20
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian A., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:15545-15550.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 15545-15550
    • Subramanian, A.1
  • 21
    • 34547483895 scopus 로고    scopus 로고
    • Improving gene set analysis of microarray data by SAM-GS
    • Dinu I., et al. Improving gene set analysis of microarray data by SAM-GS. BMC Bioinformatics 2007, 8:242.
    • (2007) BMC Bioinformatics , vol.8 , pp. 242
    • Dinu, I.1
  • 22
    • 63449107173 scopus 로고    scopus 로고
    • A general modular framework for gene set enrichment analysis
    • Ackermann M., Strimmer K. A general modular framework for gene set enrichment analysis. BMC Bioinformatics 2009, 10:47.
    • (2009) BMC Bioinformatics , vol.10 , pp. 47
    • Ackermann, M.1    Strimmer, K.2
  • 23
    • 23944458138 scopus 로고    scopus 로고
    • A general framework for weighted gene co-expression network analysis
    • Article17
    • Zhang B., Horvath S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 2005, 4. Article17.
    • (2005) Stat. Appl. Genet. Mol. Biol. , vol.4
    • Zhang, B.1    Horvath, S.2
  • 24
    • 33748040439 scopus 로고    scopus 로고
    • Integrating genetic and network analysis to characterize genes related to mouse weight
    • Ghazalpour A., et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2006, 2:e130.
    • (2006) PLoS Genet. , vol.2
    • Ghazalpour, A.1
  • 25
    • 0001677717 scopus 로고
    • Controlling the false discovery rate - a practical and powerful approach to multiple testing
    • Benjamini Y., Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B 1995, 57:289-300.
    • (1995) J. Roy. Stat. Soc. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 27
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: from co-expression clustering to reverse engineering
    • D'Haeseleer P., et al. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 2000, 16:707-726.
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'Haeseleer, P.1
  • 28
    • 0036843965 scopus 로고    scopus 로고
    • Gene networks: how to put the function in genomics
    • Brazhnik P., et al. Gene networks: how to put the function in genomics. Trends Biotechnol. 2002, 20:467-472.
    • (2002) Trends Biotechnol. , vol.20 , pp. 467-472
    • Brazhnik, P.1
  • 29
    • 14844286390 scopus 로고    scopus 로고
    • Reverse-engineering transcription control networks
    • Gardner T.S., Faith J. Reverse-engineering transcription control networks. Phys. Life Rev. 2005, 2:65-88.
    • (2005) Phys. Life Rev. , vol.2 , pp. 65-88
    • Gardner, T.S.1    Faith, J.2
  • 30
    • 33847055114 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles
    • Bansal M., et al. How to infer gene networks from expression profiles. Mol. Syst. Biol. 2007, 3:78.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 78
    • Bansal, M.1
  • 31
    • 63849195202 scopus 로고    scopus 로고
    • Inferring gene networks: dream or nightmare?
    • Scheinine A., et al. Inferring gene networks: dream or nightmare?. Ann, N.Y. Acad. Sci. 2009, 1158:287-301.
    • (2009) Ann, N.Y. Acad. Sci. , vol.1158 , pp. 287-301
    • Scheinine, A.1
  • 32
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference
    • Stolovitzky G., et al. Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann. N. Y. Acad. Sci. 2007, 1115:1-22.
    • (2007) Ann. N. Y. Acad. Sci. , vol.1115 , pp. 1-22
    • Stolovitzky, G.1
  • 34
    • 63849210631 scopus 로고    scopus 로고
    • Lessons from the DREAM2 Challenges
    • Stolovitzky G., et al. Lessons from the DREAM2 Challenges. Ann. N. Y. Acad. Sci. 2009, 1158:159-195.
    • (2009) Ann. N. Y. Acad. Sci. , vol.1158 , pp. 159-195
    • Stolovitzky, G.1
  • 35
    • 63849083754 scopus 로고    scopus 로고
    • Inferring gene networks: dream or nightmare?
    • Baralla A., et al. Inferring gene networks: dream or nightmare?. Ann. N. Y. Acad. Sci. 2009, 1158:246-256.
    • (2009) Ann. N. Y. Acad. Sci. , vol.1158 , pp. 246-256
    • Baralla, A.1
  • 36
    • 77649293496 scopus 로고    scopus 로고
    • The effect of food intake on gene expression in human peripheral blood
    • Leonardson A.S., et al. The effect of food intake on gene expression in human peripheral blood. Hum. Mol. Genet. 2010, 19:159-169.
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 159-169
    • Leonardson, A.S.1
  • 37
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • Barabasi A.L., Oltvai Z.N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 2004, 5:101-113.
    • (2004) Nat. Rev. Genet. , vol.5 , pp. 101-113
    • Barabasi, A.L.1    Oltvai, Z.N.2
  • 38
    • 34547649056 scopus 로고    scopus 로고
    • CoXpress: differential co-expression in gene expression data
    • Watson M. CoXpress: differential co-expression in gene expression data. BMC Bioinformatics 2006, 7:509.
    • (2006) BMC Bioinformatics , vol.7 , pp. 509
    • Watson, M.1
  • 39
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • de la Fuente A., et al. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 2004, 20:3565-3574.
    • (2004) Bioinformatics , vol.20 , pp. 3565-3574
    • de la Fuente, A.1
  • 40
    • 15944367731 scopus 로고    scopus 로고
    • Reconstructing biological networks using conditional correlation analysis
    • Rice J.J., et al. Reconstructing biological networks using conditional correlation analysis. Bioinformatics 2005, 21:765-773.
    • (2005) Bioinformatics , vol.21 , pp. 765-773
    • Rice, J.J.1
  • 41
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schäfer J., Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 2005, 21:754-764.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 42
    • 60149089400 scopus 로고    scopus 로고
    • Differential dependency network analysis to identify condition-specific topological changes in biological networks
    • Zhang B., et al. Differential dependency network analysis to identify condition-specific topological changes in biological networks. Bioinformatics 2009, 25:526-532.
    • (2009) Bioinformatics , vol.25 , pp. 526-532
    • Zhang, B.1
  • 43
    • 70350682038 scopus 로고    scopus 로고
    • Statistical methods for gene set co-expression analysis
    • Choi Y., Kendziorski C. Statistical methods for gene set co-expression analysis. Bioinformatics 2009, 25:2780-2786.
    • (2009) Bioinformatics , vol.25 , pp. 2780-2786
    • Choi, Y.1    Kendziorski, C.2
  • 44
    • 65549155929 scopus 로고    scopus 로고
    • Identifying set-wise differential co-expression in gene expression microarray data
    • Cho S.B., et al. Identifying set-wise differential co-expression in gene expression microarray data. BMC Bioinformatics 2009, 10:109.
    • (2009) BMC Bioinformatics , vol.10 , pp. 109
    • Cho, S.B.1
  • 45
    • 33646145739 scopus 로고    scopus 로고
    • Algorithm to find gene expression profiles of deregulation and identify families of disease-altered genes
    • Prieto C., et al. Algorithm to find gene expression profiles of deregulation and identify families of disease-altered genes. Bioinformatics 2006, 22:1103-1110.
    • (2006) Bioinformatics , vol.22 , pp. 1103-1110
    • Prieto, C.1
  • 46
    • 46249103142 scopus 로고    scopus 로고
    • Differential variability analysis of gene expression and its application to human diseases
    • Ho J.W., et al. Differential variability analysis of gene expression and its application to human diseases. Bioinformatics 2008, 24:i390-398.
    • (2008) Bioinformatics , vol.24
    • Ho, J.W.1
  • 48
    • 33745580270 scopus 로고    scopus 로고
    • The genetics of plant metabolism
    • Keurentjes J.J., et al. The genetics of plant metabolism. Nat. Genet. 2006, 38:842-849.
    • (2006) Nat. Genet. , vol.38 , pp. 842-849
    • Keurentjes, J.J.1
  • 49
    • 59149100506 scopus 로고    scopus 로고
    • System-wide molecular evidence for phenotypic buffering in Arabidopsis
    • Fu J., et al. System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nat. Genet. 2009, 41:166-167.
    • (2009) Nat. Genet. , vol.41 , pp. 166-167
    • Fu, J.1
  • 50
    • 0035400051 scopus 로고    scopus 로고
    • Genetical genomics: the added value from segregation
    • Jansen R.C., Nap J.P. Genetical genomics: the added value from segregation. Trends Genet. 2001, 17:388-391.
    • (2001) Trends Genet. , vol.17 , pp. 388-391
    • Jansen, R.C.1    Nap, J.P.2
  • 51
    • 0037306536 scopus 로고    scopus 로고
    • Studying complex biological systems using multifactorial perturbation
    • Jansen R.C. Studying complex biological systems using multifactorial perturbation. Nat. Rev. Genet. 2003, 4:145-151.
    • (2003) Nat. Rev. Genet. , vol.4 , pp. 145-151
    • Jansen, R.C.1
  • 52
    • 3242806720 scopus 로고    scopus 로고
    • An integrative genomics approach to the reconstruction of gene networks in segregating populations
    • Zhu J., et al. An integrative genomics approach to the reconstruction of gene networks in segregating populations. Cytogenet. Genome Res. 2004, 105:363-374.
    • (2004) Cytogenet. Genome Res. , vol.105 , pp. 363-374
    • Zhu, J.1
  • 53
    • 22144454660 scopus 로고    scopus 로고
    • Genetical genomics analysis of a yeast segregant population for transcription network inference
    • Bing N., Hoeschele I. Genetical genomics analysis of a yeast segregant population for transcription network inference. Genetics 2005, 170:533-542.
    • (2005) Genetics , vol.170 , pp. 533-542
    • Bing, N.1    Hoeschele, I.2
  • 54
    • 20144383240 scopus 로고    scopus 로고
    • Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'
    • Bystrykh L., et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nat. Genet. 2005, 37:225-232.
    • (2005) Nat. Genet. , vol.37 , pp. 225-232
    • Bystrykh, L.1
  • 55
    • 22844446947 scopus 로고    scopus 로고
    • An integrative genomics approach to infer causal associations between gene expression and disease
    • Schadt E.E., et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 2005, 37:710-717.
    • (2005) Nat. Genet. , vol.37 , pp. 710-717
    • Schadt, E.E.1
  • 56
    • 33646841491 scopus 로고    scopus 로고
    • Elucidating the murine brain transcriptional network in a segregating mouse population to identify core functional modules for obesity and diabetes
    • Lum P.Y., et al. Elucidating the murine brain transcriptional network in a segregating mouse population to identify core functional modules for obesity and diabetes. J. Neurochem. 2006, 97(Suppl. 1):50-62.
    • (2006) J. Neurochem. , vol.97 , Issue.1 SUPPL. , pp. 50-62
    • Lum, P.Y.1
  • 57
    • 33745483785 scopus 로고    scopus 로고
    • Causal inference of regulator-target pairs by gene mapping of expression phenotypes
    • Kulp D., Jagalur M. Causal inference of regulator-target pairs by gene mapping of expression phenotypes. BMC Genomics 2006, 7:125.
    • (2006) BMC Genomics , vol.7 , pp. 125
    • Kulp, D.1    Jagalur, M.2
  • 58
    • 45149096374 scopus 로고    scopus 로고
    • Gene network inference via structural equation modeling in genetical genomics experiments
    • Liu B., et al. Gene network inference via structural equation modeling in genetical genomics experiments. Genetics 2008, 178:1763-1776.
    • (2008) Genetics , vol.178 , pp. 1763-1776
    • Liu, B.1
  • 59
    • 44149084690 scopus 로고    scopus 로고
    • Using genetic markers to orient the edges in quantitative trait networks: the NEO software
    • Aten J.E., et al. Using genetic markers to orient the edges in quantitative trait networks: the NEO software. BMC Syst. Biol. 2008, 2:34.
    • (2008) BMC Syst. Biol. , vol.2 , pp. 34
    • Aten, J.E.1
  • 60
    • 49849090353 scopus 로고    scopus 로고
    • Inferring causal phenotype networks from segregating populations
    • Chaibub Neto E., et al. Inferring causal phenotype networks from segregating populations. Genetics 2008, 179:1089-1100.
    • (2008) Genetics , vol.179 , pp. 1089-1100
    • Chaibub Neto, E.1
  • 61
    • 57649124192 scopus 로고    scopus 로고
    • Reverse engineering the genotype-phenotype map with natural genetic variation
    • Rockman M.V. Reverse engineering the genotype-phenotype map with natural genetic variation. Nature 2008, 456:738-744.
    • (2008) Nature , vol.456 , pp. 738-744
    • Rockman, M.V.1
  • 62
    • 84898535406 scopus 로고    scopus 로고
    • Inferring Gene Regulatory Networks from Genetical Genomics Data. In: Handbook of Research on Computational Methodologies in Gene Regulatory Networks (Das, S. et al., eds), IGI Global
    • Liu, B. et al. (2009) Inferring Gene Regulatory Networks from Genetical Genomics Data. In: Handbook of Research on Computational Methodologies in Gene Regulatory Networks (Das, S. et al., eds), pp. 79-107, IGI Global.
    • (2009) , pp. 79-107
    • Liu, B.1
  • 63
    • 6944244084 scopus 로고    scopus 로고
    • A module map showing conditional activity of expression modules in cancer
    • Segal E., et al. A module map showing conditional activity of expression modules in cancer. Nat. Genet. 2004, 36:1090-1098.
    • (2004) Nat. Genet. , vol.36 , pp. 1090-1098
    • Segal, E.1
  • 64
    • 20044388557 scopus 로고    scopus 로고
    • From signatures to models: understanding cancer using microarrays
    • Segal E., et al. From signatures to models: understanding cancer using microarrays. Nat. Genet. 2005, 37(Suppl.):S38-45.
    • (2005) Nat. Genet. , vol.37 , Issue.SUPPL.
    • Segal, E.1
  • 65
    • 75149195336 scopus 로고    scopus 로고
    • The transcriptional network for mesenchymal transformation of brain tumours
    • Carro M.S., et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 2010, 463:318-325.
    • (2010) Nature , vol.463 , pp. 318-325
    • Carro, M.S.1
  • 66
    • 44449102274 scopus 로고    scopus 로고
    • An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer
    • Xu M., et al. An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer. BMC Genomics 2008, 9(Suppl. 1):S12.
    • (2008) BMC Genomics , vol.9 , Issue.1 SUPPL.
    • Xu, M.1
  • 67
    • 0141993704 scopus 로고    scopus 로고
    • A gene-coexpression network for global discovery of conserved genetic modules
    • Stuart J.M., et al. A gene-coexpression network for global discovery of conserved genetic modules. Science 2003, 302:249-255.
    • (2003) Science , vol.302 , pp. 249-255
    • Stuart, J.M.1
  • 68
    • 0842267618 scopus 로고    scopus 로고
    • Comparing genomic expression patterns across species identifies shared transcriptional profile in aging
    • McCarroll S.A., et al. Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat. Genet. 2004, 36:197-204.
    • (2004) Nat. Genet. , vol.36 , pp. 197-204
    • McCarroll, S.A.1
  • 69
    • 33751327438 scopus 로고    scopus 로고
    • Comparative gene expression analysis by differential clustering approach: application to the Candida albicans transcription program
    • Ihmels J., et al. Comparative gene expression analysis by differential clustering approach: application to the Candida albicans transcription program. PLoS Genet 2005, 1:e39.
    • (2005) PLoS Genet , vol.1
    • Ihmels, J.1
  • 70
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabasi A.L., Albert R. Emergence of scaling in random networks. Science 1999, 286:509-512.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabasi, A.L.1    Albert, R.2
  • 71
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • Watts D.J., Strogatz S.H. Collective dynamics of 'small-world' networks. Nature 1998, 393:440-442.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 72
    • 40549110559 scopus 로고    scopus 로고
    • Protein networking: insights into global functional organization of proteomes
    • Pieroni E., et al. Protein networking: insights into global functional organization of proteomes. Proteomics 2008, 8:799-816.
    • (2008) Proteomics , vol.8 , pp. 799-816
    • Pieroni, E.1
  • 73
    • 0037212568 scopus 로고    scopus 로고
    • Understanding complex signaling networks through models and metaphors
    • Bhalla U.S. Understanding complex signaling networks through models and metaphors. Prog. Biophys. Mol. Biol. 2003, 81:45-65.
    • (2003) Prog. Biophys. Mol. Biol. , vol.81 , pp. 45-65
    • Bhalla, U.S.1
  • 74
    • 67049098922 scopus 로고    scopus 로고
    • Hypergraphs and cellular networks
    • Klamt S., et al. Hypergraphs and cellular networks. PLoS Comput. Biol. 2009, 5:e1000385.
    • (2009) PLoS Comput. Biol. , vol.5
    • Klamt, S.1
  • 75
    • 84898521305 scopus 로고    scopus 로고
    • What are gene regulatory networks? In Handbook of Research on Computational Methodologies in Gene Regulatory Networks (Das, S. et al., eds), IGI Global
    • de la Fuente, A., (2009) What are gene regulatory networks? In Handbook of Research on Computational Methodologies in Gene Regulatory Networks (Das, S. et al., eds), pp. 1-27, IGI Global.
    • (2009) , pp. 1-27
    • de la Fuente, A.1
  • 76
    • 0036683181 scopus 로고    scopus 로고
    • Linking the genes: inferring quantitative gene networks from microarray data
    • de la Fuente A., et al. Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet. 2002, 18:395-398.
    • (2002) Trends Genet. , vol.18 , pp. 395-398
    • de la Fuente, A.1
  • 78
    • 34848903220 scopus 로고    scopus 로고
    • From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
    • Opgen-Rhein R., Strimmer K. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol. 2007, 1:37.
    • (2007) BMC Syst. Biol. , vol.1 , pp. 37
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 79
    • 25444494145 scopus 로고    scopus 로고
    • Correlation test to assess low-level processing of high-density oligonucleotide microarray data
    • Ploner A., et al. Correlation test to assess low-level processing of high-density oligonucleotide microarray data. BMC Bioinformatics 2005, 6:80.
    • (2005) BMC Bioinformatics , vol.6 , pp. 80
    • Ploner, A.1
  • 80
    • 34547830867 scopus 로고    scopus 로고
    • Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks
    • Lim W.K., et al. Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics 2007, 23:i282-288.
    • (2007) Bioinformatics , vol.23
    • Lim, W.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.