-
1
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
R. Agrawal, T. Imielínski, and A. Swami. Mining association rules between sets of items in large databases. In SIGMOD, 1993.
-
(1993)
SIGMOD
-
-
Agrawal, R.1
Imielínski, T.2
Swami, A.3
-
2
-
-
0002221136
-
Fast algorithms for mining association rules in large databases
-
R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB, 1994.
-
(1994)
VLDB
-
-
Agrawal, R.1
Srikant, R.2
-
3
-
-
78650361161
-
Rules for contrast sets
-
P. J. Azevedo. Rules for contrast sets. Intelligent Data Analysis, 14 (6): 623-640, 2010.
-
(2010)
Intelligent Data Analysis
, vol.14
, Issue.6
, pp. 623-640
-
-
Azevedo, P.J.1
-
4
-
-
0002109327
-
Detecting change in categorical data: Mining contrast sets
-
S. D. Bay and M. J. Pazzani. Detecting change in categorical data: Mining contrast sets. In KDD, 1999.
-
(1999)
KDD
-
-
Bay, S.D.1
Pazzani, M.J.2
-
7
-
-
84958964452
-
On-line algorithms in machine learning
-
A. Fiat and G. J. Woeginger, editors, chapter 14
-
A. Blum. On-line algorithms in machine learning. In A. Fiat and G. J. Woeginger, editors, Online Algorithms: The State of the Art, volume 1442 of Lecture Notes in Computer Science, chapter 14, pages 306-325. 1998.
-
(1998)
Online Algorithms: The State of the Art, Volume 1442 of Lecture Notes in Computer Science
, pp. 306-325
-
-
Blum, A.1
-
9
-
-
0027702759
-
Developing interpretable models with optimized set reduction for identifying high-risk software components
-
L. C. Briand, V. R. Brasili, and C. J. Hetmanski. Developing interpretable models with optimized set reduction for identifying high-risk software components. IEEE Transactions on Software Engineering, 19 (11): 1028-1044, 1993.
-
(1993)
IEEE Transactions on Software Engineering
, vol.19
, Issue.11
, pp. 1028-1044
-
-
Briand, L.C.1
Brasili, V.R.2
Hetmanski, C.J.3
-
10
-
-
49749149150
-
The chosen few: On identifying valuable patterns
-
B. Bringmann and A. Zimmermann. The chosen few: On identifying valuable patterns. In ICDM, 2007.
-
(2007)
ICDM
-
-
Bringmann, B.1
Zimmermann, A.2
-
12
-
-
0002660020
-
An analytical solution for approximating simple structure in factor analysis
-
J. B. Carroll. An analytical solution for approximating simple structure in factor analysis. Psychometrika, 18 (1): 23-38, 1953.
-
(1953)
Psychometrika
, vol.18
, Issue.1
, pp. 23-38
-
-
Carroll, J.B.1
-
13
-
-
34548741255
-
Discriminative frequent pattern analysis for effective classification
-
H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative frequent pattern analysis for effective classification. In ICDE, 2007.
-
(2007)
ICDE
-
-
Cheng, H.1
Yan, X.2
Han, J.3
Hsu, C.-W.4
-
15
-
-
34249966007
-
The CN2 induction algorithm
-
P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3 (4): 261-283, 1989.
-
(1989)
Machine Learning
, vol.3
, Issue.4
, pp. 261-283
-
-
Clark, P.1
Niblett, T.2
-
16
-
-
84926664442
-
Bayesian reasoning with ifs and ands and ors
-
N. Cruz, J. Baratgin, M. Oaksford, and D. E. Over. Bayesian reasoning with ifs and ands and ors. Frontiers in psychology, 6, 2015.
-
(2015)
Frontiers in Psychology
, pp. 6
-
-
Cruz, N.1
Baratgin, J.2
Oaksford, M.3
Over, D.E.4
-
17
-
-
0002034653
-
Efficient mining of emerging patterns: Discovering trends and differences
-
G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences. In KDD, 1999.
-
(1999)
KDD
-
-
Dong, G.1
Li, J.2
-
18
-
-
80053189937
-
Maximizing non-monotone submodular functions
-
U. Feige, V. S. Mirrokni, and J. Vondrák. Maximizing non-monotone submodular functions. SIAM J. on Computing, 40 (4): 1133-1153, 2011.
-
(2011)
SIAM J. on Computing
, vol.40
, Issue.4
, pp. 1133-1153
-
-
Feige, U.1
Mirrokni, V.S.2
Vondrák, J.3
-
19
-
-
84985001911
-
A new emerging pattern mining algorithm and its application in supervised classification
-
M. García-Borroto, J. F. Martínez-Trinidad, and J. A. Carrasco-Ochoa. A new emerging pattern mining algorithm and its application in supervised classification. In KDD. 2010.
-
(2010)
KDD
-
-
García-Borroto, M.1
Martínez-Trinidad, J.F.2
Carrasco-Ochoa, J.A.3
-
20
-
-
0035360372
-
Designing fuzzy inference systems from data: An interpretability-oriented review
-
S. Guillaume. Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Transactions on Fuzzy Systems, 9 (3): 426-443, 2001.
-
(2001)
IEEE Transactions on Fuzzy Systems
, vol.9
, Issue.3
, pp. 426-443
-
-
Guillaume, S.1
-
21
-
-
0003562954
-
A simple generalisation of the area under the roc curve for multiple class classification problems
-
D. J. Hand and R. J. Till. A simple generalisation of the area under the roc curve for multiple class classification problems. Machine Learning, 45 (2): 171-186, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.2
, pp. 171-186
-
-
Hand, D.J.1
Till, R.J.2
-
22
-
-
57349187579
-
Optimal marketing strategies over social networks
-
J. Hartline, V. Mirrokni, and M. Sundararajan. Optimal marketing strategies over social networks. In WWW, pages 189-198, 2008.
-
(2008)
WWW
, pp. 189-198
-
-
Hartline, J.1
Mirrokni, V.2
Sundararajan, M.3
-
24
-
-
79961211866
-
An overview on subgroup discovery: Foundations and applications
-
F. Herrera, C. J. Carmona, P. González, and M. J. Del Jesus. An overview on subgroup discovery: foundations and applications. Knowledge and information systems, 29 (3): 495-525, 2011.
-
(2011)
Knowledge and Information Systems
, vol.29
, Issue.3
, pp. 495-525
-
-
Herrera, F.1
Carmona, C.J.2
González, P.3
Del Jesus, M.J.4
-
25
-
-
84929023228
-
The effect of race/ethnicity on sentencing: Examining sentence type, jail length, and prison length
-
K. L. Jordan and T. L. Freiburger. The effect of race/ethnicity on sentencing: Examining sentence type, jail length, and prison length. J. of Ethnicity in Criminal Justice, 13 (3): 179-196, 2015.
-
(2015)
J. of Ethnicity in Criminal Justice
, vol.13
, Issue.3
, pp. 179-196
-
-
Jordan, K.L.1
Freiburger, T.L.2
-
26
-
-
0032614948
-
The budgeted maximum coverage problem
-
S. Khuller, A. Moss, and J. S. Naor. The budgeted maximum coverage problem. Information Processing Letters, 70 (1): 39-45, 1999.
-
(1999)
Information Processing Letters
, vol.70
, Issue.1
, pp. 39-45
-
-
Khuller, S.1
Moss, A.2
Naor, J.S.3
-
27
-
-
84937824985
-
The Bayesian case model: A generative approach for case-based reasoning and prototype classification
-
B. Kim, C. Rudin, and J. Shah. The Bayesian case model: A generative approach for case-based reasoning and prototype classification. In NIPS, 2014.
-
(2014)
NIPS
-
-
Kim, B.1
Rudin, C.2
Shah, J.3
-
28
-
-
84965150991
-
Mind the gap: A generative approach tointerpretable feature selection and extraction
-
B. Kim, J. Shah, and F. Doshi-Velez. Mind the gap: A generative approach tointerpretable feature selection and extraction. In NIPS, 2015.
-
(2015)
NIPS
-
-
Kim, B.1
Shah, J.2
Doshi-Velez, F.3
-
29
-
-
33646372971
-
Toward attribute efficient learning of decision lists and parities
-
A. R. Klivans and R. A. Servedio. Toward attribute efficient learning of decision lists and parities. J. of Machine Learning Research, 7: 587-602, 2006.
-
(2006)
J. of Machine Learning Research
, vol.7
, pp. 587-602
-
-
Klivans, A.R.1
Servedio, R.A.2
-
30
-
-
35048890595
-
Contrast set mining for distinguishing between similar diseases
-
P. Kralj, N. Lavra?c, D. Gamberger, and A. Krsta?cíc. Contrast set mining for distinguishing between similar diseases. Artificial Intelligence in Medicine, pages 109-118, 2007.
-
(2007)
Artificial Intelligence in Medicine
, pp. 109-118
-
-
Kralj, P.1
Lavrac, N.2
Gamberger, D.3
Krstacíc, A.4
-
31
-
-
84954107846
-
A machine learning framework to identify students at risk of adverse academic outcomes
-
H. Lakkaraju, E. Aguiar, C. Shan, D. Miller, N. Bhanpuri, R. Ghani, and K. L. Addison. A machine learning framework to identify students at risk of adverse academic outcomes. In KDD, 2015.
-
(2015)
KDD
-
-
Lakkaraju, H.1
Aguiar, E.2
Shan, C.3
Miller, D.4
Bhanpuri, N.5
Ghani, R.6
Addison, K.L.7
-
33
-
-
84925740795
-
Subgroup discovery with CN2-SD
-
N. Lavra?c, B. Kavšek, P. Flach, and L. Todorovski. Subgroup discovery with CN2-SD. J. of Machine Learning Research, 5: 153-188, 2004.
-
(2004)
J. of Machine Learning Research
, vol.5
, pp. 153-188
-
-
Lavrac, N.1
Kavšek, B.2
Flach, P.3
Todorovski, L.4
-
34
-
-
84946593219
-
Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
-
B. Letham, C. Rudin, T. H. McCormick, and D. Madigan. Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model. Annals of Applied Statistics, 9 (3): 1350-1371, 2015.
-
(2015)
Annals of Applied Statistics
, vol.9
, Issue.3
, pp. 1350-1371
-
-
Letham, B.1
Rudin, C.2
McCormick, T.H.3
Madigan, D.4
-
35
-
-
84948104699
-
Integrating classification and association rule mining
-
B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In KDD, 1998.
-
(1998)
KDD
-
-
Liu, B.1
Hsu, W.2
Ma, Y.3
-
36
-
-
84866050054
-
Intelligible models for classification and regression
-
Y. Lou, R. Caruana, and J. Gehrke. Intelligible models for classification and regression. In KDD, 2012.
-
(2012)
KDD
-
-
Lou, Y.1
Caruana, R.2
Gehrke, J.3
-
37
-
-
84991616590
-
Accurate intelligible models with pairwise interactions
-
Y. Lou, R. Caruana, J. Gehrke, and G. Hooker. Accurate intelligible models with pairwise interactions. In KDD, 2013.
-
(2013)
KDD
-
-
Lou, Y.1
Caruana, R.2
Gehrke, J.3
Hooker, G.4
-
38
-
-
84897531301
-
Exact rule learning via boolean compressed sensing
-
D. Malioutov and K. Varshney. Exact rule learning via boolean compressed sensing. In ICML, 2013.
-
(2013)
ICML
-
-
Malioutov, D.1
Varshney, K.2
-
39
-
-
0032960792
-
Obtaining interpretable fuzzy classification rules from medical data
-
D. Nauck and R. Kruse. Obtaining interpretable fuzzy classification rules from medical data. A. I. in Medicine, 16 (2): 149-169, 1999.
-
(1999)
A. I. in Medicine
, vol.16
, Issue.2
, pp. 149-169
-
-
Nauck, D.1
Kruse, R.2
-
40
-
-
61749084093
-
Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining
-
P. K. Novak, N. Lavra?c, and G. I. Webb. Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining. J. of Machine Learning Research, 10: 377-403, 2009.
-
(2009)
J. of Machine Learning Research
, vol.10
, pp. 377-403
-
-
Novak, P.K.1
Lavrac, N.2
Webb, G.I.3
-
43
-
-
0001139092
-
Very simple structure: An alternative procedure for estimating the optimal number of interpretable factors
-
W. Revelle and T. Rocklin. Very simple structure: An alternative procedure for estimating the optimal number of interpretable factors. Multivariate Behavioral Research, 14 (4): 403-414, 1979.
-
(1979)
Multivariate Behavioral Research
, vol.14
, Issue.4
, pp. 403-414
-
-
Revelle, W.1
Rocklin, T.2
-
45
-
-
1442267080
-
Learning decision lists
-
R. L. Rivest. Learning decision lists. Machine Learning, 2 (3): 229-246, 1987.
-
(1987)
Machine Learning
, vol.2
, Issue.3
, pp. 229-246
-
-
Rivest, R.L.1
-
46
-
-
84857597379
-
Searching for rules to detect defective modules: A subgroup discovery approach
-
D. Rodríguez, R. Ruiz, J. C. Riquelme, and J. S. Aguilar-Ruiz. Searching for rules to detect defective modules: a subgroup discovery approach. Information Sciences, 191: 14-30, 2012.
-
(2012)
Information Sciences
, vol.191
, pp. 14-30
-
-
Rodríguez, D.1
Ruiz, R.2
Riquelme, J.C.3
Aguilar-Ruiz, J.S.4
-
47
-
-
77956069051
-
Simple means to improve the interpretability of regression coefficients
-
H. Schielzeth. Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution, 1 (2): 103-113, 2010.
-
(2010)
Methods in Ecology and Evolution
, vol.1
, Issue.2
, pp. 103-113
-
-
Schielzeth, H.1
-
50
-
-
84959508477
-
Supersparse linear integer models for optimized medical scoring systems
-
B. Ustun and C. Rudin. Supersparse linear integer models for optimized medical scoring systems. Machine Learning, 102 (3): 1-43, 2015.
-
(2015)
Machine Learning
, vol.102
, Issue.3
, pp. 1-43
-
-
Ustun, B.1
Rudin, C.2
-
51
-
-
0033225586
-
Projection learning
-
L. G. Valiant. Projection learning. Machine Learning, 37 (2): 115-130, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 115-130
-
-
Valiant, L.G.1
-
52
-
-
33746701845
-
Harmony: Efficiently mining the best rules for classification
-
J. Wang and G. Karypis. Harmony: Efficiently mining the best rules for classification. In SDM, 2005.
-
(2005)
SDM
-
-
Wang, J.1
Karypis, G.2
-
53
-
-
84946579110
-
-
arXiv: 1504. 07614
-
T. Wang, C. Rudin, F. Doshi-Velez, Y. Liu, E. Klampfl, and P. MacNeille. Or's of and's for interpretable classification, with application to context-aware recommender systems. arXiv: 1504. 07614, 2015.
-
(2015)
Or's of And's for Interpretable Classification, with Application to Context-aware Recommender Systems
-
-
Wang, T.1
Rudin, C.2
Doshi-Velez, F.3
Liu, Y.4
Klampfl, E.5
MacNeille, P.6
-
54
-
-
84984997648
-
Review and comparison of associative classification data mining approaches
-
S. Wedyan. Review and comparison of associative classification data mining approaches. International J. of Computer, Electrical, Automation, Control and Information Engineering, 8 (1): 34-45, 2014.
-
(2014)
International J. of Computer, Electrical, Automation, Control and Information Engineering
, vol.8
, Issue.1
, pp. 34-45
-
-
Wedyan, S.1
-
56
-
-
11344262990
-
Cpar: Classification based on predictive association rules
-
X. Yin and J. Han. Cpar: Classification based on predictive association rules. In SDM, 2003.
-
(2003)
SDM
-
-
Yin, X.1
Han, J.2
|