메뉴 건너뛰기




Volumn 13-17-August-2016, Issue , 2016, Pages 1675-1684

Interpretable decision sets: A joint framework for description and prediction

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BEHAVIORAL RESEARCH; COMPUTATIONAL EFFICIENCY; DATA MINING; DECISION MAKING;

EID: 84984941684     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2939672.2939874     Document Type: Conference Paper
Times cited : (784)

References (56)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielínski, and A. Swami. Mining association rules between sets of items in large databases. In SIGMOD, 1993.
    • (1993) SIGMOD
    • Agrawal, R.1    Imielínski, T.2    Swami, A.3
  • 2
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB, 1994.
    • (1994) VLDB
    • Agrawal, R.1    Srikant, R.2
  • 3
    • 78650361161 scopus 로고    scopus 로고
    • Rules for contrast sets
    • P. J. Azevedo. Rules for contrast sets. Intelligent Data Analysis, 14 (6): 623-640, 2010.
    • (2010) Intelligent Data Analysis , vol.14 , Issue.6 , pp. 623-640
    • Azevedo, P.J.1
  • 4
    • 0002109327 scopus 로고    scopus 로고
    • Detecting change in categorical data: Mining contrast sets
    • S. D. Bay and M. J. Pazzani. Detecting change in categorical data: Mining contrast sets. In KDD, 1999.
    • (1999) KDD
    • Bay, S.D.1    Pazzani, M.J.2
  • 9
    • 0027702759 scopus 로고
    • Developing interpretable models with optimized set reduction for identifying high-risk software components
    • L. C. Briand, V. R. Brasili, and C. J. Hetmanski. Developing interpretable models with optimized set reduction for identifying high-risk software components. IEEE Transactions on Software Engineering, 19 (11): 1028-1044, 1993.
    • (1993) IEEE Transactions on Software Engineering , vol.19 , Issue.11 , pp. 1028-1044
    • Briand, L.C.1    Brasili, V.R.2    Hetmanski, C.J.3
  • 10
    • 49749149150 scopus 로고    scopus 로고
    • The chosen few: On identifying valuable patterns
    • B. Bringmann and A. Zimmermann. The chosen few: On identifying valuable patterns. In ICDM, 2007.
    • (2007) ICDM
    • Bringmann, B.1    Zimmermann, A.2
  • 12
    • 0002660020 scopus 로고
    • An analytical solution for approximating simple structure in factor analysis
    • J. B. Carroll. An analytical solution for approximating simple structure in factor analysis. Psychometrika, 18 (1): 23-38, 1953.
    • (1953) Psychometrika , vol.18 , Issue.1 , pp. 23-38
    • Carroll, J.B.1
  • 13
    • 34548741255 scopus 로고    scopus 로고
    • Discriminative frequent pattern analysis for effective classification
    • H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative frequent pattern analysis for effective classification. In ICDE, 2007.
    • (2007) ICDE
    • Cheng, H.1    Yan, X.2    Han, J.3    Hsu, C.-W.4
  • 15
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3 (4): 261-283, 1989.
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 17
    • 0002034653 scopus 로고    scopus 로고
    • Efficient mining of emerging patterns: Discovering trends and differences
    • G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences. In KDD, 1999.
    • (1999) KDD
    • Dong, G.1    Li, J.2
  • 18
    • 80053189937 scopus 로고    scopus 로고
    • Maximizing non-monotone submodular functions
    • U. Feige, V. S. Mirrokni, and J. Vondrák. Maximizing non-monotone submodular functions. SIAM J. on Computing, 40 (4): 1133-1153, 2011.
    • (2011) SIAM J. on Computing , vol.40 , Issue.4 , pp. 1133-1153
    • Feige, U.1    Mirrokni, V.S.2    Vondrák, J.3
  • 19
    • 84985001911 scopus 로고    scopus 로고
    • A new emerging pattern mining algorithm and its application in supervised classification
    • M. García-Borroto, J. F. Martínez-Trinidad, and J. A. Carrasco-Ochoa. A new emerging pattern mining algorithm and its application in supervised classification. In KDD. 2010.
    • (2010) KDD
    • García-Borroto, M.1    Martínez-Trinidad, J.F.2    Carrasco-Ochoa, J.A.3
  • 20
    • 0035360372 scopus 로고    scopus 로고
    • Designing fuzzy inference systems from data: An interpretability-oriented review
    • S. Guillaume. Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Transactions on Fuzzy Systems, 9 (3): 426-443, 2001.
    • (2001) IEEE Transactions on Fuzzy Systems , vol.9 , Issue.3 , pp. 426-443
    • Guillaume, S.1
  • 21
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the roc curve for multiple class classification problems
    • D. J. Hand and R. J. Till. A simple generalisation of the area under the roc curve for multiple class classification problems. Machine Learning, 45 (2): 171-186, 2001.
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 22
    • 57349187579 scopus 로고    scopus 로고
    • Optimal marketing strategies over social networks
    • J. Hartline, V. Mirrokni, and M. Sundararajan. Optimal marketing strategies over social networks. In WWW, pages 189-198, 2008.
    • (2008) WWW , pp. 189-198
    • Hartline, J.1    Mirrokni, V.2    Sundararajan, M.3
  • 25
    • 84929023228 scopus 로고    scopus 로고
    • The effect of race/ethnicity on sentencing: Examining sentence type, jail length, and prison length
    • K. L. Jordan and T. L. Freiburger. The effect of race/ethnicity on sentencing: Examining sentence type, jail length, and prison length. J. of Ethnicity in Criminal Justice, 13 (3): 179-196, 2015.
    • (2015) J. of Ethnicity in Criminal Justice , vol.13 , Issue.3 , pp. 179-196
    • Jordan, K.L.1    Freiburger, T.L.2
  • 27
    • 84937824985 scopus 로고    scopus 로고
    • The Bayesian case model: A generative approach for case-based reasoning and prototype classification
    • B. Kim, C. Rudin, and J. Shah. The Bayesian case model: A generative approach for case-based reasoning and prototype classification. In NIPS, 2014.
    • (2014) NIPS
    • Kim, B.1    Rudin, C.2    Shah, J.3
  • 28
    • 84965150991 scopus 로고    scopus 로고
    • Mind the gap: A generative approach tointerpretable feature selection and extraction
    • B. Kim, J. Shah, and F. Doshi-Velez. Mind the gap: A generative approach tointerpretable feature selection and extraction. In NIPS, 2015.
    • (2015) NIPS
    • Kim, B.1    Shah, J.2    Doshi-Velez, F.3
  • 29
    • 33646372971 scopus 로고    scopus 로고
    • Toward attribute efficient learning of decision lists and parities
    • A. R. Klivans and R. A. Servedio. Toward attribute efficient learning of decision lists and parities. J. of Machine Learning Research, 7: 587-602, 2006.
    • (2006) J. of Machine Learning Research , vol.7 , pp. 587-602
    • Klivans, A.R.1    Servedio, R.A.2
  • 34
    • 84946593219 scopus 로고    scopus 로고
    • Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
    • B. Letham, C. Rudin, T. H. McCormick, and D. Madigan. Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model. Annals of Applied Statistics, 9 (3): 1350-1371, 2015.
    • (2015) Annals of Applied Statistics , vol.9 , Issue.3 , pp. 1350-1371
    • Letham, B.1    Rudin, C.2    McCormick, T.H.3    Madigan, D.4
  • 35
    • 84948104699 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In KDD, 1998.
    • (1998) KDD
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 36
    • 84866050054 scopus 로고    scopus 로고
    • Intelligible models for classification and regression
    • Y. Lou, R. Caruana, and J. Gehrke. Intelligible models for classification and regression. In KDD, 2012.
    • (2012) KDD
    • Lou, Y.1    Caruana, R.2    Gehrke, J.3
  • 37
    • 84991616590 scopus 로고    scopus 로고
    • Accurate intelligible models with pairwise interactions
    • Y. Lou, R. Caruana, J. Gehrke, and G. Hooker. Accurate intelligible models with pairwise interactions. In KDD, 2013.
    • (2013) KDD
    • Lou, Y.1    Caruana, R.2    Gehrke, J.3    Hooker, G.4
  • 38
    • 84897531301 scopus 로고    scopus 로고
    • Exact rule learning via boolean compressed sensing
    • D. Malioutov and K. Varshney. Exact rule learning via boolean compressed sensing. In ICML, 2013.
    • (2013) ICML
    • Malioutov, D.1    Varshney, K.2
  • 39
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • D. Nauck and R. Kruse. Obtaining interpretable fuzzy classification rules from medical data. A. I. in Medicine, 16 (2): 149-169, 1999.
    • (1999) A. I. in Medicine , vol.16 , Issue.2 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 40
    • 61749084093 scopus 로고    scopus 로고
    • Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining
    • P. K. Novak, N. Lavra?c, and G. I. Webb. Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining. J. of Machine Learning Research, 10: 377-403, 2009.
    • (2009) J. of Machine Learning Research , vol.10 , pp. 377-403
    • Novak, P.K.1    Lavrac, N.2    Webb, G.I.3
  • 43
    • 0001139092 scopus 로고
    • Very simple structure: An alternative procedure for estimating the optimal number of interpretable factors
    • W. Revelle and T. Rocklin. Very simple structure: An alternative procedure for estimating the optimal number of interpretable factors. Multivariate Behavioral Research, 14 (4): 403-414, 1979.
    • (1979) Multivariate Behavioral Research , vol.14 , Issue.4 , pp. 403-414
    • Revelle, W.1    Rocklin, T.2
  • 45
    • 1442267080 scopus 로고
    • Learning decision lists
    • R. L. Rivest. Learning decision lists. Machine Learning, 2 (3): 229-246, 1987.
    • (1987) Machine Learning , vol.2 , Issue.3 , pp. 229-246
    • Rivest, R.L.1
  • 46
    • 84857597379 scopus 로고    scopus 로고
    • Searching for rules to detect defective modules: A subgroup discovery approach
    • D. Rodríguez, R. Ruiz, J. C. Riquelme, and J. S. Aguilar-Ruiz. Searching for rules to detect defective modules: a subgroup discovery approach. Information Sciences, 191: 14-30, 2012.
    • (2012) Information Sciences , vol.191 , pp. 14-30
    • Rodríguez, D.1    Ruiz, R.2    Riquelme, J.C.3    Aguilar-Ruiz, J.S.4
  • 47
    • 77956069051 scopus 로고    scopus 로고
    • Simple means to improve the interpretability of regression coefficients
    • H. Schielzeth. Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution, 1 (2): 103-113, 2010.
    • (2010) Methods in Ecology and Evolution , vol.1 , Issue.2 , pp. 103-113
    • Schielzeth, H.1
  • 50
    • 84959508477 scopus 로고    scopus 로고
    • Supersparse linear integer models for optimized medical scoring systems
    • B. Ustun and C. Rudin. Supersparse linear integer models for optimized medical scoring systems. Machine Learning, 102 (3): 1-43, 2015.
    • (2015) Machine Learning , vol.102 , Issue.3 , pp. 1-43
    • Ustun, B.1    Rudin, C.2
  • 51
    • 0033225586 scopus 로고    scopus 로고
    • Projection learning
    • L. G. Valiant. Projection learning. Machine Learning, 37 (2): 115-130, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 115-130
    • Valiant, L.G.1
  • 52
    • 33746701845 scopus 로고    scopus 로고
    • Harmony: Efficiently mining the best rules for classification
    • J. Wang and G. Karypis. Harmony: Efficiently mining the best rules for classification. In SDM, 2005.
    • (2005) SDM
    • Wang, J.1    Karypis, G.2
  • 56
    • 11344262990 scopus 로고    scopus 로고
    • Cpar: Classification based on predictive association rules
    • X. Yin and J. Han. Cpar: Classification based on predictive association rules. In SDM, 2003.
    • (2003) SDM
    • Yin, X.1    Han, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.